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Multi-Robot Task Allocation: A

Spatial Queuing Approach

William H. Lenagh, M.S.

University of Nebraska, 2013

Advisor: Dr. Prithviraj Dasgupta

Multi-Robot Task Allocation (MRTA) is an important area of research in autonomous

multi-robot systems. The main problem in MRTA is to match a set of robots to a

set of tasks so that the tasks can be completed by the robots while optimizing a

certain metric such as the time required to complete all tasks, distance traveled by

the robots and energy expended by the robots. We consider a scenario where the

tasks can appear dynamically and the location of tasks are not known a priori by

the robots. Additionally, for a task to be completed, it needs to be performed by

multiple robots. This setting is called the MR-ST-TA (multi-robot, single-task, time-

extended assginment) category of MRTA; solving the MRTA problem for this category

is a known NP-hard problem. In this thesis, we address this problem by proposing

a new algorithm that uses a spatial queue-based model to allocate tasks between

robots while comparing its performance to several other known methods. We have

implemented these algorithms on an accurately simulated model of Corobot robots

within the Webots simulator for different numbers of robots and tasks. The results

show that our method is adept in all proffered environments, especially scenarios that

benefit from path planning, whereas other methods display inherent weakness at one



end of the spectrum: a decentralized greedy approach exhibits inefficient behavior

as the robot to task ratio dips below one, whereas the Hungarian method (an offline

algorithm) fails to keep pace as the robot count increases.
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Chapter 1

Introduction

Multi-Robot Task Allocation(MRTA) plays a key role in any system whose primary

objective is to automate the performance of one or more tasks through autonomous

robots. MRTA is used in numerous applications of robotic systems including reconnaissance

[11], unmanned search and rescue operations ([4], [5]), cooperative transportation ([2],

[16], [9]), autonomous exploration ([3], [12]), etc.

We consider the MRTA problem within the context of an automated landmine

detection scenario. In this scenario, a set of robots are deployed within a bounded 2D

environment with potential landmines. The location of the landmines is not known

a priori. Robots are equipped with sensors that are capable of detecting landmine-

like objects, albeit within a certain level of uncertainty due to sensor noise. Robots

initially explore the environment and when a robot finds an object of interest that

could potentially be a landmine, it requests other robots, possibly with different

sensor types to visit the location of the detection and confirm the object on their

sensors. Within this setting, a task corresponds to a set of robots visiting the location

of an object of interest and recording the object’s signature on their sensors. For

legibility, we have referred to each robot’s visit to the object’s location and taking

its reading, as the robot performing its portion of the task. Robots can perform a
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task asynchronously by performing their portion of the task at different times, but

within a certain deadline since the discovery of the object. A task is considered to

be complete when the desired number of robots have performed their portion of the

task. Finally, tasks can arrive dynamically as robots explore the environment and find

objects of interest. Within this context, the MRTA problem corresponds to finding a

suitable allocation of tasks to robots so that the total time required to complete the

tasks is reduced.

The basic question answered by the solution to an MRTA problem is: which robots

should execute which tasks? And when or in what order should they be executed?

Given a set of alternative task schedules, an MRTA algorithm must choose a schedule

based on certain domain specific constraints such as the time required to complete

all the tasks, or, the total distance traveled by the robots, or, perhaps, the energy

expended by the robots. The MRTA problem is known to be an NP-hard problem

[1] and finding the optimal solution to the problem is not feasible beyond very trivial

scenarios. Most of the existing research on MRTA focuses on developing heuristics-

based solutions, while compromising overall system fitness for timely action.

MRTA solutions can generally be divided into two categories: centralized and

decentralized, or distributed. Centralized algorithms have the advantage of a global

view, but introduce a single point of failure in the system. Decentralized or distributed

approaches rely on communication between robots in order to achieve overall system

fitness. Popular methods for tackling distributed problems are to partition the

environment into logical regions ([7], [11]) and to use the market concept of auctions

to enforce decisions based on fitness parameters ([18], [6], [5], [4], [3], [2], [15]).

Our solution is to locally build a queue of preferred tasks for each robot based

on normalized matrix calculations involving the robot’s location and the distance to

known tasks within the environment. Auctions are then employed as a coordination

mechanism for determining robots’ intentions and selecting the most efficient assignment
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at any time. Combined together, these two aspects enable our solution to quickly

award task assignments in a distributed manner while allowing for dynamic change.

Real world environments are not static and typically introduce change that must

be dealt with quickly. Whether this change is manifested as new tasks, morphing

priorities, or system malfunction, it must be modeled and adapted to. Our solution

is flexible in that a schedule of tasks is not static, but the task queue at each robot

is reevaluated when new information is collected; each robot need only bid based on

the task located at the head of its queue.

The remainder of this document is structured as follows: the next chapter introduces

a wealth of related works consulted in preparing for our work. Chapter 3 provides a

formal definition of the base problem studied in this thesis. Chapter 4 illustrates

the theory and structure of our spatial queuing algorithm. Chapter 5 lays out

our experimental setup, defines the algorithms chosen for comparison, and reports

the results and analysis of the completed simulations. The last chapter, chapter 6,

summarizes conclusions drawn from our labors and points to future work in the vein

of what is discussed herein.
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Chapter 2

Related Work

MRTA encompasses a rather large range of possible problem domains and system

configurations, and due to its increasing popularity and applicability there are many

relevant recent studies that fall within its boundaries.

A good first step would be to properly define the types of problems, and their basic

attributes, that a MRTA system would solve. This is exactly what [1] proclaims to

do by constructing a formal taxonomy of task allocation in the context of multi-

robot systems. Their taxonomy revolves around three axes, three dimensions of the

problem space; these speak to the nature of the robot’s abilities, the requirements

of the tasks, and the time-centric availability of task information. Specifically, they

define one axis as book ended by either single-task (ST) or multi-task robots (MT);

signifying whether or not the robot’s in question are capable of executing more than

one task at a time. The second axis consists of single-robot (SR) or multi-robot

tasks (MR) wherein a task requires either one (SR) or more than one robot (MR)

in order to complete the requirements necessary for completion. Lastly, a third axis

relating to the flow of tasks into the robot’s environment: instantaneous assignment

(IA) refers to a static scenario where future considerations do not apply, conversely

time-extended assignment (TA) implies a dynamic setting in which allocations may
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change or additional tasks enter the system in future iterations.

In [2] the same authors aim to minimize resource usage, task completion time,

and communication overhead by implementing a fitness-based auction system with

negotiation and task commitment. They then test their system in both tightly-

coupled and loosely coupled coordination experiments, demonstrating that their solution

is adaptable and resilient in a variety of situations. As part of their solution they

introduce a publish/subscribe messaging protocol whereby messages are addressed

by content as opposed to destination. Anonymous messages are broadcast over the

network by producers; interested agents evaluate the metadata and either subscribe

to or ignore messages in that vein. In this way environmental resources become topics

of interest in the communication model.

Gil Jones, et al. focus on methods for forming ad-hoc teams at a moments notice

in [3], where the constituents have little a priori knowledge regarding the tasks, other

robots, these robots capabilities, or the environment in which they will be operating.

A framework such as this would allow considerable flexibility in studying scenarios

where teams must be formed on very short notice, such as in an emergency, and where

team members may differ greatly and may malfunction at any time. They begin to

investigate such a scenario in [4] where they introduce the concept of oversubscribed

domains. Oversubscribed domains refer to scenarios in which tasks have deadlines

that cannot all be met due to limited available resources. The authors pursue a

regression-based algorithm for guiding decision making within a fire fighting disaster

scenario. They demonstrate that a learning-enhanced approach can efficiently manage

allocation while incurring few penalties and respecting the urgency of the system

demands.

The authors extend their work in [5] to include time-extended allocation within

a disaster response scenario. Route planning is complicated by debris forcing sub-

auctions to bulldozer robots for clearing optimal routes based on scheduling priorities.



7

They experiment with a clustering methodology and genetic algorithms; the latter

yielding better results at the cost of computation time. This approach is best suited

when solution quality is of paramount importance rendering computation time less

of a priority.

Li, Sun, and Yang consider the problem of reallocating tasks online, during

execution, so as to counteract dynamic change within the environment in [6]. Changes

within the environment at run time may invalidate assumptions used in estimating

work during the initial assignment, and therefore may render the solution inadequate

for the new state of affairs. The authors propose adopting a market based approach,

but with a well-defined communication protocol for inter-robot communications with

the goal of achieving a fault-tolerant network for dynamic reallocation.

Liu and Shell focus on a large-scale online MRTA algorithm in [7] that mixes both

centralized and decentralized approaches in order to take advantage of spacial and

temporal efficiencies while reducing overall global communication. The assumption

they are building off of states that once an initial assignment has been computed,

subsequent reassignments require only a fraction of global information present in the

simulation. Their algorithm identifies clusters, or partitions, of strongly connected

robot-task pairs and operates on these clusters in parallel. Dynamic online assignment

reduced the time complexity by a factor of K3, where K represents the number of

partitions; in addition only 10% of the utility values needed to be calculated and

communicated as compared to a strictly centralized approach.

Liu and Shell introduce the interval Hungarian algorithm in [8] which focuses

on measuring the effects of uncertainty on the outcome of task allocation. This

algorithm assigns robots to tasks in a one-to-one ratio, but also calculates an interval

representing the tolerance of the assignment to outside forces which may disrupt

or invalidate the value of the assignment. These outside forces are modeled using

probability distributions. Their algorithm is a generic solution to the optimal assignment
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problem as it does not rely on domain-specific information regarding the structure

of the problem or the source of the uncertainty. Their results show that the interval

Hungarian algorithm greatly reduces the risk of misallocation when utility estimations

are uncertain or unreliable. In [13], Liu and Shell propose an incremental allocation

system based on the Hungarian algorithm. Beginning from a weighted bi-graph, a

replacement allocation can be devised in linear time and tuned to balance previous

match resilience. They document another incremental approach in [14] which produces

an optimal solution with increasingly efficient feasible solutions at each intermediate

step. Their task swapping structure lends itself to a decentralized approach, but

a centralized implementation offers fewer stages albeit with more communication

overhead.

Another work focusing on uncertainty is Sucan and Kavraki’s simultaneous task

and motion planning (STAMP) in [17]. They argue that motion planning cannot

be decoupled from task planning as any infeasibility in executing physical motions

renders the task planning useless. They use their concept of a Task Motion Multigraph

(TMM) to encode hardware capabilities into the task graph and then implement a

Markov decision process to guide the robot by incorporating feasibility probabilities

into the decision making process. Their experimentation shows a significant improvement

in feasibility probability using this method as compared to previous work in STAMP.

Seow, Dang, and Lee apply task allocation to the real-world taxi dispatch system of

Singapore in [9]. Using the infrastructure of the centralized system currently in place

they propose a distributed model whereby the on-board computers act as agents on

behalf of the drivers. The environment is partitioned into logical regions, grouping

taxis within those regions who then negotiate concurrent assignments of pending

requests with a focus on group average. This reduces average customer wait time as

well as empty taxi cruising time.

In a similar vein, Lim and Rus test their stochastic path planning solution against
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a Singapore road network incorporating historical traffic and travel data in [16]. The

stochastic properties of their model describe the real-world situation in which the

optimal sub-structure of a shortest path does not hold when travel time probabilities

are factored into the equation. In their work a generalized resource network is

modeled as a graph representing agents, resources, and destinations with intermediate

node constraints forming a broad outline of the network’s flow. They use convex

hulls within a mean-variance plane to locate the most efficient sequences between

constrained regions.

Dasgupta describes a cooperative foraging scenario with shared task execution in

[12]. Task locations are not known a priori and must be located by the workers at run

time. Once found a robot cannot complete a task on its own, but must request the

collaboration of other robots in order to fulfill the task requirements. Each robot can

perform their portion independently, and after doing so deposits virtual pheromone

representing the portion of the task it completed; this pheromone decays over time

and as such all portions of the task must be completed within the deadlines set forth

by the decay rate in order for a task to be completed successfully. He goes on to

detail four heuristic algorithms for approaching this scenario, the most successful

being Most Proximal Task First whereby the robot selects tasks nearing completion

with the least number of robots closer than itself. This algorithm avoids inefficient

allocations that result in robots approaching a task that is completed by others before

it arrives on location, wasting resources in the process.

The MRTA problem has also been studied recently in the context of multi-vehicle

routing. In [10], the authors investigate a scenario much like a time-extended version

of our environment: routing policies for multiple vehicles servicing tasks with multiple

classes of demands (priorities). Tasks enter the system according to a Poisson process

and are uniformly distributed within the environment. Each vehicle is assigned a

unique region of responsibility; the vehicles then calculate a service route for each
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demand class according to their priorities. The authors prove a lower and upper

bound and show that their queuing policy performs within a constant factor of this

lower bound, dependent only upon the number of demand classes present in the

scenario. Celik and Modiano frame MRTA within a mobile data collecting network

in [11]. The worker vehicles, given knowledge of sensors that require harvesting, must

build a service route schedule that minimizes average message wait time given their

limited radius of communication. The authors describe policies for single collector

scenarios, as well as multiple collector scenarios with and without possible interference

between assigned sectors and frequency bands.

Zhang, Collins and Barbu build on stochastic clustering auction research in [15]

which uses simulated annealing to explore an allocation space. Tasks are clustered

by an auctioneer based on cost estimations submitted by participating worker robots.

These values are combined to form a synergistic view of the task graph; connected

components are then transferred or swapped between randomly selected robots based

on stochastic probabilities.

Luo generalizes the competitive analysis of the online weighted bipartite matching

problem for groups of tasks in [18]. Under the same assumptions as previous work,

he shows that the competitive ratio of repeated greedy auctions is independent of the

number of tasks and robots in the problem, and becomes constant given that either

the size of the tasks groups or the budget for each robot remain constant.

In contrast to the works above, our spatial queuing approach introduces an element

of inter-relation between tasks not found in any of the strategies referenced above.

It takes advantage of the knowledge that tasks require multiple inspections and

grades each task based on its overall proximity to all other known tasks. A task,

x, equidistant to a robot’s current position, as compared to some other task y, but

in close proximity to a third task z, will have a higher overall score and therefore be

more attractive to the robot as it presents an opportunity to efficiently visit multiple
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tasks in one sortie. Our intuition is that this consideration for future assignments

should reduce the time and distance required to complete all task demands when

compared to an approach that is only concerned with finding a task schedule that

has the instantaneous best fit.
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Chapter 3

Task Allocation: A Spatial

Queuing Approach

As mentioned before our work focuses on a scenario classified by [1] as MR-ST-

TA: multi-robot tasks, one task per robot at any singular time, with time-extended

assignment of tasks. In the motivating domain of landmine detection this translates

to robots focusing on one task: to investigate an assigned area and perform the

sensory analysis required to detect any buried landmines in that region. Task regions

are embodied by a single point in 2D space signifying the centroid of a region as

identified by a different subsystem such as a coverage planner. For the sake of this

study the robots need only arrive at the centroid to complete a task while execution

of the task would be handled by the robot’s controller in a task execution subsystem.

For the purpose of redundancy and accuracy, each task region must be inspected

by multiple robots to confirm their peers’ results, driving down the statistical error

inherent in any physical system. However, in order to better utilize resources across

multiple regions while at the same time limiting competition within shared space, task

regions are only assigned to one robot at a time. Our scenario is classified as time-

extended assignment due to the fact that task regions are not known a priori, and in
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fact are presented to the task allocation system by another, higher layer subsystem

over time. The task allocation layer must then take this data and manage it among a

team of robots that are likely dispersed over a wide area. Also, the system should be

able to handle changes in the environment, whether that be additional task regions

that are presented during run time, or changes to the priorities of regions based on

the findings of other robots in the system.

Computation of an optimal solution is known to be NP-Hard [1], and is in fact a

variation on the traveling salesman problem. To address this complexity our solution

concentrates on building a queue of preferred tasks for a robot using a heuristic that

is based on the inter-robot and inter-task distances.

The specific problem we are investigating offers up some attributes that can be

used to our advantage when formulating a system for task allocation. First, we know

that the task locations are stationary, and while it is possible for additional task

locations to present themselves dynamically during run time, once included into the

system they remain unchanging. Second, it is guaranteed that each objective will

require multiple inspections, and therefore two or more robots must be allocated each

task at some point during execution. Based on these observations, providing for some

level of interrelation between tasks should increase performance by incorporating a

measure of ”look-ahead” into the overall score computed for a task.

Considering that movement is the most taxing energy sink in a land roving

scenario, optimizing energy use, and by way of supposition, distance, should be the

ideal we pursue. To accomplish this we turn to the concept of spatial queueing,

whereby each robot constructs a sorted preference list of tasks; each task receives a

score that represents its likelihood of selection based on its Euclidean distance, both

from the robot’s current position and also in relation to the other tasks present in

the environment.

Let E ⊂ R2 represent a bounded two-dimensional environment and R = {ri : 1 ≤
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i ≤ m} represent a team of m robots deployed within E. In addition, there is a set

of n tasks, T = { τi : 1 ≤ i ≤ n } dispersed throughout E, each of which requires a

predetermined number of inspections, dτi ϵ Z. The positions of the robots and tasks

are denoted by ρri ϵ E and ρτi ϵ E respectively. These position variables are used to

calculate the Euclidean distance di,j = ρτi - ρτj between two tasks and d̂i,j = ρτi -

ρrj between a robot and a task.

Inter-task distances form the basis of our method as they are used in composing

the transition matrix; a data structure generated and maintained by each robot. The

values of the transition matrix are the normalized inverse Euclidean distances between

every task pair, as described by the definition of transition matrix Mt in Figure 3.1

Mt =


π11 π12 ... π1n

π21 π22 ... π2n

...
πn1 πn2 ... πnn

, where πi,j =
1

di,j∑
j ̸=i

1
di,j

Figure 3.1: Formal definition of the transition matrix

Each entry πij of Mt represents the probability of a robot to select task τj following

τi, based on the distance between their locations. Note that πii = 0 and therefore the

diagonal of the matrix is composed of all zeros.

Initially, the transition matrix is computed for all task pairs, but as the robots’

operations progress, each robot recalculates the matrix whenever they complete a

task, or when the required number of inspections for a task have been fulfilled by other

robots. At this point the completed task can be removed from consideration, hence

transitional probabilities referencing this task are set to zero and redistributed among

all remaining tasks. Figure 3.2 graphically displays the initial transition matrix, as

all robots see it, for the first of our six task environments.

After the initialization phase completes in which team members announce their

presence, forming a loose collective, and known task information is disseminated, the
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Figure 3.2: Graph of environment 1, with inter-task transition probabilities

task allocation phase can begin. Upon receiving the task coordinates every agent

builds the transition matrix as detailed above. Next, they each compose a custom

queue of tasks, sorted in descending order based upon the score each task receives

when the transition matrix is applied to the robot’s state vector.

A robot’s state vector is similar to the transition matrix in that it is composed

of inverse Euclidean distances, from its current position to each task location (see

Figure 3.3). However, to promote valid comparisons from a global perspective,

which is a necessity when making comparisons and, subsequently, decisions in a

distributed manner, these values are not normalized and do not, therefore, estimate

a probability distribution. If normalized, as work is completed an unfair bias will be

afforded to robots with fewer task options, the end result of which is non-optimal

allocations. Instead, raw inverse distance values are used; leveling the playing field

when contrasting bids submitted by two or more robots. In general, a robot’s state

vector can be formalized as:
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Figure 3.3: Visual representation of Corobot 1’s state vector from initial deployment
position

Vri(ρri) = (π̂i1, π̂i2, ..., π̂in)where π̂ij =
1

d̂i,j
(3.1)

The product of the state vector and the transition matrix is a vector of task

proximity ratings that are then used in the bids for the tasks they represent. In

essence this is the overall likelihood of selecting the reference task based upon the

viewpoints of each of the other tasks, but weighted by the robot’s current position.

This conveys the likelihood of a task being selected, not in the present iteration, but

one step in the future. By then adding the state vector to this resultant vector you

achieve a score for each task that incorporates the present with one future period.

The robot is considering both immediate distance and relative proximity to other

tasks in its decision making calculations. At time t, the task scores are represented

by the vector V́ri such that:

V́ri(t) = Vri(t)×Mt,ri(t) + Vri(t) (3.2)

The results of the computation are then filtered, to remove occupied or completed

tasks, and sorted producing the final preference queue.
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Qri(t) = { q1,q2,...,qn qi ≥ qi+1 ∀ i }

Initially, no robot-task assignments exist and therefore all robots submit the head

of the queue, their most preferred task, for evaluation by the collective. Once all bids

have been received the robot with the global optimum, or highest bid, is awarded its

preferred task (by virtue of being the only unblocked robot). This triggers a chain

reaction in which subsequent high bids are awarded where no conflict of interest

exists. If a robot is unblocked only to discover that its preferred task has already

been awarded to a more deserving agent it increments the head node of the queue

and submits a new bid based on its second most preferred task. If a robot processes

its entire queue without winning a task it must sit idle until a task becomes available.

When a task is completed the producing robot, along with any idle robots, must

rebuild their queues to incorporate changes in the state of the environment. Once

all tasks have been completed, either from the perspective of an individual, or as a

whole, they terminate their controller.

The complete algorithm can be reviewed in Algorithm 1
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Algorithm 1 Spatial Queing Multi-Robot Task Allocation

1: Input: T = { τi : 1 ≤ i ≤ n }
2: Build transition matrix Mt as shown in Figure 3.1
3: bid ← 0
4: while an eligible task remains do
5: if I have not bid in this round then
6: Calculate state vector as shown in 3.1
7: Generate resultant vector using equation 3.2
8: Remove tasks completed by me or occupied by other robots
9: Sort queue in descending order
10: if the queue is empty then
11: wait until task-performed signal received from another robot
12: if a performed task is now complete then
13: Rebuild transition matrix Mt

14: end if
15: else
16: bid[r] ← queue[head] ◃ value of most preferred task
17: sendBroadcast(BID, bid)
18: end if
19: else
20: wait until competing bids received from all other robots
21: if I am the highest bidder for my preferred task then
22: if If task I have bid on is still available then
23: sendBroadcast(ACCEPT, task)
24: Execute task
25: Rebuild transition matrix Mt

26: else
27: Move to next entry in queue
28: if there is a task available in the queue then
29: bid ← queue[head]
30: sendBroadcast(BID, bid)
31: else
32: wait until task-performed signal received from any active robot
33: bid ← 0
34: if a performed task is now complete then
35: Rebuild transition matrix Mt

36: end if
37: end if
38: end if
39: end if
40: end if
41: end while
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Chapter 4

Experimental Setup and Results

4.1 Webots

All of our simulations were built and and executed on the robot simulator Webots

(version 6.3.0), http://www.cyberbotics.com/. Webots is a fully integrated design and

coding platform, allowing for both virtual robot and environment design and robot-

controller architecture construction. Each Webots world file is entirely customizable

allowing detailed replicas of real-world robots and objects to be incorporated with

the simulator’s physics engine. Webots’ integrated design environment includes the

necessary compilers for C and C++ controllers files as well as a set of APIs, ported

in many languages, for interacting with the sensors and actuators of a robot residing

in the simulated world.

The robot prototype utilized in all of our simulations is that of the Coroware

Corobot robot, an indoor, four-wheeled, skid-steer robot meant to represent a scaled

down version of the land mine detecting robots used in an outdoor setting. This

robot is equipped with four infrared distance sensors, one on each side of the sagittal

plane, oriented sixty degrees from the front of the vehicle, and two cross beam sensors

mounted on the front bumper (Figure 4.1a). Coupled with a Braitenberg controller
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[20] these four sensors enable the robot to ”feel” obstacles around it and react

accordingly. Other key devices are the emitter and receiver used for bidirectional

wireless communication with other robots in the environment, and a GPS node

requisite for localization.

(a) A virutal Corobot, with visible distance
sensor rays (b) A photo of a Corobot robot

Figure 4.1: Virtual and actual snapshots of the Coroware Corobot robot

Simulations take place in a bounded three-dimensional world; movement and

object placement are limited to a 20 x 20 meter2 plane aligned to a Cartesian

coordinate system originating at the center of the plane (Figure 4.2). Walls extending

into the third dimension exist at the boundaries of this square; robots interpret the

walls as obstacles via their infrared sensors.

Robot behavior is expressed primarily by movement in the two-dimensional plane.

This behavior is guided by the subsumption architecture [19] shown in Figure 4.3.

A subsumption architecture works by directing sensor inputs to encapsulated control

units representing the internal processes responsible for controlling outward behavior.

The outputs of these units either feed into more complex functions or, ultimately,

result in actionable vectors in response to the stimuli provided. These control units

are organized into layers based upon the level of complexity associated with the

behavior. All of the tiers for a specific behavior converge to one point, therefore

the architecture must specify which outputs have priority, overriding lower priority
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Figure 4.2: A screenshot of the arena with 10 corobots deployed

directives. In our system the robot’s primary directive is to move towards a goal point

generated by the task allocation system. However, other sensory data may override

this edict by manipulating wheel speeds in order to avoid a detected obstacle, or, as

a proactive measure, to prevent a collision with another robot in the vicinity.

Figure 4.3: Generic subsumption architecture for a Corobot

Directional movement is split into two logical hemispheres (each of π radians) with

respect to the current heading as it relates to the underlying grid’s coordinate system.
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The robot is guided by adjusting wheel speeds; a positive differential between the right

wheels and the left veers the robot to the left and vice versa. The magnitude of this

differential is a factor of the distance to the goal in conjunction with the measure

of the angle separating the robot’s heading from the straight line path to the goal

coordinate. This factor is varied in such a way as to ensure a smooth transition to a

direct bearing on the target.

The Pro version of Webots allows for a supervisor node which can control the

simulation in code. We employ this option in order to execute batches of simulations

without human intervention.

4.1.1 Collision Detection and Avoidance

Although the infrared sensors, coupled with a Braitenberg controller, work well in

detecting stationary obstacles, they are ineffective at discovering moving objects in

close proximity. Furthermore, as all robots share the same plane and visit identical

task regions, collisions are an inevitable side effect of operation. To mitigate this side

effect a collision prediction and avoidance system must be installed in the hierarchy

that is the subsumption architecture. But, since this study is focused on task allocation

a fairly primitive collision prediction algorithm was contrived, although, as I discuss in

the future work section, I believe a neural net based solution could prove advantageous

to the scenarios visited in our work.

Our collision prediction system relies on inter-robot communication for actuation.

Intermittently, throughout the lifetime of a simulation, each robot broadcasts position

and heading data on the inter-robot communications channel. Upon receiving these

signals, the information garnered is utilized in determining the closest teammate.

Once ascertained, an intersection point between the two trajectories is calculated,

and the estimated time of arrival to this point is extrapolated using current velocity

estimations. If the result of these calculations is within a certain threshold a collision
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is deemed likely and evasive action is triggered.

4.2 Algorithm Comparison

For comparison purposes, we have implemented and simulated three other algorithms

in addition to the spatial queue and transition matrix based solution we showcase

in this document. Representing the optimal case, we have recast the Hungarian

algorithm [21] to a dynamic setting, the result of which is an offline schedule tailored

to each robot. These offline schedules are then read into and simulated on the Webots

platform using the same environments as our online solution packages. Our first

heuristic draws inspiration from the theory of vacancy chains and is in essence a

distributed greedy approach to the task allocation problem. Next we adapted and

implemented Luo’s recent work on repeated auctions with task grouping constraints,

also a decentralized approach. While this latter work expands the view of task

allocation to that which must consider sets of tasks manifested in a time-extended

manner, they regard each set as independent whereas we allow for interrelations

between groups and recognize that a versatile solution may very well have to negotiate

a setting that distends beyond the constraints put forth in their document.

4.2.1 The Hungarian Algorithm

As a baseline for comparing against our other methods, an optimal schedule was

computed offline for every combination of tasks, robots, and environments and then

read into a Webots project and simulated using the same motion controller code

shared across all of our implementations. I used a public version of the matrix

interpretation of the Hungarian algorithm in Java, modifying the source to accommodate

idiosyncrasies present in a time-extended scenario that are unaccounted for in the

basic Hungarian method. Specifically, the Hungarian method does not produce an
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optimal selection when tasks and robots can both be off limits due to availability or

completion status.

A complete schedule is built for every robot by simulating each environment file

from start to finish. The beginning state consists of the robots in their starting

positions along with a cost matrix composed of the Euclidean distances between every

robot and every task. An initial allocation is provided by a call to the Hungarian

method followed by an iteration, defined as the closure between the minimum robot-

task pair. The distance traversed by this closure is subtracted off of the distances of

any other active robot-task pairs. At this point, if there are any idle robots another

call is made to the Hungarian function and the procedure loops until all objectives

are met. During this process a schedule, including any idle states, is composed

for all robots and written to a file upon termination, identified by the environment

descriptor.

A separate Webots world, built for the purpose of executing these schedules, forces

the robots to choose tasks in the order presented to them in their individual schedule,

while the other rules of the simulation remain intact.

4.2.2 Decentralized Greedy

Our first heuristic organizes the worker robots in a distributed manner and allows

them to greedily select tasks based on distance. During the initialization phase all

participating robots receive a copy of the task list from the master robot, a role only

present during this short time. The master robot reads the task data from disk and

begins a call to action dialogue with any other robots present in the simulation. Those

that respond according to protocol are counted in and will receive the task matrix

wirelessly at the appropriate time. Once initialized each robot maintains all requisite

data individually and is fully capable of acting on its own behalf, based on the data

it collects.



27

All idle robots submit a bid to the collective by communicating the distance to

the closest task from its current position. Once all bids are collected each robot can

determine whether it is clear to execute its chosen task based on a set of precedence

rules. These rules form a hierarchy by which the lowest bid is always allowed to

proceed first. After the lowest bid has been recognized by an acknowledgment from

the winning robot, the the robot with the second best bid is free to accept its task

after first verifying that it was not allocated to the first robot. As this progression

continues if a robot finds that its preferred task was already awarded it resubmits

a bid: the distance to the next closest task. In this way either all robots are either

allocated to a task or, if all tasks are awarded, the remaining robots must sit idle and

await the completion of some task so that it may again submit a bid. This process is

summarized in the algorithm 2.

Algorithm 2 Decentralized greedy task allocation using auctions

1: Input: T = { τi : 1 ≤ i ≤ n }
2: while an incomplete task exists do
3: Set bid as the distance to the closest available task
4: Set task to the task number of the closest task
5: if an available task was found then
6: sendBroadcast(BID, bid)
7: else
8: wait until task-complete signal received
9: end if
10: wait until competing bids received
11: if my bid is the global minimum then
12: sendBroadcast(ACCEPT, task)
13: Execute task
14: else
15: wait for ACCEPT signal
16: end if
17: end while
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4.2.3 Repeated Auctions

In [18], the authors perform a competitive analysis of a repeated auction algorithm

and treat groups of tasks in a time-extended manner, with the condition that all tasks

in one group must be satisfied before approaching the next wave of tasks a method

for modeling dependencies between tasks. We have adapted the repeated auction

algorithm in this same vein relieving some of the constraints so as to adequately

model the situation we are investigating. In our version, as tasks become available

new auctions begin immediately in order to allocate free tasks to idle robots.

The repeated auction algorithm works as follows: each robot determines the utility

value of every task by subtracting their private value of the task from the current

maximum price of that task (set to zero initially). The private value is simply

the inverse Euclidean distance between the robot’s position and the coordinates

representing that task. A bid is then formed by finding the difference of the two

highest utilities, adding a small offset, and adding this result to the current price.

As this is a distributed model each robot must track these prices individually via

broadcast communication. If outbid, this process is repeated until the maximum

utility value is negative, at which point the robot has nothing to gain and will remain

idle and wait for the next auction. When a stable allocation develops, the auction

terminates and the winning robots begin executing their tasks. Reference Algorithm

3 for pseudocode of the technique.

4.3 Experimental Setup

Simulations for all four approaches were centered around three Webots worlds containing

either 5, 10, 15, or 20 Corobot robots. In each world the robots are statically deployed,

meaning that they begin every simulation at exactly the same location in space. This

allows us to compare the performance of the different algorithms in a systematic
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Algorithm 3 Repeated Greedy Auctions for Online MRTA [18]

1: Input: T = { τi : 1 ≤ i ≤ n }
2: while an incomplete task exists do
3: for all unoccupied tasks do
4: Set value ← the inverse distance from my position and the task
5: Set utility ← the difference between value and the task’s current price
6: Store task IDs and utilities for the highest and second highest utility values
7: end for
8: if an available task was found then
9: bid ← price + (highest - second + ϵ) ◃ ϵ is a small constant to ensure the

bid price increases
10: sendBroadcast(BID, highestID, bid)
11: else
12: wait until task-complete signal received
13: end if
14: wait until competing bids received
15: if I am the high bidder then
16: sendBroadcast(ACCEPT, highestID)
17: Increment price by: highest - second + ϵ
18: Execute highestID
19: end if
20: end while
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manner. The task allocation algorithms operate on environments containing 6, 12,

18, or 24 tasks read from disk at the start of execution. Ten environments each were

generated for all four tiers of tasks, and these same 40 environment files were used

for every combination of algorithm and Webot world.

Each environment definition consists of one record for every task in its tier level,

where a record contains the x and z coordinates of the task epicenter and the number

of required inspections to complete the task. Task coordinates were randomized to

the hundredths place with two guidelines: first, that tasks must be at least one meter

from the walls bounding the physical limits of the arena, and second, that tasks are

a minimum of two meters apart. The required number of inspections to complete a

task vary between 3 and 5 for all tiers.

An optional feature, and one that may be investigated in future work, is to assign

a weight or priority to each task and to incorporate this additional variable into

the task allocation calculations, but for the sake of these proceedings the priority is

assumed to be identical for every task under consideration.

4.4 Results

A multitude of data was collected from individual log files written upon controller

termination; each containing measurements and sensor data compiled over the course

of each run. The list of metrics includes total time in simulation, total time idle

during simulation, distance traveled in meters, estimated battery life (experimental),

bytes sent and received, messages sent and received, and tasks completed. The data

was extracted from each robot, for each of the 10 environments, over all combinations

of tasks and robots and then averaged first at the environment level and then again

at the robot-task pair level resulting in 16 robot-task combinations for each of the

four methods studied.
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One of the key metrics that must be evaluated in the domain in question is the total

time required to complete all inspections, or completion time; this value is defined

as the seconds elapsed when the final inspection is completed and the last remaining

robot terminates its controller. This value is simply the maximum simulation time

of all robots in an environment. When comparing the four methods side by side

there are two viewpoints to consider: the first is to leave the number of robots fixed

and look at the results as the task load increases, the second is to fix the number of

tasks and vary the count of robots available to perform the work. Figure 4.4 charts

completion times for each of the four methods with robot levels fixed and task loads

variable.

Although our spatial queuing approach does not stand out on its own, it does

match the results of repeated auctions and they both showcase the versatility to

perform efficiently in all the scenarios presented; whereas the Hungarian and decentralized

greedy approaches both exhibit weaknesses when tested, the repeated auction and

spatial queuing methods seem to have none.

Studying these results illuminates a couple of interesting conclusions. The first

being that the decentralized greedy approach is very inefficient when the number of

tasks greatly outweigh the count of robots in simulation. In Figure 4.4a, where

the robot count is 5, the decentralized greedy approach gets progressively worse

as more tasks are introduced to the system. As the task to robot ratio grows,

a greedy approach becomes ineffective because it cannot cope with the number of

possible trajectories available for completing all outstanding task requirements; by

definition it can only superficially select the best allocation for the immediate iteration

and the constraints therein. It is only by adding more robots to the simulation

that this approach mirrors the efficiency displayed by the repeated auction and

spatial queuing methods. By Figure 4.4d, when the robot count is 20, there is

little statistical difference between these three methods. However, the opposite can
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be said for the Hungarian method - at first it is producing results very similar

to the repeated auction and spatial queuing algorithms, but as additional robots

are introduced it performs poorly. This can be attributed to the fact that the

schedule is scripted offline and therefore the algorithm has little ability to adapt

to change materializing dynamically during run time (additional robots complicate

the simulation by increasing the probability of collision avoidance events).

The inefficiency of the decentralized greedy system with five Corobots can be seen

clearly in Figure 4.5a, which graphs the competitive ratio of completion time, not

against the other methods, but against itself with a baseline task load of six. With

five available robots the decentralized greedy algorithm nearly triples in running time

with a task load of 24, whereas the other three methods accomplish the same task

load at a multiplier of only slightly over 1.5 times the baseline of 6 tasks.

As is to be expected in Figure 4.4, overall completion time increases as the task

load increases; similarly, the opposite is expected when the number of tasks is fixed,

but additional robots are added to the system. This is precisely what Figure 4.6

conveys via charts of completion time from the perspective of task load. Generally,

what can be observed from these results is that the jump from 5 to 10 robots offers

the most improvement in efficiency, after which the interference overhead introduced

by additional workers limits the gains or even decreases the system efficiency. In

Figure 4.6a (6 tasks), an average decrease in execution time of 35% is visible when

jumping from 5 to 10 robots, however 15 and 20 robots offer almost no advantage

and growth is flat (plus or minus 4%). At 12 tasks, Figure 4.6b, efficiency gains are

visible with 10 and 15 robots. The average decrease in execution time nearly doubles

from 15% with 10 robots to 29% with 15; an additional decrease of 5% accompanies

an increase to 20 robots. Conversely with task loads of 18 (Figure 4.6c) and 24 (4.6d)

growth is flat or negative when 15 or 20 robots are present. With 18 tasks completion

time decreases by 25% on average when jumping from 5 to 10 robots; 15 robots offers
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no advantage and 20 robots actually performs worse by 4%. A task load of 24 is

completed 24% faster by 10 robots than 5; 15 robots complete this same task load

2% slower than with 10 and 20 robots slip another 4% as compared to 15 robots.

A possible explanation for this anomaly is ideal localization of tasks with respect to

robot deployment points; it should be noted that task groups are not super or sub

sets of one another - each grouping in unique and independent.

It should also be noted that both our spatial queuing algorithm and repeated

auctions, show their worth by outperforming the greedy heuristic in scenarios that

require multi-stage path planning in order to visit all the tasks. This happens when

the ratio of robots to tasks is less than one. As the ratio of robots to tasks approaches

1 and beyond, the greedy algorithm closes the gap and produces similar results. At

a ratio of 1 or more, every task can be assigned to the closest robot and there is

less efficiency to be gained through path planning. Examples of the benefits of path

planning are visible in Figures 4.6b, 12 tasks 5 robots (23%), 4.6c, 18 tasks 5 and

10 robots (31% and 14% respectively), and 4.6d, 24 tasks 5, 10 and 15 robots (37%,

38%, and 26% respectively) by calculating the average improvement in completion

time using the greedy results as a baseline. The Hungarian algorithm, as mentioned

before, cannot respond to change and therefore performs poorly in simulation.

The competitive ratios for completion time of 10, 15 and 20 robots (as compared

to 5 for each method) are charted in Figure 4.7. These show that, except for 6 tasks

where the number of robots greatly outnumbers the tasks, the decentralized greedy

heuristic improves the most with supplemental members (an average overall gain in

efficiency of 35%) while at the same time the Hungarian method improves the least

(15%).

Average distance traveled per robot is another key metric when analyzing overall

system fitness. Minimizing the distance traveled in turn decreases the usage of a

robot’s power source, which is a valuable commodity in most real life environments.
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Figure 4.9 charts the average total distance traveled per robot, with 5, 10, 15 and 20

robots, as the task load increases from 6 to 24. The average total distance traveled per

robot is directly proportional to the number of tasks and inversely proportional to the

number of robots, or in other words distance increases with task load and decreases

with the number or robot candidates. The data shows quite clearly that the two

heuristics and the Hungarian optimized schedule perform comparably in all scenarios

(overall average distance of 50 meters for the repeated auction method and 53 meters

for both spatial queuing and Hungarian); the greedy algorithm, however, operates

less efficiently as the task load is increased, culminating in a gap of approximately

60 meters in the worst case (5 robots, 24 tasks), its overall average distance traveled

was 65 meters. As we witnessed with completion time, the greedy algorithm does

improve with the addition of worker robots, and this can be seen in Figure 4.9b

where its performance is in line barring a slight jump in the 24 tasks case.

Whereas completion time refers to the average total time to complete all inspections,

average simulation time refers to the time in simulation for each individual robot.

Since the robots in the Hungarian implementation are following a schedule they can

terminate immediately upon completing their assigned tasks - they do not need

to remain idle in preparation for performing more work on demand. Therefore,

the average simulation time for the Hungarian implementation can be used as a

benchmark for comparing the three heuristic algorithms. Their average simulation

times will be some multiple of this benchmark - a competitive ratio. Figure 4.10

graphs the evolution of this metric for all sixteen combinations of robots and tasks.

Again we see that the decentralized greedy tack cannot compete in many situations

that benefit from path planning (its overall average competitive ratio is 1.47 whereas

repeated auction’s and spatial queuing’s are 1.25 and 1.27 respectively), but that it

does fall more in line as the robot to task ratio borders on one (1.45 versus 1.38 and

1.37). Also visible in the progression are the large spikes at 15-6 and 20-6 (1.86 and
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1.97 compared to an average of 1.24 for all other scenarios). This can be explained

by the fact that many robots sit idle never winning any tasks while these same robots

terminate immediately in the Hungarian case because their schedule is empty. Apart

from these two spikes, spatial queuing and repeated auctions maintain a competitive

ratio just above the benchmark; that is until the 20 robot cases at which point the

ratio noticeably expands (an average of 1.57 in 20 robot configurations as compared

to a composite average of 1.25 for 5, 10 and 15 robot environments).
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(a) 5 robots

(b) 10 robots
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(c) 15 robots

(d) 20 robots

Figure 4.4: Completion times with robot levels fixed for 6, 12, 18, and 24 tasks
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(a) 5 robots

(b) 10 robots
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(c) 15 robots

(d) 20 robots

Figure 4.5: Competitive ratio of completion times for 12, 18, and 24 tasks as compared
to 6 tasks
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(a) 6 tasks

(b) 12 tasks
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(c) 18 tasks

(d) 24 tasks

Figure 4.6: Completion times with task load fixed for 5, 10, 15, and 20 robots
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(a) 6 tasks

(b) 12 tasks
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(c) 18 tasks

(d) 24 tasks

Figure 4.7: Ratio of completion time as robots are added to the simulation
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(a) 5 robots

(b) 10 robots
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(a) 15 robots

(b) 20 robots

Figure 4.9: Overall distance traveled in meters
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Figure 4.10: Competitive ratio of simulation times using the Hungarian method as
the baseline
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Chapter 5

Conclusions and Future Work

5.1 Conclusions

We proposed a spatial queuing algorithm with integrated look-ahead as a solution for

multi-robot task allocation in the context of automated landmine detection. Our

completed system was simulated on accurate models of the Corobot robot using

the Webots simulator for many combinations of robot teams, task loads, and task

environments. For comparison purposes we also implemented controllers for a decentralized

greedy heuristic, a repeated auctions approach, and an optimized offline schedule

based on the Hungarian algorithm.

Our results show that an offline schedule, while optimal in theory, does not

necessarily translate to a real world scenario where small disturbances in the environment

can completely change the entire schedule of events that take place. In addition, the

results clearly indicate that a greedy heuristic is inefficient in situations that require

managing a small team of robots with a large task load; only when the the team

size approaches the task load does the greedy algorithm match the performance of

repeated auctions or our spatial queuing theory.

Our spatial queuing method performed well in all scenarios and right in line with
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the efficiency of a repeated auctions implementation. Analysis of the results also aids

in selecting the appropriate team size for a physical environment, if modeled in enough

detail. In our basic representation of a bounded region the ideal team size appears to

be 10, after that the complications and overhead of another five robots begin to erode

the overall system performance. This study is by no means an exhaustive search into

this query, but it does indicate that there would be advantages to be gained by doing

so for a specific implementation in a real world project.

5.2 Future Work

There are many directions this work can be taken in and improved upon. An obvious

one, after perhaps expanding the simulation parameters, is to run the finished product

on actual hardware in a controlled physical environment. There are many assumptions

in a simulated work space that need tweaking in a live one; communication reliability

being a substantial one as this is a requisite subsystem in a distributed, collaborative

effort. It is also worth noting that we have assumed accurate localization of the

robots based on a simulated GPS receiver. This is paramount to an effective solution

and incorrect localization would result in poor performance in actual hardware.

Also related to hardware is the possibility of a heterogeneous team instead of the

homogeneous group assumed in this study. It may be beneficial to include robots

with varying skill sets and sensor capabilities, especially when the primary goal is to

detect buried objects. As such, the confidence levels of an inspection by a particular

robot may need to be graded, therefore changing the foundation of the algorithms to

include a type of priority based on these confidence levels. Lower confidence levels

may require supplemental inspections, possibly by specific sensor types, and higher

confidence levels may change the priority of a task so that it attracts team members

and focuses work on higher probability regions.
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Others ideas that have merit for further investigation are to introduce a minimum

number of tasks to allocate at one time, at least within some limited window in time,

and also exploring the option of augmenting the transition matrix used in the spatial

queue formation with data discovered during run time. With the parameters as they

are, often only one task is allocated at a time (except for the first allocation and as the

simulation nears completion). Yet, task completion events often occur within seconds

of each other, therefore more adept allocations may be possible by allowing for small

delays with the hopes of reaping a return on the investment in time. In regards to

the idea of an augmented transition matrix, the priorities mentioned above could be

integrated into the matrix by weighting the combination of distance and priority and

recalculating affected regions of the matrix with this new information.

One final area of focus for future work, though not directly associated with task

allocation, is a more sophisticated path planning for obstacle avoidance. The current

method is to predict straight line trajectories based on position information broadcast

periodically throughout the life span of the controller. I propose that a neural network

based solution, in conjunction with a proper training period, could arm each robot

with the a coefficient set tuned to react directly to position signal messages. The

neural net would have input nodes correlating to the velocity and heading of both

the subject and a possible target along with the distance between them. These nodes

would feed forward to an intermediate layer followed by an output layer of two nodes

whose values would be interpreted as multipliers for effecting the left and right wheel

speeds. In addition, more sophisticated path planning like [23] could be used to

address the inter-robot collision avoidance problem.

In this thesis, we have proposed a spatial queuing approach to MRTA; one that

incorporates a measure of look-ahead constituting a primitive form of path planning.

This feature, along with the decentralized aspect of the system, allows our approach

to efficiently respond to a dynamic, unknown environment; to adapt and control team
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resources within the environment and within the context of the goals appointed to

the collective.
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