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A Semantic Approach for Keyword Search on Relational Databases 

Rajvardhan Bhaskar Patil, M.S. 

University of Nebraska, 2012 

Advisor: Dr. Zhengxin Chen  

Abstract  

Today’s search engines make it easier for the user to browse and query the online 

available data. But when it comes to structured data, the queries have to be structured too, 

in order to retrieve the data. This makes it difficult for novice users, with no knowledge 

of the underlying schema or query language, to access the relational data. Therefore, to 

query the structured data in an unstructured language of web, there is a need to map the 

user keyword queries to their equivalent SQL format. This research is intended to bridge 

the gap by introducing a framework named STRUCT. Unlike most of the existing work 

which pays very little attention to the contextual information provided by the user, our 

approach takes these details into account to elucidate the implied structural information 

necessary for constructing the SQL clauses. One fundamental issue on keyword search in 

traditional databases is how to interpret users’ information needs behind keywords they 

provided. A common approach of many prototype systems is to make such interpretation 

as a designer’s choice (such as imposing AND or OR semantics, or a combination), 

leaving no choice to users. A much more meaningful approach would be allowing users 

themselves to specify the required semantics through contextual information. So can we 

build a system which stays with the simplicity of Keyword search, yet can incorporate the 

contextual information provided in the user query? STRUCT answers this question by 



  

taking English language queries involving intended keywords. Instead of resorting on a 

full-fledged natural language processing, the unneeded words in the queries are 

discarded. Only the specific contextual information along with the keywords containing 

database contents will be used to construct SQL queries. The contextual information is 

used to interpret the meaning of the queries, including the semantics involving AND,OR 

and NOT.  In this thesis we describe the architecture of STRUCT, procedure of English 

query processing (parsing), basic idea of the grouping algorithm, SQL query construction 

and sample results of experiments. 
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Chapter 1 

Introduction 

 

More and more organizational websites are relying on structured database to answer the 

user queries. And hence to satisfy the user needs and to make the search easier, websites 

are providing HTML forms, replicating the underlying database schema, where user is 

asked to enter the values for the columns in the database tables. This task can sometimes 

be laborious since user may have to go through many such forms to reach the desired 

result. This also limits user’s freedom by restricting him to the static and predefined 

queries handled by the forms. Ample amount of research has been done in this field, to 

break the bonds and limits set down by these static search systems.    

On the other hand, Information retrieval (IR) on the web documents not only gives the 

end-user complete freedom of search but also keeps him/her unaware of the underlying 

data representation and association. But this technique of IR on web documents cannot be 

applied on relation data. Since, in relational database, the data that user is looking for, 

may not be necessarily located in a single table. Due to normalization, the required user 

data might have been scattered across several tables. So in order to come up with 

meaningful result for the keyword search over relational database, we need to know the 

data that user is looking for, where that data is located in the database and then find out a 

way to connect it through the foreign key links. Most of the research techniques are able 

to execute these operations, but apart from it, these techniques have their own limitations 

as discussed below.  
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Research on keyword search in database community has achieved a lot of success, as 

exemplified in a number of prototype systems, such as DBexplorer, Discover, BANKS, 

etc. [1,2,3,9,10,11,12 13, 14,15,16,17,18,20]. Recent developments have been nicely 

summarized in several tutorials, surveys and comparative studies [4,5,6,8,21]. Research 

areas of interests have been moved from keyword search in relational databases to 

various advanced issues such as keyword search in multimedia data and data streams, as 

shown in the topic of interests in Keys 2012 Workshop 

(http://datasearch.ruc.edu.cn/keys2012/index.html). Yet, many fundamental issues on 

keyword search in traditional databases remain. One such issue is how to interpret users’ 

information needs behind keywords they provided. A common approach of many 

prototype systems is to make such interpretation as a designer’s choice (such as imposing 

AND or OR semantics, or a combination), leaving no choice to the users. A much more 

meaningful approach would be allowing users themselves to specify the required 

semantics; however, supporting such full-fledged natural language queries would incur a 

significant amount of processing burden on the system. Therefore, it is worth exploring a 

“middle-ground” approach, namely, instead of limiting user inputs to keywords alone, 

how about building a system which allows users enter English language queries 

containing the desired keywords, so that the contextual information found in English 

queries can be used to interpret query semantics and form structured database queries? 

We believe this is possible because we can take advantage of the structural information 

implied in database schemas.  

In this thesis we introduce our experimental system STRUCT to explore this idea. 

STRUCT takes English language queries involving intended keywords; by doing so, it 
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supports a kind of “expanded keyword search”. In this thesis, we further refer to such 

search as English query search. Instead of resorting on a full-fledged natural language 

processing, the unneeded words in the queries are discarded. Only the specific contextual 

information along with the keywords containing database contents will be used to 

construct SQL queries. Contextual information is used to interpret meaning of queries, 

including the semantics involving AND, OR and NOT. Note that such an “expanded 

keyword search” only makes sense for structured data, because without any meta-data 

information of underlying database, it is impossible to distinguish keywords from 

contextual information (namely, all are treated equally as keywords, as in Google search).  

When the underlying data is structured then all the implicit information provided through 

the rich meta-data, structural format of data, normalization of the tables, mapping 

between the tables, and association of the values with the attributes can be collectively 

used to make the search engine understand the semantics of the structured database. 

Furthermore, in order to allow users express semantics of the queries, an interface 

allowing users entering simple natural language queries containing intended keywords 

should be supported. The contextual information found in the English queries can be then 

used to derive the user query semantics and hence mapped it with the database semantics 

in order to retrieve the desired result. So far only few authors have addressed the problem 

of keyword query interpretation, such as [8], where query interpretation is conducted at a 

fairly late stage, only concerned with ranking. In fact, interpretation of keywords 

provided by the users should be conducted at early stage so that their intention can be 

incorporated into SQL query construction. But just interpreting the keywords in the query 

will not suffice, since to fully explain the information need, the user has to enter natural 
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language query containing the contextual information along with the intended keywords. 

Another issue as indicated in the recent ICDE 2011 tutorial [21] is that there is a 

significant challenge in resolving structural ambiguity, since keyword queries are 

structure-less. A much more meaningful approach to resolve the ambiguity would be 

allowing the users’ to specify contextual information, which would decipher the hidden 

or implicit structure of the query.  

In this thesis we describe STRUCT, which processes the given user query not just to 

locate and connect the tuples having query data, but also to identify the contextual 

information of the query needed to deduce the implied meaning. It further interprets and 

incorporates the derived semantics in the SQL statement to be constructed. STRUCT 

levitates the physical model of database by representing it in a undirected graph, where 

the relational schemas are represented as nodes and the foreign key links are represented 

as edges. Depth first search technique is used by STRUCT to traverse the schema graph 

and further construct the sub-graph (candidate network), representing the path between 

relations having the query keywords. As an example, schema graph of the well-known 

banking database from [19] is shown below in Fig. 1. 

 

Figure 1.1 Banking Schema 
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Consider a query that STRUCT can execute for the above schema: 

 Query 1: “Find customers who have an account in a branch called Brighton”.  

With the metadata information obtained at the time when the database was loaded, and 

with the help of the built-in thesauri, STRUCT maps the keywords customer, account and 

branch keywords in the query to their respective attribute names in the schema, namely: 

customer_name, account_number and branch_name. These attributes, that user is looking 

for, forms the SELECT clause of the SQL statement. STRUCT further looks for the 

involved tables in join computation so as to cover all the attributes in the query and hence 

forming the FROM clause. In this example, the minimum number of tables involved is 2: 

Account, and Depositor. Another combination could have been: Bank, Account, 

Depositor and Customer; but would have led to more join computations and hence 

increasing the query cost. In addition, if any attribute-value pair is mentioned by the user, 

then it is represented as a condition in the WHERE clause. For example, here 

(branch_name =‘Brighton’) forms the condition. Additionally, the Primary-foreign key 

relationship is also added to the where clause. So the final SQL query is:  

Select customer_name, account_number, branch_name  

From Account, Depositor 

 Where (Depositor.Account_number = Account.Account_number) and 

(brach_name=‘Broghton’);    

In later sections we will describe in more detail, how the construction of WHERE clause 

gets tricky, as the number of involved sub-queries, conditions, operators and operands 

increase in number.  
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1.1 Contributions: 

The contributions of this paper are as follows:  

i. We point out the intrinsic limitation of keyword search in databases due to its lack of 

dealing with semantics, and offer a simple way of alleviation by exploiting structural 

information implied in database schemas. Instead of restricting user inputs to keywords 

only, users can now enter English queries containing these keywords, where the 

contextual information is used to interpret query semantics.  

ii. We present a parser based on Context Free Grammar (CFG), which is able to segregate 

and hence disclose the implicit structure of the given English query.  

iii. We introduce a novel grouping algorithm which is able to group the operands by 

determining the precedence of involved operators (AND, OR, NOT), and hence revealing 

the query semantics, needed to construct an equivalent SQL statement.  

 

1.2 Outline of Thesis: 

The balance of this paper is organized as follows. In Section 2 we present the general 

overview of STURCT, which is followed by a description of query parsing in Section 3 

and methodology for SQL query construction in Section 4. In Section 5 we present 

sample experimental results along with a discussion of performance evaluation. In 

Section 6 we compare STRUCT with related work. Section 7 concludes the paper and 

provides a discussion on future extension and improvements of STRUCT. 
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Chapter 2 

Overview 

 

In STRUCT, a user is provided with an interface to interact with the underlying relational 

database, where he can enter the English statement queries, getting back the results in 

tabular format. This overall process from entering the query to retrieving the results can 

be briefly categorized into the following four stages: Parse, Fragment, Associate, and 

Organize.  

Initially, the given user query is parsed by STRUCT in order to parenthesize the operands 

and conditions. The parenthesized query helps STRUCT to know the precedence of the 

involved operators. In the next stage, the parsed query is broken down into fragments, 

where every token is further represented with the help of rows and columns. This 

intermediate tabular representation of the query makes the STRUCT know about the 

involved values, attributes, tables, and operators in the given query. Now, in order to 

associate operands and attributes through the comparison operators, and to connect the 

conditions through the logical operators an unorganized format is constructed (to be 

discussed later).  

Finally, after all the association and linking, an SQL statement comprising of SELECT, 

FROM and WHERE clause is built from the unorganized format. The derived SQL query 

is then executed on the structured database, to display the results back to the user. These 

stages are depicted in Figure 2.  
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Figure 2.1 Stages in STRUCT 

 

 

2.1 High Level Architecture  

STRUCT provides several built-in components some of which are independent to any 

database, like thesauri and delimiters list. Before performing keyword searches on a 

particular database, STRUCT loads that database into the system and does the offline 

crawling to build an inverted index for the lookup purpose. It also makes the use of built-

in list of delimiters and thesauri to parse the given user query. Given a user query, 

STRUCT comes up with an equivalent structured query, executing it on the underlying 

database, to retrieve the results in an efficient manner. Building such query search 

requires the following: (a) A preprocessing step called offline crawling to build an 

inverted index; (b) Parsing step used to divide the given user query and then classify the 

query keywords as data and meta-data; (c) Grouping the values based on the logical 

operators in the query; (d) Structuring the user query into its equivalent SQL format; (e) 

optimizing and executing the derived SQL query to fetch the result back to the user. A 

high level representation of the architecture STRUCT, used to construct an SQL 
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statement is shown in Figure 3. More details of each component are given in consecutive 

sections.  

 

 
 

 

Figure 2.2 High level Architecture 
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Chapter 3 

Query Parsing 

 

Before going into the details, we look at some of the important concepts, components and 

algorithms used by the STRUCT. English statement queries, submitted by the user, 

always have implicit structure associated with them. STRUCT makes use the concepts of 

delimiters and attribute domain information (ADI) to reveal the hidden structure and to 

interpret the intended purport of user queries. Inverted index and thesauri components 

guide STRUCT for keyword lookup, and to further expand and parse the user query. The 

grouping algorithm, based on divide and conquer strategy, assists STRUCT in grouping 

the operands and in deciding the precedence of the operators. STRUCT employs depth 

first search algorithm to traverse schema graph of the database, in order to determine the 

association of the user data. Details of components in query parsing are discussed below. 

 

 

 

3.1 Inverted Index  

A database is enabled for query search by building an inverted index on it. The inverted 

index rephrases the relational database by associating every value to its corresponding 

column name and table name. This helps STRUCT to locate the meta-data information 

for given query keyword. Our system trades storage space and offline indexing time to 

significantly reduce the overall query computation time.  

Inverted Index consists of two tables: Attribute_info and Table_info, with examples 

shown below.                             
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Table 3.1 Attribute_info 

 

                             

 

Table 3.2 Table_info                              

   

 

 

   

The Attribute_info table gives the attribute information of where the value is located. 

This information can be further used to identify the tables associated with those attributes 

by using the Table_info table. Thus by using these two tables, representing inverted 

index, one can easily associate the value with the corresponding attributes and table 

names. 

3.2 Thesaurus  

While constructing an English statement query, user cannot be restricted to the 

terminologies comprising of attributes and table names. For example, if the database has 

one of the following tables: 

Table 3.3 Employee 

 

Value Attribute_list 

Green Tea, lantern, Color,streelight ... 

Pittsfield Branch, city, capital… 

… … 

 Attribute Table_list 

Customer Bank, client,buyer,... 

Balance Account, Loan, … 

… … 

Employees Address ... 

James Omaha  

Tom Lincoln ... 
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Now, consider the following queries:  

Query 2: Find employees having Omaha in the address field  

Query 3: Find employees living in Omaha  

Note that Query 2 is easily parsed by STRUCT by using inverted index, as it can note 

down the attribute “address” and associate it with the value “Omaha” involved in the 

query. But in query-3, address’ synonym “living” is used by the user to represent the 

meta-data information. So to parse such queries, STRUCT refers in-built thesaurus and 

replaces the user keywords with the meta-data information, wherever necessary. A 

sample thesaurus table along with its schema is shown in Table 4. 

     Table 3.4: Thesaurus 

 

                                                                                                         

 

                   

     

 

3.3 Delimiters  

User query usually consist of the information that he/she is looking for; but sometimes 

the user may provide additional information through conditions, in order to specify their 

requirements and to narrow down the result. Now to deal with the given user query, 

STRUCT breaks the query into sub-queries with the help of delimiters. Below we 

describe the delimiters of a query.  

A user query can comprise of one or more sub-queries, where each sub-query represents 

a group of dependent conditions. These conditions within a sub-query are connected with 

logical operators. Whereas, each time when an independent condition need to be 

Meta-data 

Words 

Related-words 

(synonyms) Employees Worker, laborer, staff, 

… Address Living, Location, 

dwell, … … … 



13 

specified, a new sub-query is initiated within a query. Now in order to locate the 

beginning of each such sub-query, we need the help of delimiters.  

Delimiters: Delimiters are the words used by the user to connect different sub-queries 

formulating into a query.  

STRUCT identifies the delimiters on the basis of rules used forthe construction of the 

English sentence. An English user query comes with a subject and a predicate. The 

subject is the information that the user is looking for; and the predicate tells us something 

about the subject‘s requirement with the help of sub-queries (SQ). These requirements 

usually consist of subject‘s attributes (objects), their values, and operators; collectively 

representing the condition. In SQL, the subject of the English query represents the 

SELECT clause, and the predicate constitutes the WHERE clause. FROM clause helps us 

to locate and connect query keywords, in the underlying database. Now, in order to link 

one or more sub-queries with the subject, in a possessive manner, user needs a word that 

can represent the subject as well as say something about the subject. In English natural 

language, this simultaneous role of being a noun and a verb is done by Gerund.  

Here is an example where a gerund is the delimiter:  

Query 4: A Toyota car having Red color and production year > 2000 or giving mileage 

of 30 miles per gallon.  

Subject: A Toyota car  

SQ 1: Red color and production year > 2000 or  

SQ 2: mileage of 30 miles per gallon  

The above query and most of the query examples in sections to come, are against the car 

database, having the following relational schema:  
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Manufacturer(MID, Make, category)  

Models(Model_name, style, MID) 

 Vehicle_details(Model_name, style, manufacture_year, color, price, doors, gears, 

mileage)  

In certain circumstances the gerund in the query might represent a value or an attribute. 

In such cases, inverted index helps STRUCT to classify it as a value or meta-data, and 

not as a delimiter. For example, consider again Query 3:  

Find employees living in Omaha  

Now the thesaurus (as shown in Table 4) helps to figure out that the “living” word 

represents the attribute “address”, and hence will not be treated as a delimiter.  

In Addition to gerunds, even the pronouns and helping verbs helps the predicate to get 

associated with the subject in question, and hence playing the role of delimiters.  

Examples, where the helping verb is the delimiter:  

Query 5: Check for the Students getting GPA < 3.0 and were absent for more than 10 

days.  

Subject: Check for the Students  

SQ 1: GPA < 3.0 and 

SQ 2: absent for more than 10 days  

Examples, where interrogative and relative pronoun are the delimiter:  

Query 6: Find a car which is red in color and price < $3000 or whose mileage > 20  

Subject: Find a car  

SQ 1: red in color and price < $3000  

SQ 2: mileage > 20  
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Most frequently used pronoun delimiters are {who, whose, which, whom, what, that, ...} 

and so on. Some prepositions (not limited to) like “by, with” also act as delimiters. Let‘s 

see the examples, where preposition is the delimiter:  

Query 7: Look for a book by author xyz or abc with pages no less than 100  

Subject: Look for a book  

SQ 1: author xyz or abc  

SQ 2: pages no less than 100 

In certain circumstances, prepositions like “in”, or helping verb like “is”, does not act as 

delimiters. For example, Red in Color; mileage is greater than 40. In these examples, 

rather than acting as delimiters, they associate the attribute with the value. To make a 

distinction between this duality, STRUCT associates a flag while parsing, and checks 

whether the words appear in between the attribute and value; if not, they are treated as 

delimiters. Gerunds, prepositions, helping verbs, and pronouns because of their roles, 

help STRUCT to decide the beginning of a new sub-query. Based on these delimiters 

STRUCT breaks the query into sub-queries and then into conditions. 

 

3.4 Divide and Conquer Strategy  

This strategy comprises of two distinct phases: divide phase and conquer phase. The 

divide phase makes the use of context free grammar (CFG) to divide the given user 

query, whereas, the conquer phase makes the use of grouping algorithm to parenthesize 

the given query. But before proceeding into these phases, the given query is “skimmed” 

in order to retain just the needed information such as attributes, values, conjunctions, 
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delimiters, comparison and logical operators; any other information contained in the 

original English query is discarded by the search engine.  

 

3.4.1 Divide Phase 

 As noted, English query comprises of subject and predicate, where predicate constitutes 

of one or many sub-queries. To add further, each sub-query is then divided into 

conditions and finally into attributes, and values. Since STRUCT only pays attention to 

contextual information helpful in query construction, rest of the irrelevant words in the 

user query will be discarded. Therefore, no rigid requirements of user queries are 

required. The overall Grammar used by STRUCT, to divide the given user query, can be 

summed up as follows:  

 

3.4.1.1 GRAMMAR 

 STRUCT makes use of a CFG grammar to interpret the user- submitted English queries. 

In essence, each English query is made of sub-queries, which are conditions connected 

through logical operators. More formally, STRUCT makes use of grammar G = (N, Σ, P, 

Q), where the non-terminal symbols are: N= {Query, Subject, Predicate, Sub-query, 

Condition}; the terminal symbols are: Σ= {attribute, value, first-delimiter, subsequent-

delimiter, logical-operator, comparison-operator, wrapper}; Query is the starting symbol 

and the set of production rules (P) are:  

i. Query  Subject (first-delimiter Predicate)*  

ii. Predicate  Sub-query (subsequent-delimiter Sub-query)*  

iii. Subject  Condition (logical-operator | Condition)*  
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iv. Sub-query  Condition (logical-operator | Condition)*  

v. Condition  (attribute comparison-operator value | value comparison-operator 

attribute)*  

vi. Condition  (attribute)* (value wrapper)* (value | attribute)*  

(“wrappers” are defined later in section 4).  

Since the subject represents the information that user is looking for, we assume that it 

appears at the start of the English query (which is a fair assumption to be made), and 

hence make the use of first-delimiter, to separate it from the predicate. In the above 

grammar, subsequent delimiters are used to connect sub-queries, and logical operators to 

connect conditions. Further in a given condition, comparison operators are used to 

associate attribute with value; forming an attribute-value pair. If not explicitly specified, 

the comparison operator is set to ‘=’ by default. 

 

3.4.2 Conquer Phase  

In conquer phase, Attribute domain Information (to be discussed later), helps to 

parenthesize the given user query, letting us know its implicit structure. In this phase, the 

grouping algorithm is recursively used to parenthesize the operands, followed by 

conditions and then the sub-queries and eventually the query. Note, when all the sub-

queries are grouped to form a predicate, then eventually the subject is associated with 

predicate to build a query. We will discuss more about this phase in subsection 4.4.  
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3.4.3 Example  

Below, we illustrate an example, to explain the execution of Divide phase based on CFG. 

In the following example, the grouping (conquer) phase needs further explanation, which 

is elaborated in subsection 4.4; where the grouping algorithm and ADI are detailed. 

Consider the following example: Query 8: find a Honda or Toyota car with 2 doors and 

Color Red or which gives mileage greater than 20 miles per gallon.  

Discarding non-essential information:  

STRUCT examines the English query to retain only the required information. 

 Resulting Query: Honda or Toyota car with 2 doors and Color Red or which mileage > 

20  

Divide:  

Now the delimiters in the parsed query are: {with, which} So based on rule (i) of 

grammar, we divide the query into subject and predicate, with respect to the first-

delimiter: “with”  

Subject: Honda or Toyota car Predicate: 2 doors and Color Red or which mileage > 20. 

 Now based on rule (ii) of grammar, the predicate is divided into multiple sub-queries, 

depending upon number of delimiters it has. In the above example, we have just one 

subsequent-delimiter: “which’. So the resulting sub-queries (SQ) are: 

 SQ-1: 2 doors and Color Red or  

SQ-2: mileage > 20  

In the subject, the ‘or’ acts as a wrapper. Later in section 4.2 we will explain why it acts a 

wrapper and not a logical-operator. Therefore, by using grammar rule (iii) and (vi), we 

can formulate only one condition out of the subject.  
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Subject: Condition 1: Honda or Toyota car 

 Now based on rule (iv) of grammar, the sub-queries are further divided into conditions. 

In sub-query 1, the “and” acts as a logical-operator to separate the conditions, as 

following: 

Sub-query 1: Condition 2: 2 doors , logical-operator: ‘and’                    

         Condition 3: Color Red, logical-operator: “or”  

Sub-query 2, has only one condition with no logical-operator in it, and hence no division 

takes place.  

Sub-query 2: Condition 4: mileage > 20.  

These conditions are further divided into values, attributes, and comparison operators, if 

any. The logical-operators between the conditions are also retained; if not specified, 

STRUCT defaults it to “and”. 

 Subject: Condition 1: value (v1) – Honda, wrapper – “or” value (v2) – Toyota, attribute 

– car default logical-operator: “and”  

Sub-query 1: Condition 2: value – 2, attribute – doors logical-operator: “and”   

            Condition 3: attribute – Color, value – Red logical-operator: “or”  

Sub-query 2: Condition 4: attribute – mileage, value – 20 comparison operator – “ >”.  

All the above fragmented information is given as an input to the conquer phase, where 

the grouping algorithm and attribute domain information act together, to rebuilt the query 

but in parenthesized format. This process is detailed in section 4.4. For the time being, 

assume that the grouping takes place in the following order.  
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Conquer: Now, STRUCT parses each condition to determine the comparison operators, 

and attributes associated with each of the operands. Default comparison operator is set to 

“=”. Subject: Condition 1: (car = Honda) or Condition 2: (car = Toyota) and  

Sub-query 1: Condition 1: (doors =2) and Condition 2: (Color = Red) or  

Sub-query 2: Condition 1: (mileage > 20)  

These conditions are further grouped by the grouping algorithm (to be discussed later), to 

form a parenthesized sub-query. Subject: ((car = Honda) or (car = Toyota)) and Sub-

query 1: ((doors = 2) and (color = Red)) or Sub-query 2: (mileage > 20) Now, the 

predicate consisting of two sub-queries is formed, before associating the subject with it. 

Predicate: (((doors = 2) and (color=Red)) or (mileage > 20)). Eventually the subject is 

associated with the predicate to form the entire parenthesized query. In the example, as 

no logical operator was used to associate the subject with predicate, STRUCT uses “and” 

as the default one, to connect subject and predicate. Parenthesized format: [((car = 

Honda) or (car = Toyota)) and (((doors = 2) and (color=Red)) or (mileage > 20))]  

Grouping algorithm makes the use of the above divide and conquer strategy to 

parenthesize the query. 

 

3.5 DFS and Schema Graph 

As discussed, STRUCT represents the given database as a undirected schema graph, 

where the nodes are the relational schema and edges are the foreign links. Now, this 

graph is used by the STRUCT to check whether the query keywords are associated or not. 

This association is derived from the primary-foreign key relationship. If the attributes 

representing the keywords are connected through edges, then it implies that the keywords 

are associated with each other. 



21 

Before the traversal begins, the tables (nodes) having at-least one user query keyword 

(representing value or meta-data) are treated as destination nodes.  From these destination 

nodes, iteratively one of the nodes is selected as a source node, to form a path covering 

the rest of the destination nodes. Such paths, connecting all destination nodes, are further 

used for building the SQL statement. While constructing a path, care is taken to avoid 

formation of cycle, as it may result in redundant join computations; whenever a node is 

traversed, it is marked as visited, to avoid further visits.   

 

 

 

                                                               
 

                                                                                              3                            4 

                                                                              2 

 

Figure 3.1 DFS Graph Example 

In the above diagram, the numbered (black) nodes indicate the destination nodes, where 

the keyword information is encountered. The graph is traversed by using Breadth First 

Search technique to link the required nodes resulting into a path. STRUCT constructs all 

the possible paths, connected by primary–foreign key edges, making sure that all the user 

specified values are covered. These paths help us to know the tables involved in the join 

computation. Eventually to optimize the execution, the path having least number of 

involved relations (nodes) is selected.   
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Chapter 4 

SQL Query Construction 

 

A user query consists of values (data), attributes (meta-data), conjunctions, operators 

(logical or comparison), wrappers and delimiters. Wrappers are the logical operators used 

by the user to specify one or multiple values for a given attribute. Comparison operators 

are used by the user to form attribute-value pair or to specify the range limit for the 

attributes, whereas, logical-operators are used by the user to connect multiple conditions. 

In addition, a user may use delimiters to join multiple sub-queries, formulating into a 

query. STRUCT goes through the following steps, in order to represent the above user 

specified information structurally:  

i. Parsing the given query  

ii. Parenthesizing the refined query  

iii. Forming Tabular representation for the parenthesized query  

iv. Constructing Unorganized format from tabular representation  

v. Building an equivalent SQL statement of given English query  

Initially, STRUCT parses the given query to classify the information into various 

categories (as listed down by STRUCT‘s CFG grammar). By applying the grouping 

algorithm, STRUCT parenthesizes the entire query to deduce the implied semantics of 

the given user query. In order to derive an SQL query out of it, the parenthesized query is 

further represented in tabular format and then into unorganized format to eventually come 

up with an equivalent SQL statement.  
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Overall, while transiting through the above steps, the intermediate results are represented 

by constructing the following two data structures. Firstly, to associate attributes with 

values through comparison operators, Association data-structure (ADS) is constructed. 

Secondly, to represent the conditions connected through logical operators, Link data-

structure (LDS) is created. The delimiter information is implicitly carry forwarded 

through the parenthesis used to group the query. More details are given below. 

 

4.1 Association Data-Structure (ADS)  

SQL statement generation requires the list of tables and columns where the keywords 

may occur to be known. Inverted index helps STRUCT to satisfy this basic requirement. 

Using the Inverted index, STRUCT is able to classify the keyword as either a value or 

attribute. If not found, it consults the thesauri to check if the user has used any synonym 

for the meta-data (attribute) information. If the user has specified a value along with the 

corresponding attribute information then such attribute-value pair is associated with the 

help of ADS. Comparison operators, if encountered, are also noted down. Based on this 

information, STRUCT builds the ADS data structure from the given user query, as 

illustrated in Query 11.  

Query 9: Find a car which is Red and having price< 7000 

Table 4.1 ADS 

Attribute Comparison 

Operators 

Values 

Car = - 

- = Red 

Price < 7000 

[Note: by default, comparison operator is set to “=”, unless stated]  
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This ADS links the values with their corresponding attributes by using the comparison 

operator. If any of the information is missing then its kept blank (-). Only the information 

specified by the user is utilized to construct this data structure. ADS information is later 

used by STRUCT in constructing LDS.  

Once the ADS is built, the next steps are to:  

i. Resolve the ambiguity raised by “AND, OR”  

ii. ii. Handling of “NOT” operator  

iii. iii. Determine the Precedence of the logical operators  

We will look at each of these issues in the following subsections.  

 

4.2 Resolving the Ambiguity 

 Here, STRUCT checks whether the “AND, OR” act as wrappers or logical operators, in 

order to resolve any possible ambiguity. As stated earlier, wrappers are generally used by 

the user to specify multiple values for the same attribute (domain). For example, find a 

car which is red OR blue OR green in color. Here the color attribute is used to capsulate 

the three values (red, blue and green). In such cases, the “AND, OR” should be treated as 

wrappers and be grouped together. In addition, when “AND” is used as a wrapper, it 

often represents “OR” semantics. Since it is not possible to specify multiple values for 

the same attribute unless it‘s connected by “OR”. For example, find customers living in 

Omaha AND Lincoln. Here user is looking for customers who either live in Omaha OR 

in Lincoln but not at both the places. Another example could be, find cars having red 

AND green color; which implies, color = red OR color = green. Only if the attribute is 

multi-valued, should the semantics of “AND” be preserved.  
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Query 10: Find a car having color White or Black and price < $3000 

 Here, the value “Black” acts as an operand to both “OR” and “AND”. But, the attribute 

domain of White and Black are the same, therefore “OR” acts as a wrapper. As per the 

grouping algorithm, the wrappers are given higher preference than logical-operators; so 

Black is grouped with White and not with “$3000”. Therefore after grouping, we have: 

(White or Black) and ($3000) If “AND” acts as a wrapper, then as stated, replace it with 

“OR” in order to group the operands. An example is given in Query 13. Query 11: Find a 

car having red AND green color Parenthesized format: find a car having (red or green) 

color Here, the operands “red” and “green” belong to the same attribute domain; so the 

“and” is replaced by “or” and then the operands are grouped together. On the other hand, 

if the “AND, OR” act as logical-operators, i.e., if involved values have or belong to 

different attributes, then the grouping algorithm is used to determine the precedence of 

those logical operators.  

 

4.3 Handling of “NOT” Operator 

As compared to logical “AND, OR” operator, in STRUCT, the “NOT” operator is 

handled in a distinctive way. The “AND, OR” play the role of either the wrapper or the 

logical operator, whereas, “NOT” either acts as a delimiter, or as a unary operator. The 

following example illustrates the difference:  

CASE A: ~ (A operator B) Here, NOT acts as a delimiter to form a condition Query 12: 

Find a car which does not have mileage < 20 and price > 20000 parenthesized format: ~ 

(mileage < 20 and price > 2000)  

CASE B: (~A operator ~B) Here, NOT acts as a part of operand (unary operator).  
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Query 13: Find any car but not Honda and should not be Red in color parenthesized 

format: ~ (Honda) and ~(Red)  

As we will see in the algorithm, grouping in CASE A is not based on the operator, 

whereas, grouping in CASE B depends upon the operator at hand.  

4.4 Grouping Algorithm  

Frequently a user may enter a query which has more than one logical operator. In such 

case, it becomes essential to determine the precedence of the involved logical operators. 

Since if not grouped properly, the same query can lead to multiple interpretations. So it is 

not only important to determine the precedence of the operators involved, but also to 

match it with the user intended semantics. Consider the following example: V1 and V2 or 

V3 [V1, V2, V3 represent values]  

In such a case it becomes difficult to determine whether the operand 2 (V2) belongs to 

operator 1 (and) or whether it belongs to operator 2 (or). There can be two different 

interpretations of the above query:  

i. (V1 and V2) or V3  

ii. V1 and (V2 or V3)  

If more operators are involved, then the number of possible combinations would 

manifold. Now the task is to determine one that matches the user semantics. To do so, it 

is important to understand how the user, without any use of parentheses, groups the 

operands with the operator. The ADI associated with the user query, does implicitly 

specify the precedence of the operators needed to parenthesize the given user query.  

 

4.4.1 Attribute Domain Information (ADI)  
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Attribute domain information lists the attribute of the respective operands. Prior to 

grouping any of the operands, their corresponding attribute information is checked. Based 

on this attribute information and the involved operator, the grouping algorithm decides 

the grouping of the operands. Furthermore, the attribute domain information is updated 

through a recursive process, as shown below. In grouping algorithm, the grouping takes 

place at four levels: a) operand level b) condition level c) sub-query level and d) query 

level. A condition is formed whenever two operands are grouped. 

These conditions, in turn, act as operands for the next grouping cycle. Conditions are 

further grouped to form a sub-query. For the next iteration of the algorithm, these sub-

queries are treated as operands. This cycle continues until all the possible groupings in 

the query are not parenthesized. To make the above grouping of operands possible, the 

attribute domain information is kept updating at every level of granularity. At each 

grouping level, the attribute domain information of the previous level is used to decide 

whether the operands can be grouped or not. . In addition, whenever the grouping of 

operands takes place, their corresponding attribute information is also updated to reflect 

the grouping. Based on this new attribute domain information, the next level grouping is 

decided, and so on. Consider the following example:  

Query 14: Find cars with white color and 2 doors or having 4 doors and Black in color.  

For this example, we focus more on the ADI part and its amendments. The working of 

grouping algorithm and its grouping decisions will be discussed later. For the time being, 

suppose the grouping algorithm groups the operands in the following order. Note here, 

how the attribute domain information gets updated.  

i. white and 2 or 4 and Black [Operand information]  
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color and doors or doors and color [ADI]  

Grouping algorithm uses the above attribute domain information, to group the operands 

in the following manner:  

ii. Group operands White, 2 (white and 2) or 4 and Black [Operand information]  

(color and doors) or doors and color [ADI]  

Here, the corresponding attribute domain information is also grouped. Now, the grouping 

algorithm uses the above updated attribute domain information, to group the operands in 

the following manner:  

iii. Group operands 4, Black  

(white and 2) or (4 and Black) [Operand information]  

(color and doors) or (doors and color) [ADI]  

The attribute domain information is again updated to reflect the grouping of operands.  

iv. Group the 2 Conditions ((white and 2) or (4 and Black)) [Operand information]                       

((color and doors) or (doors and color)) [ADI]  

In the above example, the attribute domain information of the previous step decides 

whether the grouping of operands, in the next step, is possible or not. Once decided, it 

itself gets updated to reflect the changes.  

Two important properties associated with ADI are:  

Property 1: The attribute domain information connected by “and, or” logical operators is 

commutative in nature. i.e., changing the order of involved attributes does not change the 

semantics.  

i.e., (A1 and A2) = (A2 and A1)  

Example: (doors and color) = (color and doors)  
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similarly, (A1 or A2) = (A2 or A1)  

Example: (model or price) = (price or model)  

Property 2: The duplicated attribute domain information connected by “and, or” wrapper 

is removed, such as: (A1 and A1) = A1.  

For example: (doors and doors) = (doors). 

Also, (A1 or A1) = A1.  

For example: (colors or colors) = (colors).  

We now map the user‘s un-parenthesized way of structuring the query to the 

parenthesized format by using the grouping algorithm. The sub-queries formed by the 

divide phase of CFG grammar along with its ADI information, is given as an input to the 

Grouping algorithm, shown in Figure 4. The algorithm recursively groups the operands 

and then the conditions, simultaneously updating their corresponding ADI information, 

until the entire sub-query is not parenthesized. Further, all the grouped sub-queries along 

with their ADIs, is given as an input to the grouping algorithm, to check whether further 

grouping across sub-queries is possible or not. This helps us to formulate the entire 

predicate in parenthesized format. Eventually, the subject is associated with predicate to 

come up with a complete parenthesized query. The resulting format helps us to determine 

the precedence of the involved operators over one another.  

Here are a few notational remarks used in Figure 5:  

A – left operand, 

B – right operand,  

and (parentheses) – implies grouping 
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GROUPING ALGORITHM: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1 Grouping Algorithm 

Below we explain the possible semantics, which STRUCT can deal with:  

Algorithm: Grouping Algorithm                               

Input: un-parenthesized sub-query                                                 

Output: parenthesized sub-query                                 

Procedure: 
a. Capsulation procedure is used to note down the conjunctions, if any, in the query.   

b. Conjunctions are given higher priority than Operators. 

c. As per the precedence rule, the logical operators are prioritized in the following order: NOT, AND, 

OR 

d. If the same operator is repeated, then the priority is determined through Associativity rule: the left 

hand side operator is dealt first.   

Grouping Algorithm satisfies the above priority rules, by building the following 1 to 10 different cases. In 

each case, grouping of the operands takes place based on the attribute domain information (ADI) and the 

operator at hand:  

 (A) Group ALL the conjunctions in the query. 

If ADI [A] = ADI [B]                                

1.     if  “AND” then (A or B)                        

2.     if  “OR” then (A or B) 

(B) Grouping of Logical operators [AND, OR] 

else if ADI [A] != ADI [B]                            

3.     if “AND” then (A and B)                                                               

4.      if   “OR” then no grouping takes place   

At this level, as each condition is parenthesized, we consider the grouping of conditions and not operands. 

(C) Grouping of unary operator: NOT (~)                                                                    

5.      if (condition prefaced by “NOT”)       

  then [ ~ (Condition) ]    

(D) Grouping of NAND and NOR 

else if ADI [~ A] = ADI [~ B]                                                         

6.    if  “AND” then (~A and ~B)       ---  [NOR semantics]                                                

7.       if  “OR” then  (~A and ~B)      ---  [NOR semantics] 

     else if ADI [~ A] != ADI [~ B]                               

8.      if   “AND” then no grouping takes place                               

9.       if  “OR” then (~A or ~B)                  ---   [NAND semantics] 

(E) Associativity Rule:              

              10.    If the operator is repeated then prefer the left one first               

       Check whether the grouping takes place or not.        

        If not, go for the next one and so on.                                                 
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(A) whenever a query is parsed, all the wrappers in the query are grouped, before 

proceeding to next step. Cases 1 and 2 ensure that the wrappers are given higher 

preference over the logical-operators.  

(B) Once the wrappers are grouped, then the binary logical operators “AND, OR” are 

targeted. In these logical operators, “AND” is given higher precedence over the “OR” 

operator. Cases 3 and 4 confirm that the “AND” logical operator is grouped before “OR” 

logical operator, if both of them occur simultaneously. 

(C) The grouping of “NOT” delimiter takes place, once all the conditions in the sub-

query are parenthesized. At this stature, it‘s checked if, whether in the sub-query, the 

condition was prefaced by “NOT” or not. If yes, then the “NOT” is simply prefixed 

before the condition as: NOT (condition). In case 5, the “NOT” in STRUCT, is treated as 

a delimiter, and hence the condition formed, is prefaced by “NOT”.  

(D) In NAND and NOR semantics, the “NOT” is treated as unary operator and hence 

case 6 to 9 ensures that “NOT” is given higher priority over the “AND, OR” operators. 

Whenever user implies “neither…nor (none)” in the query, then such condition is 

represented by using NOR operator. Case 6 and 7 certifies that the NOR semantics is 

grouped properly. When user states “either of them but not both” in the query, then such 

condition is represented by using NAND operator. Case 9 takes care of NAND 

semantics.  

(E) Case 10 helps STRUCT to preserve the Associativity rule. In the user query, if the 

same operator is repeated, then the precedence is given to the left hand side operator. 

Here, it‘s checked whether the grouping is possible or not. If not, then the pointer is 

advanced to the next successive operator and so on. STRUCT also takes into account the 
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following correlative conjunctions: both...and, either...or, neither...nor, not...but, not 

only...but also. All these above conjunctions are stated in terms of OR,AND, and NOT, 

before parsing the query.  

We detail the above cases by illustrating it with an example.  

CASE 1, 2: If the considered operator is "and" & if it operates on the values belonging to 

the same attribute then replace the “and” by “or”, and group the operands.  

Query 15: Find cars with Red and blue Color and 4 doors  

Equivalent semantics: Find cars with Red or blue Color and 4 doors  

Parenthesized format: (Red or Blue) Color and (4) doors.  

Here, the ambiguity of whether the operand “blue” belongs to “or” or “and” is resolved.  

CASE 3: If the considered operator is "and", and if it operates on the values belonging to 

the different attributes then they can be grouped.  

Query 16: Find a car which is white in color and price < 2000 or manufactured in 2002 

Parenthesized format: [(White (color) and 2000 (price)) or (2002) year].  

Here, the ambiguity of whether the operand “2000” belongs to “and” or “or” is resolved.  

CASE 5: In this case, the “NOT” act as a delimiter, in order to form a condition prefixed 

by NOT.  

Query 17: Find car which is not of model Honda and red in color  

Parenthesized format: not (Honda and Red) 

Here, “and” is given higher precedence than “not”, since “not” acts as a delimiter and not 

a unary operator.  

CASE 6, 7: If the considered operator is "and", and if it operates on the values belonging 

to the same attribute but prefaced with “not”, then they are grouped together.  
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Query 18: Find a car which is not Blue and not Red in color but has 4 gears.  

(OR) Find a car which is not Blue or not Red in color but has 4 gears.  

Equivalent NOR semantics: Find a car which is neither Blue nor Red but has 4 gears. 

Parenthesized format: (not Red and not blue) and (4) gears  

Here, the “not” acts as a unary operator and hence is given higher preference over the 

“and” operator.  

CASE 9: If the considered operator is "or" & if it operates on the values belonging to the 

different attributes but prefaced with “not”, then they are grouped, as in Query 19. 

 Query 19: Find a car which is not white in color or not Toyota in model but has 4 gears 

Equivalent NAND Semantics: Find a car which is either white or Toyota in model but not 

both and has 4 gears  

Parenthesized format: (not white or not Toyota) and (4) gears  

Here as well, the “not” acts as a unary operator and hence is given higher preference over 

the “or” operator.  

CASE 10: If operator is successively repeated, then as per the Associativity rule, left 

hand side operator is given the first preference. Check whether the grouping takes place 

or not. If not, go for the next operator. Query 20 is an example.  

Query 20: Find a car having color Red or 2 or 4 doors and 5 gears  

Parenthesized format: (Red) color or (2 or 4) doors and (5) gears  

Here, as the second “or” acts as a wrapper, it is given higher precedence compared to the 

other logical operators. And hence resolving the ambiguity for the operands “2, 4”. If 

only one operator is present then no grouping take place as there is no question of 

precedence. Note, for the simplicity purpose, most of the examples in above cases, have 
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only one sub-query in the predicate. Consider the following multiple sub-queries 

example, to illustrate the working of grouping algorithm. 

 Query 21: Find a Honda car with white or black color and 4 doors or having a blue color 

with 2 doors. Based on the delimiters, the query is divided and further parsed.  

Step 1 – Dividing the query:  

Subject: Honda car  

SQ-1: white or black color and 4 doors or  

SQ-2: blue color  

SQ-3: 2 doors  

Step 2 – Grouping: 

A] Operand level grouping 

 Subject: (car = Honda)  

SQ-1: (color = white) or (color = black) and (doors = 4) or  

SQ-2: (color = blue)  

SQ-3: (doors = 2)  

B] Now if there are any wrappers in the above sub-queries, then group them first.  

ADI for SQ-2 is: color or color and doors. As, the “or” operates on the same attribute 

domain, it is treated as wrapper, grouping the (white or black) values. So now we have:  

Subject: (car = Honda)  

SQ-1: (color = white or color = black) and (doors = 4) or  

SQ-2: (color = blue)  

SQ-3: (doors = 2) 
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 C] Condition level grouping:  

Only in SQ-2, we have multiple conditions. By using CASE 3 of grouping algorithm, we 

can group those two conditions.  

Subject: (car = Honda)  

SQ-1: ((color = white or color = black) and doors = 4)) or  

SQ-2: (color = blue)  

SQ-3: (doors = 2) 

 D] Sub-query level grouping:  

Now, with the help of CASE 4, it‘s clear that SQ-1 and SQ-2 cannot be grouped. But 

then, by using CASE 3, we can group SQ-2 and SQ-3. Since both of the sub-queries have 

different attribute domain information (color, doors). 

Therefore, after grouping we have:  

Subject: (car = Honda) 

 SQ-1: ((color = white or color = black) and doors = 4) or  

SQ-2: ((color = blue) and (doors = 2))  

Now by using property 2 of ADI, we can notice that the SQ-1 and SQ-2 both have the 

attribute information: (color and doors). Also both of the sub-queries are connected by 

“or”. As the ADI‘s are same, “or” is treated as logical operator and hence with the help of 

CASE 2, we group the SQ-1 and SQ-2, resulting into:  

Subject: (car = Honda)  

Predicate: (((color = white or color = black) and doors = 4) or ((color = blue) and (doors 

= 2))) Now, as all the grouping at sub-query level has been done, we have grouped 

subject and predicate.  
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E] Query level grouping:  

Finally, we associate, the subject with the predicate, resulting into the parenthesized 

query. Parenthesized Query: ((car = Honda) and (((color = white or color = black) and 

doors = 4) or ((color = blue) and (doors = 2)))).  

The algorithm terminates, as no further grouping is possible. Note that, if the user doesn‘t 

explicitly specify attribute information for the value, then STRUCT speculates a list of 

attributes by referring the inverted index (Attribute_info Table 1). So the number of 

parenthesized formats built for a query will be equal to the multiplication of number of 

speculated attributes for each such value for which user hasn‘t specified the attribute 

information. Later in section 5, we will see how this missing information incurs an 

additional burden on performance of the search engine.  

 

4.5 Link Data-Structure (LDS)  

At this stage we have the parenthesized formats of the given English query. LDS data 

structure is used to represent the above parenthesized query in tabular format. Each 

parenthesized format has its own associated LDS. Now, for a particular parenthesized 

format, each value along with its associated information is represented by a row in the 

table. Part of the associated information, like values, their attributes and comparison 

operators associating them, is derived from ADS. Further, the list of tables, representing 

the given attribute for a value, is also noted down. To build LDS, the parenthesized query 

is parsed from left-to-right, and whenever a value is encountered, an entry is made along 

with the associated information. For each value, its attribute name (either specified in the 

query, or taken from the list of speculated attributes), and table names where the attribute 
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appears, is entered. Also if the value (operand) is preceded by the open parentheses then 

“(“entry is added to the Open_bracket column, else if the value is followed by the close 

parentheses then “)” entry is added for the Closed_bracket column. Further, comparison 

operators between the value and attribute, and the logical operators between the 

conditions are also entered. Consider the sample Query: V1 and V2 or V3 Parenthesized 

Query: (V1 and V2) or V3.  

The LDS for the above sample query is as follows: 

Table 4.2 LDS 

Open         

bracket 

Table 

List 

Attribute  

 

C Value 

 

Closed 

bracket 

 

L 

 
( T1...Tm A1  = V1 - AND 

- T1...Tn A2 > V2 ) OR 

- ... ... ... V3 - - 

Where, “C” – Comparison operator and “L” – Logical operator 

 

4.6 Possible Combinations  

The above tabular format has to be further mapped to SQL query. To do so, we need to 

make the following combinations: 

i. Across Row Combination  

ii. Unorganized format  

iii. Structured format  

In LDS, each row represents a condition or a part of it. Now, to formulate an entire query 

out of LDS, we need to append all the rows. But in the underlying database a particular 

attribute (e.g. A1), can be associated with multiple tables (T1…Tm), and so can be true 

for most of the attributes. So we need to compute all sorts of possible combinations 

across the rows [m*n*…], to enumerate different possible conditions forming a query. 
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Once we have these combinations, the structure of each such resulting combination is 

referred to as the unorganized format for the considered query. Unorganized format for 

one of the sample queries is shown in Query 22.  

Query 22: Find a Honda car which is Civic in model and mileage greater than 20 or has 

price less than 15000 or manufactured in year 2000.  

SQ-1: Find a Honda car  

SQ-2: Civic in model and mileage greater than 20 or SQ-3: price less than 15000 or 

manufactured in year 2000  

For SQ-1, the unorganized format is shown in Table 7. 

Table 4.3 Unorganized Format for Query 22 

Row 1  

((| Manufacturer | make | = | Honda | ) | - 

 

 

+ 

 Row 2  

(| Models | Model_name | = | civic | - |  and 

 

+ 

Row 3  

-| VehicleDetails | mileage | > | 20 | ) | or 

 

 

+ 

 Row 4  

( | VehicleDetails | price | < | 15000 | - | or 

 

+ 

 
Row 5  

( | VehicleDetails | year | = | 2000 | - | and 

 

+ 

 

 

Row 6  

- | VehicleFeature | Air_condition | = | YES | - | 

))) 

 

 

      

[Note: “+” – append, “|” – Separator, “-” – NULL or void]  

Overall, the computational time for possible combinations of a given English query, is 

directly proportional to the number of attributes associated with a particular value, and 

number of tables associated with a particular attribute. So if the user explicitly specifies 

the attributes for the corresponding values in the query, then the number of combinations, 
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and hence the computational time can be minimized; otherwise, STRUCT speculates the 

list of attributes by referring attribute_info table (1) to enumerate the possible 

parenthesized formats for the query, which in turn incurs additional time complexity 

overhead for enumerating LDS, and unorganized formats for the query. (Refer Figure 9 

for details.) 

 

 4.7 Constructing SQL Clauses 

 Now we have to derive the SQL query from these unorganized formats of the query. The 

basic cell or element that comprises the unorganized format of a query is shown below. 

Table 4.4  Unorganized Format of Cell 

Open         

bracket 

Table 

List 

Attribute 

List 

 

C Value 

 

Closed 

bracket 

 

L 

 
(1) (2) (3) (4) (5) (6) (7) 

 

This cell basically represents a value along with all the possible information surrounding 

it. As the unorganized format of each value is already appended (+), it formulates into a 

condition, then into a sub-query and eventually into a query. Now to create an SQL 

statement, every cell from the unorganized format of a query, is taken into account. Each 

cell, adds some information to the SELECT, FROM and WHERE clause. The 

construction of the clause is as follows:  

i. SELECT CLAUSE:  

Consider all the distinct Table(.)Attribute pairs from all the cells and separate them by 

‘,’ delimiter. This forms our select clause. For example, the SELECT clause for query 22 
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is: “SELECT Manufacture.Make, Models.name, VehicleDetails.mileage, 

VehicleFeature.price, VehicleFeature.year”  

ii. FROM CLAUSE:  

Consider all the distinct Table names from all the cells. Now it is checked whether there 

exists a path between all these tables, linked by Primary – Foreign key relationship. If the 

path exists, then it implies that this table combination can be used to execute the query. 

For example, the FROM clause for query 22 is: “FROM Manufacture, Models, 

VehicleDetails, VehicleFeature”  

iii. WHERE CLAUSE:  

STRUCTS appends the unorganized format of each cell in the follow way: Open bracket 

+ Table(.)Attribute + comparison_operator + value + closed_bracket + logical_operator + 

… + next cell [Replace ‘-’ by blank space, if any]  

For example, the WHERE clause for query 22 is: “WHERE 

((Manufacture.Make=‘Honda‘) and (Models.name=‘Civic‘ and VehicleDetails.mileage > 

20) or (VehicleFeature.price < 15000 or VehicleFeature.year=2000))”  

Eventually all the clauses are grouped together to form an SQL statement, which is then 

executed on the underlying database to retrieve the result. 
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Chapter 5 

Experimentation and Evaluation 

 

For the demonstration purpose we have used the well-known banking relational database; 

one can refer the book [19] for the data tuples and schema information. In STRUCT, 

JAVA programming language is used to implement the source code, and MySQL to 

create the relations; making the system platform independent. Further, JDBC driver is 

used to connect the interface at frontend with the database in backend.  

 

5.1 Sample Results: 

The schema graph for the considered Banking database is shown in Figure-1. Below, we 

present screen shots (Figure 5 to 7) for some of the sample queries, executed on search 

engine STRUCT.  

 

  Figure 5.1 Screen Shot for sample Query-23 
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Figure 5.2 Screen Shot for sample Query-24 

 

 

 

Figure 5.3 Screen Shot for sample Query-25 
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5.2 Performance Evaluation: 

The performance of STRUCT can be evaluated based on how closely the constructed 

SQL statement matches the meaning of the given English user query. So long as the 

constructed SQL is semantically matched, the results should be relevant to the user. So to 

evaluate the correctness of the SQL statement, we have to analyze each clause 

individually which comprises the SQL statement. Firstly, the SELECT clause deals with 

displaying the information that user is looking for. STRUCT makes sure to display all the 

attributes appearing explicitly and implicitly (values for which attribute information is 

missing) in the user query and hence giving the required information to the user. So the 

definiteness of the constructed SELECT clause is as good as needed. Secondly, the 

FROM clause identifies and associates relations through foreign links in order to 

formulate a join condition. To assess such join conditions in the FROM clause, we need 

to know whether the paths constructed by these joins are relevant to the user query or not; 

since a valid paths implies a valid FORM clause. As in the case of information retrieval 

(IR), such evaluation can be done in terms of Recall and Precision measures. Since recall 

is the fraction of the paths that are relevant to the query that are successfully retrieved, 

STRUCT always comes up with a perfect score since all the eligible or relevant paths, 

used to answer the query, are constructed. As for precision, it is the fraction of retrieved 

path that are relevant to the search. STRUCT uses every bit of the information from the 

user query to build its equivalent SQL query. But sometimes it may happen that, the user 

provides less information than needed. For example, consider the following two queries:  

Query A — Find a Green car. Query B — Find a Green color car.  
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Now to generate FROM clause for Query B, we just need to check for a path that 

connects the relations having attributes ‘car’, and ‘color’ (which covers the value 

‘Green’). But for Query A, as the attribute information for value ‘Green’ is missing, 

STRUCT may interpret ‘Green’ in a different way; since in the underlying database, the 

value ‘Green’ can be represented by more than one attribute. In such a case, STRUCT 

generates a list of speculated attributes by referring the attribute_info table (1), for the 

value ‘Green’; for example, the list of speculated attributes for ‘Green’ might include 

lantern, tea, customer name, color, streetlight and much more. Further, to generate a 

FROM clause for Query A, we need to check whether a path, which connects the relation 

having attribute ‘car’ with the relation representing the considered speculated attribute, 

exist or not. So it implies that as the list of speculated attribute grows, the possible 

combinations of finding paths will manifold. Most of the combinations will simply be 

discarded, if no path exists between the considered relations; whereas if it exist, a FROM 

clause is generated out of it. Overall, as compared to Query B, the additional computation 

needed to generate the invalid combinations results in decline of precision for Query A. 

Therefore, the more the query is precise, the more is the precision. To understand the 

impact of attributes specified in the given query, we should consider computational time, 

recall, and precision measures. In figure 8, we graphically demonstrate the implications 

of these measures with the attributes encountered in the query. 
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Figure 5.4 Impact of Specified Attributes 

 

In Figure 8, the Y-axis represents number of values in the given query for which the 

attributes are specified explicitly. X1-axis represents the time factor for query 

computation; whereas X2-axis denotes the percentage value for recall and precision. So 

for a query at hand, as the user specifies more and more meta-data (attribute) information 

the computational time decreases and the precision increases. The recall is constant 

though, since irrespective of meta-data information (represented by Y-axis), STRUCT 

eventually generates all the valid paths responsible to answer the user query.  

Finally, the WHERE clause represents and constitutes the semantics of the user query. 

The construction of WHERE clause in STRUCT, is based on how the English query is 

broken down into sub-queries, with the help of delimiters and then how they are grouped 

back with the help of attribute domain information in the Grouping Algorithm. Therefore, 

the performance of the WHERE clause is determined by how well the user query is 

parenthesized to justify the operator precedence, in order to retain the semantics of the 

given query (There are no agreed upon benchmarks for evaluating the semantics of the 
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given query). By far, our experiments and results shows that the semantics of the user 

query is retained in its entirety, in the constructed SQL-WHERE clauses.  

Overall in STRUCT, the given user query is mapped to its equivalent SQL statement by 

taking the query connotation into consideration. The correct results are the answers 

returned by the corresponding schema-aware language, namely SQL. But if the user in 

his/her query doesn‘t specify contextual information (in terms of metadata, operators, 

delimiters, conjunctions as listed by the STRUCT‘s CFG grammar) and sticks to 

keyword queries only, the system still works, as STRUCT collapses/degenerates to 

conventional Keyword Search System (KWS). In this approach, as query consists of 

keywords only, the system attempts to find and connect the relations, through primary-

foreign links, having the query keywords (AND semantics only). It further constructs an 

equivalent SQL statement out of it, to retrieve the results. But it does not go for the 

partially matched results (representing OR semantics), as that distorts the semantics of 

the given query; the very motive of STRUCT.  
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Chapter 6 

RELATED WORK 

 

As indicated before, most of the related work in the field of “search on structured 

database” is restricted to handling of queries with keyword only; and hence curbing the 

liberty of user from exploiting the potency of natural language queries. Below we choose 

several of them to emphasize the limitations of the existing search systems. The interface 

provided by most of the prototype systems [1,2,3,7,9,10,11,12,13,14,15,16,17,18,20] 

accept only keywords (data and meta-data information) from the user; any additional 

information, if provided, is not taken into account. The drawback of such keyword search 

is that the query can be interpreted variously and hence large numbers of ambiguous 

answers are returned; which further creates a need of ranking the results as per the 

relevance. Although several authors, reference [8], noted the need of query interpretation, 

none of them offered practical ways of dealing with them. In contrast, STRUCT allows 

user to construct English statement queries by giving them the complete charge of using 

natural language format, and not just limiting them to the data and meta-data 

nomenclature. Furthermore, as most of the search systems restrict themselves to the 

keyword queries, they are indebted to the use of either conjunctive or disjunctive 

semantics. Also in these search engines, the user is not allowed to specify the semantics 

or requirements explicitly; instead, the engines make the assumptions and run the query 

initially with AND semantics and then with OR semantics to rank the equivocal results. 

For example, DBXplorer[2], BLINKS[10], DISCOVER[11], BANKS[3], and EKSO[20] 

are limited to AND semantics only. DISCOVER2[12], [7], [16], SPARK[17] and 



48 

KITE[18] does go one step ahead to include AND, OR semantics. But the user cannot use 

these semantics simultaneously in his query; since either AND or OR is taken 

individually into account and not both. Reference [9] does address AND, OR and NOT 

semantics, but then here it requires that, for each keyword the user has to explicitly 

specify the level of search, which may be table, column, or tuple; making it quite 

cumbersome for the user. Whereas, STRUCT does allow simultaneous use of operators, 

including “AND, OR, NOT”, giving user the autonomy of expressing their semantics. 

Additionally, it also considers the comparison operators and correlative conjunctions, if 

any.  

Ranking technique in this field, usually has two well known approaches. DBXplorer[2] 

and DISCOVER[11], ranks the results based on number of relational joins involved in the 

computation; smaller the distance between two tuple units, the more relevance exist 

between them. BANKS[1,3,13] use node weights and edge weights to determine the 

relevancy of result. Whereas, DISCOVER2[12], SPARK[17], and [16] use IR style 

Ranking function to rank the queries, taking TF-IDF frequencies into account. In these 

systems the IR style approach works perfectly fine to rank the completely or partially 

matched results. But as these systems does not allow user to express the query semantics, 

they don‘t know the exact answer and consider all possible set of answers. And hence the 

results represent a mixture of different query semantics, where any combination of 

keyword occurrences is found and returned to the user. In STRUCT, similar to 

DBXplorer[2] and DISCOVER[11], the results are ranked based on number of relational 

joins, but then it also takes into account the semantics of the user query, making the result 

more meaningful exact, and accurate to the requirement.  
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Various alternatives have been followed to make the database representations look 

simpler. BANKS[1,3,13], BLINKS[10], and EASE[14] represents the database by using 

data graph. Here, as tuples are represented as nodes, insertion of new records will lead to 

addition of nodes as well of their corresponding edges, and hence resulting in more 

memory space consumption as the graph grows. Reference [15] models tuple unit 

(materialized tuples) as a node in the graph, and hence the resulting graph has much 

smaller size than the data graphs. But it incurs additional pre-computation of joining the 

associated relations in the database to enumerate all the tuple units, and further possibly 

integrating them. STRUCT, similar to most of the other systems[2,11,12,16,17] does 

represent the database by using schema graph, which is significantly smaller than the data 

graph.  
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Chapter 7 

CONCLUSION AND FUTURE WORK 

 

The main objective of STRUCT is to free end-users from considerations related to the 

structure and association of the underlying relational database. STRUCT provides an 

interface where users can specify queries having conjunctive, disjunctive and negative 

semantics. Further, the user is not restricted to the terminologies used in the underlying 

database, as STRUCT refers thesauri to understand the user‘s intended terms. 

Additionally, STRUCT gives user the liberty to submit query having multiple sub-

queries. STRUCT further helps the novice user get rid from the additional burden of 

learning Structured Query Language (SQL), used to query the structured database. 

Instead, the user can simply use the English language statements to retrieve the desired 

results. By employing a relatively simple parsing technique and developing a grouping 

algorithm which incorporates contextual information obtained from user queries, 

STRUCT is able to form SQL queries reflecting users‘ intention. The user English query 

is mapped to its equivalent SQL statement in the background, hiding the complications 

from the end-user. To optimize the performance, query having less number of join 

relations, is picked up for the execution purpose.  

In summary, by incorporating contextual information contained in user queries, STRUCT 

goes beyond many other database keyword search systems can offer. Yet, many further 

improvements are still needed. This includes supporting phrase search, creation of a 

complete list of possible delimiters to make the search engine more effective, 

incorporating a readymade thesaurus to increase the efficiency, and inclusion of ontology 
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to solve queries where the user requirement is generalization of many specific instances 

in the database. For the time being, the thesauri used by STRUCT, is managed by the 

administrator and hence is a manual and time consuming process of updating it. We are 

currently extending the STRUCT system to handle query search on XML data as well. 

Also our future goals would be to consider the clauses, operators or functions that can 

help user to specify their needs and requirements with much ease and convenience. So 

far, we have implemented the main three clauses (select, from and where) of the select 

statement. We would like to extend this work by considering the GROUP BY and 

HAVING clause used to implement the aggregate functions. Most frequently used 

grouping functions in the natural language are Average, Sum, Min, Max and Count. 

Additional operators like ANY, SOME, BETWEEN and ALL are also used extensively 

in the natural language. So we would further like to consider the feasibility of 

implementing and incorporating the above features in our search engine, named 

STRUCT.  
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