
University of Nebraska at Omaha University of Nebraska at Omaha 

DigitalCommons@UNO DigitalCommons@UNO 

Student Work 

5-2012 

Parallel Adaptive Algorithms for Sampling Large Scale Networks Parallel Adaptive Algorithms for Sampling Large Scale Networks 

Kanimathi Duraisamy 
University of Nebraska at Omaha 

Follow this and additional works at: https://digitalcommons.unomaha.edu/studentwork 

 Part of the Computer Sciences Commons 

Please take our feedback survey at: https://unomaha.az1.qualtrics.com/jfe/form/

SV_8cchtFmpDyGfBLE 

Recommended Citation Recommended Citation 
Duraisamy, Kanimathi, "Parallel Adaptive Algorithms for Sampling Large Scale Networks" (2012). Student 
Work. 2872. 
https://digitalcommons.unomaha.edu/studentwork/2872 

This Thesis is brought to you for free and open access by 
DigitalCommons@UNO. It has been accepted for 
inclusion in Student Work by an authorized administrator 
of DigitalCommons@UNO. For more information, please 
contact unodigitalcommons@unomaha.edu. 

http://www.unomaha.edu/
http://www.unomaha.edu/
https://digitalcommons.unomaha.edu/
https://digitalcommons.unomaha.edu/studentwork
https://digitalcommons.unomaha.edu/studentwork?utm_source=digitalcommons.unomaha.edu%2Fstudentwork%2F2872&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.unomaha.edu%2Fstudentwork%2F2872&utm_medium=PDF&utm_campaign=PDFCoverPages
https://unomaha.az1.qualtrics.com/jfe/form/SV_8cchtFmpDyGfBLE
https://unomaha.az1.qualtrics.com/jfe/form/SV_8cchtFmpDyGfBLE
https://digitalcommons.unomaha.edu/studentwork/2872?utm_source=digitalcommons.unomaha.edu%2Fstudentwork%2F2872&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:unodigitalcommons@unomaha.edu
http://library.unomaha.edu/
http://library.unomaha.edu/


    Parallel Adaptive Algorithms for Sampling 

Large Scale Networks 
 

A Thesis Presented to the 

Department of Computer Science and the Faculty of the Graduate College 

 

University of Nebraska 

In Partial Fulfillment of the Requirements for the Degree 

 

Masters of Science 

University of Nebraska at Omaha 

 

By 

Kanimathi Duraisamy 

May, 2012 

 

 

Supervisory Committee 

Dr. Sanjukta Bhowmick, Chair 
Dr. Hesham Ali 

Dr. Parvathi Chundi 
Dr. Dhundy Bastola  

 
 



All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent on the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted.  Also,  if material had to be removed, 

a note will indicate the deletion.

All rights reserved. This edition of the work is protected against
unauthorized copying under Title 17, United States Code.

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor,  MI 48106 - 1346

UMI  1508621
Copyright  2012  by ProQuest LLC.

UMI Number:  1508621



Parallel Adaptive Algorithms for Sampling Large Scale Networks 

Kanimathi Duraisamy, MS 

University of Nebraska at Omaha, 2012 
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 Abstract  

 The study of real-world systems, represented as networks, has important 

application in many disciplines including social sciences [1], bioinformatics [2] and 

software engineering [3]. These networks are extremely large, and analyzing them is very 

expensive. Our research work involves developing parallel graph sampling methods for 

efficient analysis of gene correlation networks. Our sampling algorithms maintain 

important structural and informational properties of large unstructured networks. We 

focus on preserving the relative importance, based on combinatorial metrics, rather than 

the exact measures. We use a special subgraph technique, based on finding triangles 

called maximal chordal subgraphs, which maintains the highly connected portions of the 

network while increasing the distance between less connected regions. Our results show 

that even with significant reduction of the network we can obtain reliable subgraphs 

which conserve most of the relevant combinatorial and functional properties. 

Additionally, sampling reveals new functional properties which were previously 

undiscovered in the original system. 

 

Keywords:  chordal graphs, parallel graph sampling, correlation networks, noise 

reduction, cluster overlap, edge enrichment score   
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                                                 Chapter 1                                                                          

                                            Introduction 

 A network is a set of vertices and edges and has proved to be a useful abstraction 

for solving real world problems arising in systems of interacting entities. In a network 

model vertices represent the entities and the edges represent interactions, flow of 

information, degree of similarity or social relations between them. An advance in data 

collection, storage and retrieval has led to a proliferation of very large networks. 

However analyzing these networks, that is computing graph theoretic properties of the 

network and then relating them to the functionalities of underlying system, is a 

challenging task.  

 The underlying purpose of network analysis is to extract meaningful data from an 

application. However for large scale networks (Facebook has 8 million users) analysis 

process is both computation and memory intensive. Two popular techniques for reducing 

the use of resources are (i) using high performance computing to divide data over 

multiple processing units[4,5,6] (ii) sampling[7,8,9] that is extracting representative 

subgraph that exhibits similar characteristics to the original larger network.  

 A more insidious problem concerns noise in networks. Real-world networks are 

built using experimental (such as gene correlation networks) or subjective (census 

reports, epidemic distribution) techniques. The fluctuations and bias inherent in these 

methods would also be present in the form of small errors or noise within the network 

models. Let us take the famous example Facebook. The facebook algorithm suggests that 

you might know a person, because you have four mutual friends, which can be a good 
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predictor of direct relationship. But sometimes Facebook can get it wrong because that 

person might be somebody whom you didn't met in your life. Such miscalculation occurs 

because not all connections in the Facebook are not of equal importance. Assuming equal 

importance to all edges is a form of noise. Once again selective sampling based on the 

analysis objective can reduce the noise in networks.  

 In this thesis, we developed scalable parallel network sampling algorithms that 

can filter out the noise, while preserving the important characteristics of the network. We 

compared two sampling techniques that are random walk and maximal chordal subgraph 

along with different permutations of the original network.  

 Our strategy is unique in that in contrast to other network filtering algorithms 

which only compare structural properties, whereas we compare both structural and 

functional properties. We validate our methods by using them to analyze gene correlation 

networks arising in murine models. Reduction of noise provides additional insight to the 

functional properties of the underlying application.  

 Our results show that chordal graph based sampling not only conserves clusters 

that are present within the original networks, but by reducing noise can also help uncover 

additional functional clusters that were previously not identifiable from the original 

network. We extend our research to investigate how different orderings affect the results 

of our sampling, and maintain the viability of resulting network structures. We show that 

our network sampling filter is a much better approach compared with other sampling 

filter like random walk.    
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1.1 Outline of Thesis: 

 This thesis is organized as follows. In Chapter 2, we provide brief overview and 

recent work in graph sampling.  In Chapter 3, we describe our implemented newly 

developed parallel algorithm. In Chapter 4, we present our experimental results and 

analysis which include comparing both combinatorial and functional properties of 

original network and subnetworks.  In Chapter 5, we discuss our concluding remarks and 

present potential ideas for further research. 
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                                                       Chapter 2 

                                           Background 

 Graphs are among the most ubiquitous models of both natural and human-made 

structures. They can be used to model many types of relations and process dynamics in 

physical, biological [13] and social systems. Many problems of practical interest can be 

represented by graphs. Graph is a collection of vertices and a collection of edges that 

connect pairs of vertices. Graphs are represented graphically by drawing a dot or circle 

for every vertex, and drawing an arc between two vertices if they are connected by an 

edge. If the graph is directed, the direction is indicated by drawing an arrow. 

                            

                                          Figure 2.1: Example of Undirected Graph 

2.1 Graph Terminologies: 

 We introduce some graph terminology that will be useful in the subsequent 

explanation of the algorithms (based on the definitions provided in [10]).   

 Vertices and Edges: A graph G= (V, E) is defined as a set of vertices V and set 

of edges E. An edge e € E is associated with two vertices u, v which are called its 

http://en.wikipedia.org/wiki/Vertex_%28graph_theory%29
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endpoints. A vertex u is said to be a neighbor of vertex v, if they are joined by an edge. In 

Figure 2.1, there are total 7 vertices and 10 edges in the graph. 

 Cycle: A Path is an alternating sequence of vertices and edges, where subsequent 

vertices are connected by an edge.  A Cycle is a path where the initial and final vertices 

are identical. In Figure 2.1, vertices (A, B, E, C, A) forms cycle. 

 Clique: A Clique is a set of vertices that are all connected to each other. In Figure 

2.1, vertices (A, B, C) forms clique because everyone in the group is connected to each 

other. Some other cliques are (B, E, C) and (B, E, D). 

 Degree: Degree of a vertex in a graph is the number of edges the vertex has with 

the other vertices. The Degree of vertex v is denoted as deg(v). Vertices with high 

degrees are called hubs. In Figure 2.1, Degree of vertices are, deg(A) = 2 , deg(B) = 4, 

deg(C) = 4, deg(D) = 2, deg(E) = 4, deg(F) = 2 and deg(G) = 2. 

 Degree Distribution: Degree Distribution is the probability distribution of 

degrees of the vertices over the network. Degree distribution is (d1, d2… dn-1), where dk is 

the number of vertices with degree k. Degree Distribution for graph in Figure 2.1 is (0, 4, 

0, 3, 0). Most scale free system like social and biological networks observe a power law 

based distribution [29] that is there are many vertices with low degree and the number of 

vertices exponentially go down as the degree increases. 

 Clustering Coefficient: Clustering Coefficient is a measure of degree to which 

nodes in a graph tend to cluster together. It is calculated as the ratio of the edges between 

the neighbors of a vertex to the total possible connection between them. The higher the 

clustering coefficient it is more likely that a vertex is part of a dense module with closely 
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interconnected dependencies. In Figure 2.1, Clustering Coefficients values of vertex A = 

1, vertex B = 0.5, vertex C = 0.3, vertex D = 1.0, vertex E = 0.3, vertex F = 0, vertex G = 

0. 

 Core Number Distribution: Core Number of a vertex is defined as the largest 

integer c such that the vertex exists in a graph where all degrees are greater than equal to 

c.  The higher the value, the better the clustering property should be maintained. In Figure 

2.1, Core Number of all vertices is 2.  

 Chordal Graph: A Chordal Graph is a graph where the length of a cycle is be no 

more than three. 

2.2 Sampling: 

 Graph Sampling involves extracting a representative subgraph that exhibits 

similar characteristics to the original, larger network. Usually sampled graphs reliably 

estimate the dynamicity of the network, that is a small change in the network would 

represent a small change in the sampled graphs and an important change in the larger 

network would considerable modify the sampled graph. They focus on preserving the 

relative values rather than the exact ones. For example, preserving the degree distribution 

even if the values of the degrees and might have changed. 

 In Figure 2.2, A shows a network with 99 vertices and 253 edges, (highest degree 

11 and lowest degree 1). We perform two modifications on the graph,–the first by 

removing a vertex of degree 1(Figure B) and the second by removing a vertex of degree 

10(Figure C). On visual inspection, it is very difficult to spot the difference between the 

graphs in the top level. However, in their sampled graphs we see that A’ and B' look 
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similar indicating the small change in original graph. Whereas A' and C' look different 

representing a more significant change. 

 

Figure 2.2: Visual representation of graphs and their associated sampled sub graphs. 

 Graph sampling is effective in reducing data and computational costs while 

preserving the accuracy of analysis results. Previous work [11] focused on sampling the 

networks for better visualization. Degree distribution and component size distribution are 

the two important visual feature of a network they are interested. Whereas Gilbert[12] 

aimed at graph compression for visualization that preserves the semantics of the original 

graph.  

 Most sampling methods for large scale-free networks are based on random 

sampling, such as random node selection or random walks on the network. Leskovic [7] 
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stated that random walks and forest fire are good at extracting samples from large 

networks. They are interested in finding a general sampling method that would match a 

full set of graph properties. A recent work [14] analyze the result of various sampling 

algorithms using three different measures namely Degree, Clustering and Reach. Most of 

the previous work concerned with constructing samples that match structural properties 

of the original network. 

 A parallel version of random walks is based on starting multiple walks 

simultaneously on different processors [15]. Parallel algorithms for obtaining spanning 

trees such as breadth first trees, connected components and minimum spanning trees on 

large-scale networks are also being investigated [4,5,6].However the spanning tree 

methods focus more on graph traversal than sampling important regions. 

 Filtering noise for large networks is still a largely unaddressed problem Some 

recent work has focused [16,17] on using machine learning techniques to detect noise in 

biological networks and uses supervised learning to predict noise based on prior 

information. 

 Our  algorithm effectively select good representative samples of a large graph that 

can filter out the noise, while preserving important characteristics of the network so that 

sampled graphs can be used  for more complicated experiments. 

2.3 High Performance Computing: 

 With the increase in data and problem sizes, high performance computing has 

become an essential tool for efficient implementation of large scale applications. In the 

sequential programming, processes are run one after another in a succession fashion and 
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it's expensive. In high performance computing, we have multiple processes execute at the 

same time and so we can complete time consuming operation in less time.   

2.4 Gene Correlation Networks: 

 A correlation network is represented as a graph, where vertices represent genes 

and edges represent the correlation between the expression levels of two genes.  Gene 

correlation networks are created based on the correlation between expression levels of 

different genes as obtained from microarray data analysis. Different measurements of 

correlation have been used to build these networks, such as the partial correlation 

coefficient [19], the Spearman correlation coefficient [20] and more commonly, the 

Pearson correlation coefficient [21].There are many methods for thresholding the 

correlation network. The most straightforward involves removing edges with a low 

correlation. In a larger network created using the Pearson correlation coefficient, we use a 

threshold of ±0.70 to ±1.00 based on the fact that the coefficient of determination for 

these correlations will be at least 0.49. 

 The degree distribution of correlation networks follows a power-law distribution 

[22] that indicates a scale-free network structure. Adherence to this distribution indicates 

that there are many nodes in the network that are poorly connected and a few nodes that 

are very well connected; these nodes are known as "hubs”. A primary analytical 

operation of correlation networks is identifying high density clusters of genes, 

represented by tightly connected vertices in the network. Analyzing these networks is a 

computationally expensive which creates the need for efficient sampling mechanisms. 

Furthermore, correlation networks can have noise or unnecessary edges, which can 

adversely impact the accuracy of the results. 
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     Chapter 3 

    Algorithm Description 

 

  Graph sampling should represent the relevant features of the larger network 

especially structural and informational properties that helps to improve the interpretation 

of large networks. Moreover, sampling is effective in reducing computational and data 

costs and also the sampled subgraph occupies less memory than original network. The 

objective of our sampling algorithm is to maintain the highly connected subgraphs like 

cliques from the original network while removing some of the associated noise. We 

assume that the effect of noise is more likely to be prevalent in structures formed by 

loosely connected vertices. Spanning subgraphs which includes all the vertices and some 

edges of the graph such as Minimum Spanning Tree, Steiner Tree, Planar Tree, Random 

Walk and Chordal Subgraphs possess many of the these properties to sample a graph 

perfectly.  

 

  For a given graph/network, Minimum/Maximum Spanning Tree (MST) is a 

subset of all edges that connects all nodes at minimum/maximum total weight without 

cycles.  The heaviest edge in any cycle cannot be in the minimal spanning tree. Moreover, 

the lightest edge in any cut must be in the minimal spanning forest. so we cannot 

guarantee that all the important functional properties would be retained in sampled graph. 

In addition, all the cycles will be deleted in spanning tree which means it can't keep 

densely connected regions. 
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 Steiner Tree problem is superficially similar to the Minimum Spanning 

Tree problem: given a set V of points (vertices), interconnect them by a network (graph) 

of shortest length, where the length is the sum of the lengths of all edges. The difference 

between the Steiner Tree problem and the Minimum Spanning Tree problem is that, in 

the Steiner Tree problem, extra intermediate vertices and edges may be added to the 

graph in order to reduce the length of the spanning tree. Adding more information to the 

Steiner Tree distort the values present already present in network. 

 

  Planar Graph is a graph which can be drawn in the plane (e.g. on a piece of 

paper) without any of the edges crossing over, that is, meeting at points other than 

the vertices. Several important graph theoretic concepts were discovered by looking at 

planar graphs. The notion of vertex coloring of graphs came from the four color 

conjecture about planar graphs. Similarly, Hamiltonian paths and cycles were studied for 

planar graphs. But if the original network  has clique of 5 or a complete bipartite graph 

with 3 nodes on each side, then subgraph will not be retained  in sampled graphs. We 

found it is difficult to retain almost all densely connected regions in planar graph.    

 

  In the recent years, many researchers have focused on random walk in graph 

sampling area [7]. A Random Walk selects the next node at random from among the 

neighbors of the current node. Random Walk has a good chance of finding densely 

connected regions in large network.  This motivated us to do some background research 

on this area and write parallel code to extract a subgraph from the larger network. As 

expected, sampled subgraphs find clusters from larger network. We went a step ahead 

http://en.wikipedia.org/wiki/Minimum_spanning_tree
http://en.wikipedia.org/wiki/Minimum_spanning_tree
http://en.wikipedia.org/wiki/Graph_%28mathematics%29
http://www.proofwiki.org/wiki/Definition:Graph_%28Graph_Theory%29
http://www.proofwiki.org/wiki/Definition:The_Plane
http://www.proofwiki.org/wiki/Definition:Edge_%28Graph_Theory%29
http://www.proofwiki.org/wiki/Definition:Vertex_%28Graph_Theory%29
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and analyze the quality of those clusters. Unfortunately, the sampled graph using Random 

Walk did not retain the important biological properties. 

 

 Chordal Subgraph is a spanning subgraph of the network where there are no 

cycles of length larger than three. This interesting family of graphs is not only good for 

sampling, but Chordal Subgraphs preserve many topological features such as the number 

of triangles, the number of cliques, and the lower bound on the number of colors. Choices 

of edges to be retained in Chordal graphs are based on information content which 

indicates that sampling based on Chordal graphs will retain important informational 

properties of the network. Due to these properties of the Chordal graphs, they can be used 

to construct efficient linear time algorithms for non-polynomial problems such as 

minimum coloring and maximum cliques. It provides the approximation of the larger 

graph to obtain near exact results with low computational cost  and also the complexity of 

finding Chordal Subgraph is O(|E|*max_deg)[18]. Retrieving Maximum Chordal 

Subgraph from the given network is NP hard problem so we decided to go with Maximal 

Chordal Subgraph based on the algorithm provided by Dearing et. al.[18] to maintain the 

densely connected regions in the sampled subgraph. 

 

 3. 1 Data Structure: 

 Compressed row storage method [33] is a popular format for representing 

elements of sparse matrices. The storing the non-zero elements of a sparse matrix into a 

linear array is done by walking down each column or across each row in order, and 

writing the non-zero elements to a linear array in the order they appear in the walk. 
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Graphs can be represented as an adjacency matrix where rows and columns are labeled 

by graph vertices and value of adjacency matrix (Vi, Vj) is 1 if there is an edge between 

vertex Vi and vertex Vj otherwise 0 . In this method all the information is stored into three 

vectors as described below. 

(a)Values: stores the non-zero values of a sparse matrix by walking down each column 

and writing a non-zero values  

(b) Columns: Value of Columns[i] is the number of the column of adjacency matrix that 

contains the Values[i] element. 

(c) Row Index: Value of Row Index[i] gives the index of the element of the Values array 

of the first non-zero element in a row ‘i’ of adjacency matrix. 

       (a)                         (b) 

 

 

                                                                (c) 

Figure 3.1 CSR format for a network a) The original network of 5 vertices b) The sparse 
adjacency matrix corresponding to the network.  c) The CSR format for the sparse matrix 
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3.2 Chordal Graph Based Sampling: 

 Our sampling technique for obtaining the maximal chordal subgraph is provided 

by Dearing et. al. [18]. This method is based on growing the graph from a starting vertex 

and adding edges as long as they maintain the chordal characteristics. Initially the chordal 

subgraph consists of the starting vertex and its associated edges. In the subsequent steps, 

the vertex with the maximum number of visited neighbors is selected. An edge from the 

current selected vertex a, (a,b) is added to the chordal subgraph if the number of visited 

neighbors of b is a subset of the number of visited neighbors of a. The complexity of this 

algorithm is O(Ed) where E is the number of edges in the graph and d is the maximum 

degree.  

 

  Figure 3.2:  Original Graph (Left) and it maximal chordal subgraph(Right ) 

   

 The sequential algorithm for finding MCS and indeed most of the sampling 

methods assume that the original network is connected. However, many real-world 
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networks, such as our test suite of gene correlation networks have disconnected 

components. Based on our initial tests, we discovered that a completely chordal subgraph 

is a very strict restriction, and can disintegrate some clusters, that are almost, but not 

exact, cliques. To counteract this effect we modified the algorithm to extract quasi-

chordal subgraphs, which can include few cycles of length greater than three. We believe 

that more loosely coupled structures are potentially eliminated in quasi chordal subgraph 

by including only border edges that are part of at least one triangle. In order to 

accommodate large networks, we have developed and implemented a parallel algorithm 

for extracting the maximal chordal subgraphs from the network.  These subgraph 

preserves most of the cliques and highly connected regions of the network which 

increases the path lengths between loosely connected regions. We validate our algorithms 

by applying them to analyze gene correlation networks.  

 

3.2.1 Parallel Algorithm with Communication: 

 Our parallel implementation on a distributed memory system was follows: We 

divided the network across P processors, and identify the local maximal chordal subgraph 

Figure 3.3: Original graph and their associated maximal chordal subgraphs 
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formed only of the edges whose endpoints lie completely within a processor. Next, we 

identify the border edges whose endpoints lie across the partitions. For each pair of 

processors we identified a receiver where the synchronization would take place. We 

assign the processors as sender and receiver in such a way that computation load is 

balanced across all processors.  We sent the border edges to designated receiver 

processors.  The edges that lie across processors is included only if two                                  

border edges with a common vertex combined with a previously marked chordal edge to 

form a triangle. This implementation generated quasi-chordal subgraphs (QCS), since the 

inclusion of border edges can sometimes increase the length of cycles by more than three. 

 

   

Figure 3.4: Visualization of networks from the creatine treated mice. A: Original 
Network. B: QCS with 1 Partition: QCS with 2 Partitions. D: Left Figure: QCS with 4 
Partitions. E: QCS with 8 Partitions. F: QCS with 16 Partitions. 
 

 Figure 3.4 shows the QCS generated from one of our sample networks. The 

scalability of our parallel algorithm can be computed as follows; Let the number of edges 
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in the network be E, the maximum degree of the network be d and the number of 

processors involved be p. The complexity of the sequential algorithm is given by Tseq(E) 

= O(Ed). The parallel overhead Tover(E,p) consists of communicating the border nodes 

from each processor, denoted by b, and subsequently checking, for each pair of border 

nodes, if they form a triangle with a chordal edge. Assuming equal distribution of border 

nodes, the total communication volume is O(bp) and the computation volume over all 

processors is O(b2p). Therefore, Tover(E,p) = O(b2p). In order maintain isoefficiency, 

Tseq(E)>=Tover(E,p), which implies E >=Cb2p/d, where C is a constant. The memory 

required by to store the network is approximately O(E). Therefore, the scalability 

function for this algorithm can be computed as (Cb2p)/(dp) = O(b2/d). Thus, the parallel 

overhead increases with the number of border edges. 

 

Figure 3.5: Breakdown of execution time for obtaining QCS over different number of 
processors. As the number of processors increase, the communication overhead for the 
border edges outweighs the gains due to parallelization. 
 
 A limitation of this implementation is that the algorithm does not scale well. If the 

network is too small and number of processors is large, then b increases. Again, if the 

network is too big and there are fewer of processors, then too b increases significantly. 
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Additionally, depending on the distribution some processors might have more border 

edges to analyze as compared to other processors.  

 

Figure 3.5 shows the breakdown of the execution times of the different sections of 

the algorithm over 1,2,4,8 and 16 processors. As can be seen from the figure the time to 

compute the local QCS (blue blocks) gradually decreases over the number of processors. 

However, the communication costs (border edges) keep increasing with the number of 

processors, which finally leads to significant increase in the execution time. 

 

3.2.2 Parallel Algorithm without Communication  

 Primary goal is to reduce the communication costs and maintain a better balance 

of the workload.  

 In this version, graph is partitioned as before, and then chordal edges and border 

edges are marked. Instead of sending the border edges to the receiver, we simply compare 

them with the local chordal edges. Pair of border edges is included in the subgraph if they 

form a triangle with already marked chordal edge. In Figure 1, edges (2, 6) and (4, 6) will 

not be included in the top partition because (2, 4) is not a chordal edge. However in the 

bottom partition (4, 6) and (4, 8) are included since (6, 8) is a chordal edges and so are (5, 

8) and (5, 10). This implementation requires no communication and provides a more 

equitable distribution of the workload. It is therefore more scalable than our earlier 

algorithm. 

 Because multiple processors can work on the same border edge, it is likely that 

some of the border edges will be represented twice in the final filtered subgraph.  During 
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analysis, which is done sequentially, we have to remove these duplications. In the worst 

case there can be as many as b duplications, where b is the number of border edges. 

 

 

Figure 3.6: Gene expression network of the hypothalamus of a mouse brain with larger 
components highlighted in broken line boxes (A-D) and the respective chordal graph 
representations shown below (A’-D’). The chordal graphs preserve the structure but have 
significantly lower number of edges. 
 

Our primary contribution is in developing a parallel sampling technique for large-

scale networks that not only extracts important combinatorial properties, but also 

eliminates some of the inherent noise in the networks. Reduction of noise provides 

additional insight to the functional properties of the underlying application. Figure 3.6 
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demonstrates how QCS based sampling can effectively select good representative 

samples of a large graph. 

 

3.3 Random Walk Based Sampling: 

 In order to compare the effectiveness of our method, we also implemented a 

parallel random filtering method. The random walk was also designed as a variation on 

graph traversal. At each vertex of degree d, one of its associated edges was selected with 

probability 1/d. The graph traversal was completely random in that we did not maintain a 

list of which edges or vertices have been visited, and a vertex could be visited multiple 

times. The rationale for random walk is that tightly connected groups of vertices will 

have a higher chance of being repeatedly selected and therefore cliques and other highly 

connected regions would be preserved in the filtered graph. The traversal process is 

continued iteratively until the number of times edges are selected is half the total number 

of edges in the network. 

 The parallel random walk algorithm also divides the network across processors 

and as in the case of the chordal graph based sampling, each processor finds its local 

random walk based subgraph. Each border edge is associated with a binary random value, 

and based on the value the edge is either included in the subgraph (e.g. for value 1) or not 

(e.g. for value 0). However, the addition of the border edges is much simpler. This 

algorithm is of course perfectly scalable as again no communication is required for the 

border edges. The random walk filter would also require less execution time than the 

chordal graph filter, because the choice of the next edge is much simpler. 
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                        Chapter 4 

                                        Analysis of Results 

 The datasets GSE5140 and GSE5078 for our experiments were obtained from 

NCBIs Gene Expression Omnibus (GEO) website (http://www.ncbi.nlm.nih.gov/geo/) 

and divided based on age/treatment [23, 24]. GSE5078 was divided into young mice 

(YNG) and middle-aged (MID) mice data (2 months and 15 months respectively). 

GSE5140 was divided into untreated middle-aged mice (UNT) and creatine-

supplemented middle-aged mice (CRE) datasets [24]. Both datasets were designed to 

identify age-related changes in brain tissue from mouse models at different ages/states. 

These Networks were created by pairwise computation of the Pearson correlation 

coefficient for each possible pairing of the genes and thresholding was applied to 

eliminate low correlation edges. 

 We obtained quasi-chordal subgraphs for these four networks, by the process 

described in Section 3 on 1,2,4,8 and 16 processors on a distributed memory system 

using MPI. The codes were executed on the University of Nebraska at Omaha's 

Blackforest linux computing cluster, consisting of subclusters of Intel Pentium D, Dual-

core Opteron and 2 Quad-core AMD Opteron processors. 

 Our empirical results fall into three categories. The first involves analysis of 

comparing the combinatorial properties of the networks and the subgraphs. The second 

deals with functional units in the correlation networks and also detailed analysis of the 

clusters obtained. The third deals with the parallel sampling algorithm their scalability 

and effect on analysis of data.   
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4.1 Analysis of Combinatorial Properties: 

 Table 1 compares the combinatorial properties including reduction in edges,  

degree distribution , clustering coefficients, number of vertices with high degrees (hubs) 

and high core numbers using MatlabBGL library [25].The numbers in the parenthesis 

denote the reduction percentages. The best values of edge reduction, hub and core 

number retention are marked in bold. 

 As expected, the subgraphs have lower number of edges, the higher the number of 

processors, the more the reduction. The percentage reduction is computed by 1-(Edges in 

Subgraph/Edges in Original Network). The higher the number, the more the reduction. 

 Degree distribution is computed as number of vertices with degree d. Degree 

distributions in the correlation networks follows the power law. We also compare the 

average clustering coefficients per degree between the networks. The value of subgraphs 

should be close to the original network. We compare how many of the same vertices 

appear as hubs in both the original and the sub-networks. The percentage of common 

hubs is computed as Common Vertices/Total Vertices in the Original Network. The 

percentage for core numbers is computed as the ratio of the number of vertices grouped 

together both in the subgraph and the original network by the total number of vertices in 

the top 5 core number group of the original network. The higher the value, the better the 

clustering property and sampling should be maintained. The reduction patterns are similar 

within the same group, i.e. the GSE5078 or the GSE5140 networks, but changes across 

groups. The mean clustering coefficients of all the subgraphs are very close to the 

corresponding original network. For the smaller networks in GSE5078, the sampling 

technique achieves high reductions from 27% to as much as 53%, while still maintaining 
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nearly 50% or more of the hubs and the core number grouping. For the larger networks in 

GSE5140, the reduction is around 14% to 26%. The percentage of hubs retained is 50% 

to 75%.  

Combinatorial  

       Properties 

Original 

Network 

Quasi-Chordal Subgraphs with 

1 Partition            2 Partitions           4 Partitions         8 Partitions          16 Partitions 

 

                                      Middle-Aged Mice (GSE5078)(Vertices 5,549) 

Number of Edges 7,178 5,206(27.4) 4,127(42.5) 3,878(45.9) 3,637(49.3) 3,362(53.1) 

Mean Clust. Coeff. .46 .45 .31 .38 .44 .41 

High degree vertices 144 83(57) 60(41) 77(53) 80(55) 92(63) 

Core Numbers 50 30(60) 26(52) 26(52) 28(56) 44(88) 

                                      Young -Aged Mice (GSE5078)(Vertices 5,549) 

Number of Edges 7,277 4,949(31.9) 4,269(41.3) 4,029(44.6) 3,657(49.7) 3,753(48.4) 

Mean Clust. Coeff. .48 .39 .47 .40 .41 .41 

High degree vertices 146 73(50) 106(72) 96(65) 86(58) 95(65) 

Core Numbers 46 26(56) 25(54) 39(84) 36(78) 26(56) 

 

                                      Control Group (GSE5140)(Vertices 27,320) 

Number of Edges 29,719 25,281(14.9) 22,284(25) 22,986(22.6) 22,272(25) 21,898(26.3) 

Mean Clust. Coeff. .54 .47 .50 .49 .51 .52 

High degree vertices 595 368(61) 335(56) 451(75) 430(72) 431(72) 

Core Numbers 200 34(17) 37(18) 106(53) 112(56) 106(53) 

                                      Creatine Treated Mice(GSE5140)(Vertices 28,161) 

Number of Edges 33,099 27,278(17.5) 23,867(27.8) 25,268(23.6) 24,719(25.3) 24,641(25.5) 

Mean Clust. Coeff. .46 .45 .43 .45 .44 .48 

High degree vertices 662 387(58) 360(54) 478(72) 494(74) 502(76) 

Core Numbers 187 58(31) 45(24) 101(54) 98(52) 117(62) 

Table 4.1: Comparison of combinatorial properties between original and Chordal   
subgraphs 
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 In general, the results are better when there are more partitions. This is because by 

increasing the number of partitions we include more almost-clique structures (by keeping 

the triangles at border edges), as well as filter out noise. 

 

Combinatorial Properties Original Network Random walk Subgraph(1P) 
                    Middle-Aged Mice(GSE5078) (Vertices 5549) 
Number of Edges 7178 2497 

Mean Clust. Coeff. 0.27 0.0130 

Highest Degree  96 5 

Mean Core Numbers 1.77 0.66 

               Young-Aged Mice(GSE5078) (Vertices 5549) 
Number of Edges 7277 2523 

Mean Clust. Coeff. 0.24 0.0098 

Highest Degree  116 8 

Mean Core Numbers 1.85 0.7 

               Control Group(GSE5140) (Vertices 27,320) 
Number of Edges 29719 10176 

Mean Clust. Coeff. 0.40 0.0209 

Highest Degree  84 7 

Mean Core Numbers 1.63 0.57 

               Creatine Treated Mice(GSE5140) (Vertices 28,161) 
Number of Edges 33099 11524 

Mean Clust. Coeff. 0.42 0.0218 

Highest Degree 150 8 

Mean Core Numbers 1.74 0.6 

  
Table 4.2: Comparison of combinatorial properties between the original networks and 
random walk subgraphs 
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 From Table 4.2, we identified that random walk did not retain any combinatorial 

properties and values are too low compared to chordal subgraph. 

 
  Figure 4.1, 4.2, 4.3, 4.4 plots the degree distribution and the distribution of the 

average clustering coefficient per degree of the original networks and their chordal 

subgraphs. As can be seen from the figures, for both metrics, barring slight fluctuations, 

the subgraphs follow the same pattern as the original network.  

 

Figure 4.1: Degree distribution and average clustering coefficient of middle aged mice  

 

Figure 4.2: Degree distribution and average clustering coefficient of young mice network 
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Figure 4.3: Degree distribution and average clustering coefficient of untreated mice  

 

Figure 4.4: Degree distribution and average clustering coefficient of creatine mice  

 

4.2 Analysis of Functional Properties: 

 We used the Cytoscape plug-in MCODE [26] on the network to identify clusters 

as groups of genes that are more highly interconnected than they are to the rest of the 
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network. We extracted the top five clusters of the original network and subgraphs and 

compared the clusters based on maximum common genes in each set. The names of 

genes in each cluster were given to the PANTHER Classification System 

(http://www.pantherdb.org/) [27] to identify common molecular functions. Gene 

Ontology tree is a directed acyclic graph where nodes represent functional descriptive 

terms and directed edges represent term relationships; a parent-child relationship in the 

tree indicates that the child term is a more specific function than the parent, thus, the 

deeper in the tree, the more specialized the terms. Figures lists the most represented Gene 

Ontology (GO) molecular function terms per cluster as found in the original network and 

sampled networks on 1,2,4,8 and 16 processors respectively. Similar color within each 

cluster represents similar functionality. 

 . 

 

Figure 4.5: Comparison of functional units of young mice network. 
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We define clusters to be overlapped if the same vertex is classified as being in 

more than one cluster.  Except for the young mice network (due to high overlap),  most 

clusters from the original network are present in the subgraphs. There was one small 

overlap of two clusters in the middle-aged mice network. However, the young mice 

network exhibited significant overlap of more than two clusters, which affected the 

comparison of  the functional units. We conjecture that was because the gene pathways of 

the young mice are in a more fluid and volatile state than the more fixed gene pathways 

of older mice. 

 

Figure 4.6: Comparison of functional units of the networks of middle aged datset 
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 The results show that sampling from the larger networks from the 

GSE5140(Untreated  Mice Network and Creatine Mice Network) match to more 

functional units than the smaller networks, and the matching improves with larger 

number of partitions. We also note that several subgraphs show common functional units 

(such as in cluster 3 of the middle aged mice and in cluster 1 of the creatine treated mice) 

which are not present in the original cluster. We conjecture that the removal of noisy 

edges has exposed these functional units previously hidden in the original network. 

 

Figure 4.7: Comparison of functional units of untreated mice dataset  
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 Figure 4.8: Comparison of functional units of creatine treated mice dataset. 

 

4.2.1 Analysis of Different Ordering: 

 We  extend the research and compare the effectiveness of  chordal graph sampling 

based on Breadth First Search (BFS) and Reverse Cuthill Mckee (RCM) [10] ordering 

.It's because ordering of the vertices in the parallel algorithm, play a significant role in 

determining the size and quality of the maximal quasi-chordal graph.  
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BFS ordering is based on a level by level traversal of the graph, where the level of 

a vertex is its shortest distance from the starting vertex. BFS assures that the vertices in 

the same connected graph component will be processed together.RCM ordering, in 

addition to accessing connected components, ensures that closely connected groups of 

vertices are placed together. RCM ordering is implemented by reversing the vertex order 

obtained from a BFS search, with the constraint that the starting vertex is a peripheral 

vertex [2]. 

 Each column in the Figure 12 and 13 denotes clusters and corresponding 

enrichment score found in the original network and through sampled networks on 1, 2, 4, 

8, 16 and 32 processors respectively. Enrichment for a Gene Ontology term can be 

described as the ratio of the number of genes in the cluster with the specified term (c) to 

the number of genes in the cluster (n), divided by the ratio of the number of genes in the 

entire genome with the specified term (C) to the total number of genes in the tested 

genome (N). The formal equation to identify enrichment, then, is E = (c/n)/(C/N). The 

higher the enrichment score, the better. 

 In the young mouse dataset, the original network had 2 of the top clusters 

enriched in with GO terms associated with Development and Transport. Clusters 

matching to these functionalities were also found in the sampling method using BFS 

ordering (Figure 4.9). The BFS results identified the Development cluster (cluster 3) for 

each number of partitions (1, 2, 4, 8, 16, and 32) whereas the Transport cluster (cluster 5) 

was only identified on the sample using one processor. The BFS method also helped in 

discovery of new clusters which were enriched in metabolism (cluster 1), development 

(clusters 2 and 3), and transport (cluster 4). 
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 In the case of RCM ordering (Figure 4.10), Metabolism enriched cluster (cluster 

6) was preserved from the original network (for sampling in one processor and two 

processors). New clusters identified were enriched in transport (cluster 2), metabolism 

(cluster 1 and 3), and development (cluster 4). Compared to the BFS results (Figure 2), 

these results were more functionally specific, suggesting that RCM may retain knowledge 

better than BFS. 

 

 

Figure 4.9: The gene functionality of clusters for the young mouse network with 
BFS ordering. Enrichment scores are colored from low (green) to high (red). Spaces 
with no enrichment means that for that number of partitions, there was no cluster found 
for that partition. Number of conserved clusters: 1. Number of clusters with additional 
genes: 1. Number of new clusters in sampled networks: 3. 
  



33 
 

Our results indicate that RCM had more matches to original GO clusters identified, 

indicating that lowering the bandwidth of the corresponding matrix can help in obtaining 

more clustered regions. 

 

Figure 4.10: The gene functionality of clusters for the young mouse network with 
RCM ordering. Enrichment scores are colored from low (green) to high (red). Spaces 
with no enrichment means that for that number of partitions, there was no cluster found 
for that partition. Number of conserved clusters: 1. Number of new clusters in sampled 
networks: 6. 
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Additionally, both methods performed exceptionally at identifying novel clusters 

within networks, which indicates that sampling based on identifying quasi chordal 

subgraphs can indeed eliminate poorly connected edges, which form noise in the 

network. RCM method had higher conservation of novel cluster identification than BFS 

across number of partitions, suggesting that it may be more stable than the BFS method. 

 

4.2.2 Analysis of Quality of Clusters: 

 Resulting cluster of both original network and sampled subgraphs are annotated 

and scored and ranked according to true biological networks. All clusters from original 

networks are compared to all clusters from sampled networks based on the following 

metrics: (i) node overlap, (ii) edge overlap, (iii) biological relevance of clusters in the 

original versus the sampled networks, (iv) number of known (found in the original 

network) and new (not found in the original network) clusters identified. 

 We define some terms that is useful in understanding the subsequent explanation 

of analysis of clusters. 

 Cluster Annotation and Scoring: For each edge e connecting nodes n1 and n2 in 

some cluster C, the terms associated with genes represented by nodes n1 and n2 are 

identified and mapped onto the GO biological process tree. Then the deepest common 

parent/ancestor (DCP) of nodes n1 and n2 is identified and used to annotate edge e. 

Scoring is performed using a measure of DCP depth (distance from the ROOT node to 

the DCP) and term breadth ( length of the shortest path from term 1 and term 2) where 

the final score of edge e is equal to DCP depth – term breadth[28]. Clusters are scored by 

taking the average edge enrichment score (AEES) over all edges in the cluster and 
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function is annotated using the most common/dominating term(s) within the cluster. 

Edges that represent true relationships will be deep in the tree and closer to each other, so 

the higher the edge score, the better. In addition, scores at or below 0 are more likely to 

represent noise or coincidental relationships. 

 

Figure 4.11: Example of how network sampling can positively or negatively affect the 
average edge enrichment score of a cluster by removing different sets of edges. 
 
 Vertex Ordering: The size of maximal chordal graph depends on the order in 

which vertices are accessed. To check whether analysis of  gene functionality get affected 

by ordering , we permuted the original network according to four different ordering as 

follows. 

 1. Natural Order: This is the original order in which the vertices were arranged in 

the network. This order is generally based on the nomenclature of the genes, such as 

arranging the genes in alphabetical order 

 2. High Degree Order: The vertices are arranged in descending order of degree. 

The ones with the higher degree are likely to be processed first 

 3. Low Degree Order: The vertices are arranged in ascending order of degree. 

The ones with the lowest degree are likely to be processed first 
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 4. Reverse Cut hill McKee (RCM Order): This ordering ensures that closely 

connected group of vertices are placed together. 

 

Cluster Overlap: We use the following measures to define sensitivity and specificity of 

our filters as follows.  

 1. High AEES, High overlap (True Positive TP): Clusters that have a high AEES 

and have a high (>50%) node or edge overlap indicates clusters that were found in the 

original network and the sampled network, and the cluster has biological meaning. 

 2. Low AEES, High overlap (False Positive FP): Clusters that have a low AEES 

and have a high (>50%) node or edge overlap indicates clusters that were found in the 

original network and the sampled network, but the cluster likely has no biological 

meaning.  

 3. High AEES, Low overlap (False Negative FN): Clusters that have a high AEES 

and have a low (<50%) node or edge overlap indicates clusters that were not found in the 

original network but were present in the sampled network, and have biological meaning. 

These clusters tend to be small and less dense and are only uncovered when noise is 

removed; hence they are hidden in the original network. 

 4. Low AEES, Low overlap (True Negative TN): Clusters that have a low AEES 

and have a low (<50%) node or edge overlap indicates clusters that were not found in the 

original network but were present in the sampled network, and likely have no biological 

meaning. 

By dividing the graph into equal quadrants, we can identify TP, FP, FN and TN 

counts in figure 4.12.   
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Figure 4.12: Example of how to identify the likely biologically meaningful clusters 

 Red box highlights clusters with high AEES scores that were found in both 

original and clustered networks; the green box highlights clusters with high AEES scores 

that were found in the original network but were ranked higher in filtered networks. 

Using these measures, we can define Sensitivity (TP/(TP+FN)) and Specificity 

(TN/(TN+FP))for each filter to identify which (if any) orderings are optimal compared to 

the others. 

Node and Edge Overlap: 

 We now analyze the quality of the clusters in each network as obtained by the 

filters. 

Figure 4.13 depicts the overlap of filtered clusters with original clusters in terms 

of percentage of node overlap and percentage of edge overlap. Each point represents a 

cluster found for a particular filter that had some overlap with a cluster in the original 

network. Points lying near the right and the top have higher overlap. Although the 

filtering method removes edges, we still found some filters to leave complete clusters 

(100% edge and node overlap) from the original. 
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Figure 4.13: Node and edge overlap for original vs. sampled networks , untreated scores 
(left) and creatine scores(right)  
   

 

Figure 4.14: Newly discovered nodes and edges for original vs. sampled networks , 
untreated scores (left) and creatine scores(right)  
 

Figure 4.14 depicts clusters that were not found in original network. Points lying 

near the left and the bottom have less overlap. While these figures note the density of 
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discovered clusters, it remains to be seen whether these newly found clusters are actually 

biologically relevant. Among the orderings we see that high and low degree orderings 

retain the maximum number of clusters from the original networks and natural order 

seems to be the best identifier of new clusters, followed by RCM. 

 We observe that many points on the graph lie on the same coordinates indicating 

that the despite different orderings chordal based filters retain many important clusters. 

Therefore our algorithms have minimal overall impact on the process of obtaining 

biologically relevant clusters. 

 Next, we examine the sensitivity and specificity of our ordering methods from TP, 

FP, FN and TN. We see in Figure 4.15 that identifying clusters by percentage of node 

overlap returns a high sensitivity and low specificity, that is we find many meaningful 

clusters but also find many non meaningful clusters. Edge overlap shows the opposite; 

specifically that using edge overlap to define a cluster match from original to filter allows 

us to find clusters that are likely to be noise, although the reasoning behind this is not 

clear. 

 

 

Figure 4.15: Sensitivity and specificity of filters for node and edge overlap. 
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 Finally, we see that filters can improve on AEE score of original clusters and 

allow the true function to stand out. Figure 4.16. A denotes entire cluster represents 

cluster 18 of original UNT network, AEES score of 2.33. Red nodes and edges represent 

the sampled UNT High Degree cluster #10 with AEES score of 4.17, an improvement of 

almost 2.00 enrichment points on average. Figure 4.16.B represents the resulting filtered 

cluster was annotated involvement in apoptotic function; three nodes have been 

confirmed as having roles in apoptosis via multiple sources (MGI, NCBI, GO, etc.), two 

nodes have been confirmed in the GO tree and in literature, and two remaining in the 

filtered network (and additional two in the original network) have not previously been 

identified as having apoptotic function. By filtering the sample, two nodes with no 

apoptotic function are removed and the cluster’s true function is revealed. Whereas figure 

4.16.C denotes the UNT HD cluster #10 with edges enriched in apoptosis as the DCP 

highlighted in purple dashed lines. 

 This original cluster did not stand out in the ranked list but stood out in all 4 

filtered networks as a high AEE scored cluster with high overlap (66.7% node overlap, 

28% edge overlap) to original and was found to be involved in regulation of apoptosis in 

the UNT network. Apoptosis is a critical process for normally functioning cells; when 

apoptosis is not regulated appropriately it can result in uncontrolled cell growth (cancer) 

or too much cell death (necrosis). 

Our experiments showed that random walk filtered networks find no clusters at 

all. The random walk filter does not identify subsystems/graphs within the network at all, 

in that there are not enough edges retained using the random walk method to identify 

very dense groups of nodes. Thus, no clusters are identified via the random walk method.                 
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Figure 4.16: Example of how filtering impacts a cluster.                       

4.3 Analysis of Parallel Results: 

 We demonstrate the scalability of our parallel chordal graph based sampling 

algorithm. Our experiments were performed on the Firefly Cluster at the Holland 

Computing Center. Firefly is a Linux-based system comprising of AMD quad- and dual-

core processors. Our implementation was based on a distributed memory approach using 

MPI. We compared the scalability of the following three sampling algorithms: (i) chordal 
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graph based sampling using communication, (ii) chordal graph based sampling without 

communication, and (iii) random walk. 

 

Figure 4.17: Scalability of sampling algorithms for a dataset with 5,348 vertices and 
7,277 edges(Above) and dataset with 27,896 vertices and 30,296 edges(Below) 
 

 As expected the random walk filter is the most scalable of all and also the fastest. 

Chordal sampling without communication is also very scalable and takes less time than 

the version with communication. The scalability for chordal sampling with 

communication deteriorates for small graphs and for large graphs the time taken can be as 

much as twice that required for the algorithm without communication. 

We compare the results of the original networks to two different types of the new 

chordal based filter: sequential (1P) and multiple processors (64P) to show that parallel 

implementation of our method do not negatively affect cluster identification. We see that 

in Figure 4.18 (left) the method at 64P is comparable to the method at 1P, although the 

clusters found at 64P have better node overlap (no clusters have less that 40% node 

overlap) and moderate edge overlap (no better than 50% edge overlap with original 

clusters). Each point represents a cluster found in the original network that overlaps with 

a cluster found in the filtered network. 
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 Figure 4.18: Parallel results for Creatine Natural Order filter. 

 

 Figure 4.18(Right) represents Clusters with AEES scores >3.0 found in original, 

1P and 64P networks. The average depth is the AEES score, and Max Score represents 

the deepest term represented in the cluster. 
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                                                     Chapter 5  

                                             Conclusion 

 

              We developed and implemented a scalable parallel graph sampling algorithms 

based on extracting the maximal chordal subgraphs from large networks. We showed that 

our sampled subgraphs retain most of the combinatorial and functional properties of the 

original network. We present the detailed analysis of clusters obtained by comparing the 

random filter method and also chordal graph with different permutations of network. Our 

analysis show that maximal chordal subgraphs will maintain or improve upon the 

biological information contained within the highly dense subgraphs. Reported results also 

show that our parallel implementation is scalable and the analysis results are not 

significantly affected by data distribution and ordering of vertices. Thus, our method tries 

to find the best description of the network being analyzed, no matter what kind of 

network. 

 As a part of future work, we can investigate the impact of implementing other 

methods for reducing noise in the network, such as identifying Steiner trees or 

Hypergraph and also continue the network sampling on weighted networks and on 

dynamic evolving networks. 
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