Effects of a Passive Dynamic Lower-Leg Exoskeleton during Walking

Blake Beier¹, Cody Anderson¹, Anthony Arellano¹, Iraklis Pipinos²,³, Sara Myers¹,²
¹Department of Biomechanics, University of Nebraska Omaha, Omaha, NE, USA
²Omaha VA Medical Center, Omaha, NE, USA
³University of Nebraska Medical Center, Omaha, NE, USA
email: bbeier@unomaha.edu web: cobre.unomaha.edu

INTRODUCTION

• The ankle produces 60% of the lower-body positive mechanical work during the stance phase of gait.1-2
• If ankle muscles are weak, there are reductions in the ability to generate appropriate torques and powers during walking
• This leads to slower preferred walking speeds (PWS), which correlate with poor physical function, more disabilities, increased hospitalization visits and costs, and even mortality.3-4
• Due to this, many orthotic and exoskeletal devices are being created to restore proper ankle function by promoting ankle plantar flexion.5,6
• Purpose: Build a passive dynamic lower-leg exoskeleton to assist ankle plantar flexion, and assess its effects during walking
• Hypothesis 1: Wearing the exoskeleton will reduce the biological ankle torque contribution during stance
• Hypothesis 2: Wearing the exoskeleton will insignificantly affect ankle angle throughout gait
• Hypothesis 3: Wearing the exoskeleton will decrease the metabolic cost of walking

MATERIALS / METHODS

• Ten young, healthy participants between the ages of 19 and 35 years will walk on a level treadmill, at 10% faster than their PWS, for a variety of exoskeleton conditions (Table 1)

Table 1. Exoskeleton conditions during level treadmill walking.

|-------------------------------|--------------------|--------|--|------|-----------------------------------|------|--------------------------------------|------|

• All walking trials will be five minutes long and followed by a three minute rest
• Subjects will begin the study with a habituation period on the treadmill, involving three walking trials wearing the device with constant assistance actuators (CA Condition)
• 3D motion capture (Vicon Nexus) will measure hip, knee, and ankle motion in the sagittal plane
• An instrumented treadmill (Bertec) will measure ground reaction forces
• Using inverse dynamics, lower-body joint torques and powers will be calculated from motion and force data during walking trials

EXOSKELETON

• The lower-leg exoskeleton consists of four major components
(1) Calf Cuff
(2) Passive Clutch
(3) Extension Spring (Elastic Actuator)
(4) Foot Bracket

This work is being supported by NIH R01AG034995, NIH R01HD090333, and UNO’s Office of Research and Creative Activity UCRCA and FUSE Grants.