COLLISION WORK PERFORMED BY PATIENTS WITH PERIPHERAL ARTERY DISEASE

Alex Dzewaltowski1, Iraklis Pipinos2,3, Jason Johanning2,3 & Sara Myers1,2

1Department of Biomechanics, University of Nebraska at Omaha, Omaha, NE, USA
2Omaha VA Medical Center, Omaha, NE, USA
3University of Nebraska Medical Center, Omaha, NE, USA

INTRODUCTION

• Collision work is energy dissipated into the surrounding environment from impact, in this case, upon heel strike.
• Research in our laboratory has found that patients with PAD exhibit abnormal gait, including consistently reduced plantarflexor torque [1].
• When designing an exoskeleton for patients with peripheral artery disease (PAD), harvesting energy lost to collision work could be a valuable mechanism to improve walking performance.
• Devices designed to utilize the normally dissipated energy to assist propulsion for improved walking performance are under-explored [2, 3].

PURPOSE

• The purpose of this study was to assess the validity of healthy, older individuals as a model for patients with PAD for fundamental research comparisons when designing assistive exoskeleton devices.

METHODS

• Subjects were age-matched, 67.4 ± 9.5 years
 • Patients with PAD, n=15
 • Healthy controls, n = 5

RESULT (continued)

Constitution Collision Work [5] = \[\sqrt{(V_x \times F_x)^2 + (V_y \times F_y)^2 + (V_z \times F_z)^2} \]
• F = Ground reaction force value corresponding to the first peak of its corresponding coordinal axis curve
• V = average heel velocity over 0.04s period before heel strike
• Statistics consisted of a student’s t-test

RESULTS

• Collision work performed by patients with PAD was not significantly different from control subjects (t = 0.73, p = 0.47).
• Average collision work and ankle power at push-off for patients with PAD was 2.54±0.83 and 1.99±0.50 watts/kg respectively.
• This allows for appropriately powered subject recruitment, and creates a wider impact for exoskeleton research dedicated to collision work.

ACKNOWLEDGEMENTS

This work was funded by NIH (R01AG034995 and R01HD090333). Thank you to those who collected data, including Todd Leutizinger, Blake Beier, and Mahdi Hassan.

REFERENCES

2. A. D. Kuo, J. M. Donelan, and A. Ruina, 2005
3. Q. Li, V. Naing, and J. M. Donelan, 2009
5. J. M. M. Donelan, R. Kram, and A. D. Kuo, 2002