
University of Nebraska at Omaha University of Nebraska at Omaha

DigitalCommons@UNO DigitalCommons@UNO

Student Work

5-2013

SOFTWARE FAULT DETECTION VIA GRAMMAR-BASED TEST SOFTWARE FAULT DETECTION VIA GRAMMAR-BASED TEST

CASE GENERATION CASE GENERATION

Songqing Liu
University of Nebraska at Omaha

Follow this and additional works at: https://digitalcommons.unomaha.edu/studentwork

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Liu, Songqing, "SOFTWARE FAULT DETECTION VIA GRAMMAR-BASED TEST CASE GENERATION" (2013).
Student Work. 2883.
https://digitalcommons.unomaha.edu/studentwork/2883

This Thesis is brought to you for free and open access by
DigitalCommons@UNO. It has been accepted for
inclusion in Student Work by an authorized administrator
of DigitalCommons@UNO. For more information, please
contact unodigitalcommons@unomaha.edu.

http://www.unomaha.edu/
http://www.unomaha.edu/
https://digitalcommons.unomaha.edu/
https://digitalcommons.unomaha.edu/studentwork
https://digitalcommons.unomaha.edu/studentwork?utm_source=digitalcommons.unomaha.edu%2Fstudentwork%2F2883&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.unomaha.edu%2Fstudentwork%2F2883&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unomaha.edu/studentwork/2883?utm_source=digitalcommons.unomaha.edu%2Fstudentwork%2F2883&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:unodigitalcommons@unomaha.edu
http://library.unomaha.edu/
http://library.unomaha.edu/

SOFTWARE FAULT DETECTION VIA GRAMMAR-BASED TEST
CASE GENERATION

A Thesis

Presented to the

Department of Computer Science

and the

Faculty of the Graduate College

University of Nebraska

In Partial Fulfilment
of the Requirements for the Degree

Master of Science in Computer Science

University of Nebraska at Omaha

by

Songqing Liu

Omaha, Nebraska

May, 2013

Supervisory Committee:

Haifeng Guo, Ph.D.

Harvey Siy, Ph.D.

Haorong Li, Ph.D.

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

Microform Edition © ProQuest LLC.
All rights reserved. This work is protected against

unauthorized copying under Title 17, United States Code

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, MI 48106 - 1346

UMI 1535884

Published by ProQuest LLC (2013). Copyright in the Dissertation held by the Author.

UMI Number: 1535884

SOFTWARE FAULT DETECTION VIA GRAMMAR-BASED TEST

CASE GENERATION

Songqing Liu, M. S.

University of Nebraska, 2013

Advisor: Haifeng Guo, Ph.D.

Fault detection is helpful to cut down the failure causes by logically locating and

eliminating defects. In this thesis, we present a novel fault detection technique via

structured input data which can be represented by a grammar. We take a set of

well-distributed test cases as input, each of which has a set of test requirements.

We illustrate that test requirements come from structured data can be effectively

used as coverage criteria to reduce the test suites. We then propose an automatic

fault detection approach to locate software bugs which are shown in failed test cases.

This method can be applied in testing data-input-critical software such as compilers,

translators, reactive systems etc. Preliminary experimental study proves that our

fault detection approach is able to precisely locate the faults of software under test

from failed test cases.

iii

DEDICATION

To my parents, my family members, mentors and friends who have accompanied

and inspired me on my journey

iv

ACKNOWLEDGMENTS

I would like to thank the many people who kindly assisted me throughout my

master program. Special thanks to my major advisor, Dr. Haifeng Guo, for his help,

guidance, patience and support throughout my graduate study. I will be forever

thankful for and appreciative of his encouragement. I would also like to thank my

master committee members who have gone through the entire process with me: Dr.

Harvey Siy, Dr. Haorong Li, for their contribution to the development of my graduate

education. The professors and staff of the Computer Sciences Department have been

especially kind and helpful during my time at UNO. Many thanks go to my colleagues

working in IST at PKI: Mr. Weng Zheng, Mr. Bo Guo, Ms. Yushu Song and

Mr. Aruna Weerakoon, for their hand-by-hand help, support and friendship. I am

also grateful to Dr. Zongyan Qiu for all the technique supports and many valuable

conversations. Without their efforts, much of this work would not have been possible.

A special thanks goes to Dr. Harvey for his generous instructions to me on both

scientific idea and technology, even from the very first step, and with great patience.

Finally, this dissertation would not be possible without the support of my family.

I dedicate this work to my wife, Sissy Zhang, my daughter Summer Liu and my

parents. Words cannot explain how much I love and respect my whole family for

everything they have done for me.

I could not have done this work without the support and help of all these people.

Thank you very much.

v

Contents

Contents v

List of Figures viii

List of Tables x

1 Introduction 1

1.1 Background Research . 1

1.2 Problem Statement and Our Approach 4

1.3 Contributions and Significance . 5

1.4 Organization . 5

2 Structured Testing Requirements 6

2.1 Test Coverage Criteria . 6

2.2 Test Requiremetns in Software Testing 7

2.3 Grammar-Based Testcase Generation (GBTG) along with an Associate

set of Test Requirements . 8

3 Test Suites Reduction 12

3.1 Test Suites Reduction using Test Requirements 12

3.2 Test Reduction Algorithm . 15

vi

3.2.1 HGS Algorithm . 15

3.2.2 Our Most Constrained Variable Algorithm 16

3.2.3 Combination with HGS and Global Frequency 19

3.3 Experimental Results of Test Suites Reduction 19

3.3.1 Virtual Input Data . 19

3.3.2 Experimental results and analysis 21

3.3.2.1 Experiment 1 focus on Test Case Size 22

3.3.2.2 Experiment 2 focus on Requirement Size 23

3.3.2.3 Experiment 3 focus on Max Frequency 24

4 Granularity of Test Requirements 27

4.1 Related Research . 27

4.2 Algorithm of Our Implementation . 29

4.3 Experimental Results . 30

5 Automatical Fault Detection in Failed Test Cases 32

5.1 Automated Fault Detection Approach 32

5.2 Finest-Grained Faults Isolation . 33

5.3 An Motivation Example . 36

5.4 Algorithm of Fault Detection via Grammar-Based Test Generation . . 39

5.4.1 Automated Fault Detection Algorithm 39

5.4.2 Finest-Grained Faults Isolation Algorithm 40

6 Experimental Study 43

6.1 A Grading System . 43

6.2 Test Case Reduction . 44

6.3 Fault Detection via Failed Test Cases 46

vii

7 Related Work 52

7.1 Automatic Test Case Generation . 52

7.2 Automatic Fault Detection . 53

7.2.1 Statistical Analysis Approach 54

7.2.2 Experimental Analysis Approach 54

7.3 Code Coverage Test via Pex and Moles 55

8 Conclusion and Future Work 58

Bibliography 60

viii

List of Figures

1.1 Symbolic Context-free Grammar 1 . 3

1.2 Derivation Procedure of Simple Example 3

2.1 Expression Example . 9

2.2 Derivation Tree of Expression in Figure 2.1 9

2.3 Test Requirements: Lefty Subtrees . 10

2.4 Derivation Procedure of Requirement E2E1E0 10

2.5 Derivation Procedure of Requirement E2E1E2E0 10

2.6 Derivation Procedure of Requirement E0 11

3.1 Algorithm MCV . 18

3.2 Algorithm HGF . 20

3.3 TestCase Size Criterion . 23

3.4 Requirement Size Criterion . 25

3.5 Max Frequency Criterion . 26

4.1 Algorithm Requirement Granularity . 29

5.1 Derivation of On-Demand Generator . 33

5.2 Finest-Grained Function . 35

5.3 New Test Generation from On-demand Generator 37

ix

6.1 Symbolic Context-free Grammar 2 . 47

7.1 C# Source Code under Pex Framework 57

7.2 Pex Running Result . 57

x

List of Tables

3.1 Example test suite for greedy appoach 13

3.2 Requirements criterion coverage information for test cases in T 17

3.3 Test case input data argument setting 21

3.4 Experiment results based on TestCase size, Max Frequency 5 22

3.5 Experiment results based on Requirement size, Max Frequency 20 24

3.6 Experiment results based on Max Frequency 5, Requirements size 400 . . 25

4.1 Substring as Requirement . 28

4.2 Size of Test Cases and Requirement for each depth 30

4.3 Ratio of Correctness on Depth Change 31

6.1 Ration of Correctness Compare :Automatic and Manual 44

6.2 Test Suites Reduction Results . 44

6.3 Ratio of Correctness on a Reduced Set 500 45

6.4 Ratio of Correctness on a Reduced Set 1000 46

6.5 Finest-grained Faults and Interpretations 50

1

Chapter 1

Introduction

Software systems continue to grow in size and complexity as more functionality is

developed and more integration is needed. At the meantime, software bugs could

exist anywhere of software. Not only do they infect software at development phase,

but they also breakout software testing attempts and hide bugs into product code. In

this sense, fault detection is a critical task in software testing throughout the whole

life cycle of software development.

1.1 Background Research

Traditional software fault detection is a formidable task that costs time, effort, and a

comprehensive knowledge of the source code. For a complicated system, developing

methods for detecting the fault of software is extremely critical and difficult. As the

efficient fault removal technique, fault detection is one of the most effort-intensive

activities during software development [7]. In recent years, the field of automated

fault detection has made significant progress.

One such fault detection technique is static analysis, the process of evaluating a

2

system or component based on its form, structure, content, or documentation [31],

which does not require program execution. Lots of these techniques are proposed

[22],[25],[26],[28],[27],[5],[15],[9] to automate the identification of anomalies that can

be revealed via static analysis, such as uncaught runtime exceptions, redundant code,

inappropriate use of variables, division by zero, and potential memory leaks.

Another important branch of research in automated fault detection is formed

by experimental approaches. These techniques systematically alter applied changes

[37], input [39], or object interaction [8] in order to narrow down failure causes to

a small fraction of the search space. Most existing methods for automatically fault

localization rely on analysis of execution traces. While such experimental techniques

can precisely pinpoint failure causes, they can also alter program behavior in a way

that is impossible to achieve in the original setting. Adopting delta debugging on

program states [39], for example, freely produces impractical states, and depends on

the run-time system to locate inconsistencies

Also, GD Fatta et al. [12] present a method to enhance fault localization for

software system based on a frequent pattern mining algorithm. The test executions

are recorded as function call trees. Based on test oracles the tests can be classified into

successful and failing tests. A frequent pattern mining algorithm is used to identify

frequent subtrees in successful and failing test execution. And D Jeffrey et al. [21] use

additional coverage information of test cases to selectively keep some additional test

cases in the reduced suites that are redundant with respect to the testing criteria used

for suite minimization, with the goal of improving the fault detection effectiveness

retention of the reduced suites.

Automatic test generation can significantly reduce the cost of software develop-

ment and maintenance. In our approach, we use Gena, an automatic grammar-based

test generator, which takes inputs a symbolic grammar and a total number of test

3

case to request, to produce well-distributed test cases for software testing. A symbolic

terminal, highlighted by a pair of square brackets, is an abstract notation for a finite

domain. A simple example of a symbolic grammar is shown in Figure 1.1 , where [N]

is a symbolic terminal, whose instance can be any number between 1 and 1000. An

example of test generation based on leftmost derivation would be as shown in 1.2

E ::= [N] | E + E | E − [N]

[N] ::= 1 .. 1000

Figure 1.1: Symbolic Context-free Grammar 1

E ⇒ E + E
⇒ E − [N] + E

⇒ [N]− [N] + E

⇒ 359− [N] + E

⇒ 359− 54 + E
⇒ 359− 54 + [N]
⇒ 359− 54 + 823

Figure 1.2: Derivation Procedure of Simple Example

Test suite reduction uses test requirement to determine if the reduced set main-

tains the original suite’s requirement coverage. Then we examine granularity-based

customized test requirements for the fault detection problem, try to locate the fault

of software as earlier as possible.

Our approach complements these existing techniques by systematically narrowing

down the test input space to the simplest grammar instantiations that cause failure,

thereby significantly reducing the traces to examine.

4

1.2 Problem Statement and Our Approach

Software Fault detection is a subfield of software testing which concerns identifying

the bugs of software when they were triggered, and pointing out the type of fault and

its precise location in software by executing test cases and observing the programs

behavior. Given a program, fault detection is the problem of determining whether the

program has bugs, preferably with test cases that trigger such bugs. Fault detection

tools such as Valgrind [4], Find-Bugs [2], Fortify [3], Coverity [1], and many other

tools are widely used in software development today.

Given a program and a test suite, an input for which program could encounter

a failure, fault detection is the problem to identifying the reasons, including the

location, cause, and possible fixes for the failure. Fault detection is an important

and time-consuming step in debugging software failure. Currently, fault detection is

mostly a manual process, either during development (statistical analysis), or during

program-running time (experimental analysis). The latter one is especially hard to

diagnose software because it is difficult to reproduce the failure at the developers

site and because privacy and economic concerns severely limit what information is

available from the en-users site.

In this thesis, we present a novel automated fault detection approach to identify

software bugs, using grammar-based test case generation where each test case has an

associate set of test requirements.

Our analysis follows the steps that we summarize below

• Use grammar-based test generation to generate inputs. Each generated test

case has an associate set of test requirements

• Test suites reduction using greedy approach based on test requirements

5

• Fault detection of software

1.3 Contributions and Significance

We present a new approach on automated fault detection to localize the defects of

software under test which is based on a grammar-based test generation where each

generated test case has an associate set of test requirements. Our experimental results

show that this method can be used in the software with structured data as input which

these structured data can be easily presented by grammar.

We show that structured testing requirements, generated along with test cases,

can be effectively used as coverage criteria for test suite reduction. Our fault detection

approach is able to explore structural features in a systematic way to locate a set of

common least sub-structures, each of which can cause testing failures.

1.4 Organization

The remaining part of this thesis is structured as follows: chapter 2 gives a brief

introduction of the structured testing requirements from grammar-based test case

generation. Chapter 3 describes the procedure of test suites reduction, illustrates how

we can use test requirements as coverage criteria to reduce the test suites. Chapter

4 presents a novel approach of fault detection using structured test requirements to

precisely detect the type of the fault, include location, cause and possible fix of the

fault. Chapter 5 shows our preliminary experimental results on test reduction, fault

detection and granularity analysis of software testing. Chapter 6 gives some more

information on related works. Finally, the conclusions are given in chapter 7.

6

Chapter 2

Structured Testing Requirements

2.1 Test Coverage Criteria

Software test coverage criterion, widely researched as well as a large amount of soft-

ware testing and test generation approaches, typically specifies testing requirements

in terms of identified features of the software specification or the system under test.

The common knowledge is that software test coverage criteria need use source in-

formation from either specification-based [40], which specifies the required testing in

terms of identify features of the specification or the requirements of the software;

or program-based, which takes testing requirements in terms of the program under

test and decides if a test set is adequate according to whether the program has been

thoroughly exercised.

Test requirement not only provides insight in the status of a requirement in a

software development phase, but also is critical in software testing phase. For in-

stance, the requirement coverage include whether or not a requirement is covered

by an acceptance test, by a design artifact, by a system test etc. Joan C. Miller et

al. [29] proposes an approach of code coverage analysis that using the logical tree, a

7

systematic way to test all possible combinations of input data, and even all portions

of a given program. H. Kelly J. et al.[23] provide a practical approach to assess-

ing modified condition/decision coverage (MC/DC) for aviation software products.

Both of their code coverage methods check whether the software under test has been

thoroughly reached at all code statements and all executive branches.

For data-flow coverage analysis, Fankl et al.[13] extend the definitions of the pre-

viously introduced family of data flow testing criteria and then define a family of

adequacy criteria called feasible data flow testing criteria. M.J. Harrold et al. [17]

incorporate the representative set algorithm into data flow testing system. Data

flow analysis determines the relationship between definition of variables and uses

of the same variables where we have the precondition that different associations of

definition-use pairs would make different influence at software execution stage.

2.2 Test Requiremetns in Software Testing

Test requirements are very important in software testing which identify what object

need to be tested and what goal are going to be validated by testers. Usually test

requirements come from business requirements, functionality of the software, and

internal relationship between different components etc. through market specifications,

software function specifications and technical specifications of system.

An automatically generated test case often has a set of test requirements. How-

ever, the generated order of these two sets is not certain. Test requirements are often

generated along with the generation of test cases, while sometimes, test requirements

are generated before test case generation. In this circumstances, whenever the soft-

ware is under testing while running these test cases, we will able to trace which

features of the system have been tested.

8

Test requirements are also populate used in the areas of test case minimiza-

tion, selection and prioritization [36]. Take test case prioritization as an example,

P.R.Srivastva et al. [32] propose test prioritization technique prioritizes the require-

ments instead of prioritizing the test cases on the basis of requirements identified that

can occur in a software project. Another view of the use of test requirements is that

in automated model-based test case generation where test cases are purely produced

according to a dataflow model, definition-use pairs of variables [16] are commonly

identified as test case requirements using as efficient reduction criteria.

2.3 Grammar-Based Testcase Generation

(GBTG) along with an Associate set of Test

Requirements

GBTG is an approach to use symbolic context-free grammars to create a set of test

cases. It is helpful on testing those applications which require structured data as

inputs, such as compliers which take programs as input data, translator need files

as input data, and web applications need sequences of events as data input. These

structured data can be represented by a symbolic grammar which will be applied as

test requirements along with the test case generation.

In our approach, each test case produced by GBTG has an associate set of struc-

tural testing requirements. Given the symbolic context-free grammar in Figure 1.1,

we take an arithmetic expression like Figure 2.1 where each [N] can be substituted by

a random integer from its defined domain. This expression has a complete derivation

tree as shown Figure 2.2 by applied production rules from grammar, and each com-

plete derivation path is broken into small basic components which describe structural

9

properties of the test case, from the root node to a leaf node in a coverage tree as

shown in Figure 2.3.

[N] + [N]− [N] + [N]− [N]− [N]

Figure 2.1: Expression Example

Figure 2.2: Derivation Tree of Expression in Figure 2.1

Now this expression has an associate set of testing requirements {E2E1E0, E2E1E2E0,

E0}. Every testing requirement consisting a property sequence of grammar rule in-

dexes from 0 to 2, represents the leftmost derivation sub-tree starting from a leftmost

variable E until a terminal symbol is reached at the leftmost leaf while deriving vari-

able E. take first item E2E1E0 from above testing requirements set, it represents

a segment of derivations starting from the root, where the leftmost symbol is the

variable E. the derivation procedure start from applying the 3-rd production rule of

variable E, followed by applying the 2-nd rule of variable E and finally applying the

1-st rule of variable E in sequence, until the leftmost symbol in the derived sequence

becomes a terminal [N]. the procedure is show in Figure 2.4

The production procedure of next two testing requirements E2E1E2E0 and E0

are similar to the first one, denoting the segments of derivation routes described in

10

Figure 2.3: Test Requirements: Lefty Subtrees

E ⇒ E − [N]

⇒ E + E − [N]

⇒ [N] + E − [N]

Figure 2.4: Derivation Procedure of Requirement E2E1E0

Figure 2.5 and Figure 2.6, starting from the left most variable E in Figure 2.4 which

is broken point of syntax tree to leftmost sub-trees.

E − [N] ⇒ E − [N]− [N]

⇒ E + E − [N]− [N]

⇒ E − [N] + E − [N]− [N]

⇒ [N]− [N] + E − [N]− [N]

Figure 2.5: Derivation Procedure of Requirement E2E1E2E0

The standard derivation tree in Figure 2.3 for the generated expression shows

that each lefty sub-tree corresponds to one testing requirement actually illustrating

11

E − [N]− [N] ⇒ [N]− [N]− [N]

Figure 2.6: Derivation Procedure of Requirement E0

a nested sub structure of the whole derivation tree. For a structure-data-input ap-

plication, for example, software to evaluate arithmetic expressions, the system tester

would run as many different expressions as possible to determine that any arithmetic

operators and their combinations are supported by the developing system. The nested

sub-structures could serve as perfect test coverage criteria for structured input data.

Additionally, many certain sub-structures may fall into different testing requirements,

which indicate the possibility that testing requirement can imaginable be used for test

cases reduction, selection or prioritization.

12

Chapter 3

Test Suites Reduction

3.1 Test Suites Reduction using Test

Requirements

Error detection is a critical task in software testing throughout the whole life cycle

of software development. Test suites are often reused while software evolves and

upgrades. It yields the result that in a large test suite which should have some

redundant test cases considerably, where requirements covered by these test cases are

also covered by those other test cases. Re-executing all test cases costs much more

resources and time, so that it is important to develop specific techniques to minimize

test suite by eliminating redundant test cases, specific techniques to select test cases

which are important to software evolution, specific techniques to prioritize test cases

that maximize the possibility of fault detection.

Test suite minimization techniques seek to find redundant test cases and to re-

move them from the test suite The reason of test suites become redundant includes:

relationship between input and output is no longer meaningful due to software modifi-

13

Requirements
Test Case r1 r2 r3 r4 r5 r6
t1 X X X
t2 X X
t3 X X
t4 X X
t5 X

Table 3.1: Example test suite taken from Tallam and Gupta [33].

cation, test case generated by a specific program and it changed, structure of software

under test is changed.

Chavatal [10] first proposed the usage of a greedy heuristic that chooses test case

which covers almost all requirements about to be covered (max cardinality of test

set), until all requirements have been satisfied.

Harrold, Gupta, and Soffa [18] have developed another greedy heuristic, based on

the cardinality of test case covering specific requirements, to choose a minimal subset

of test case which covers the same set of requirements as the original test suite. The

idea by Harrold et al. generates the implementations which are always equally good

or better than the results computed by Chavatal. On the other side, they still have

the worst case execution time of O(|T|*max(|Ti |)) [20]. Here |T| stands for the size

of the original test suite, and max(| Ti |) stands for the cardinality of the largest

group of test cases in TS.

We apply a similar heuristic technique of the above two methods to minimize a

representative set of test cases from a test suite that provides the same coverage as

the entire test suite. This minimization is performed by identifying, eliminating the

redundant and obsolete test cases in the test suite. The representative set replaces the

original test suite and then potentially produces a smaller test suite. Our technique

is independent of the testing methodology and only requires an association between

14

a testing requirement and the test cases that satisfy the requirement. We adopt the

method of choosing most constrained feature from constraint logic programming to

solve this problem. Most constrained feature method means at each stage of the

search, the heuristic technique involves working with the feature that has the least

possible number of valid choices. This heuristic is perhaps more clearly understood

in relation to the map-coloring problem. It makes sense that, in a situation where

a particular country can be given only one color due to the colors that have been

assigned to its neighbors, that country be colored next. Applying most constrained

feature let us choose the feature that imposes the most constraints on the remain

items. Here we first choose the test case which repeated highest frequency in the

associated testing sets to the representative sets. Our algorithm then mark the test

property of selected test case whose associated testing sets be included that test case

and repeat this operation to the final status.

However, a potential issue of the greedy solution is that that the early selection

made by the algorithm can be rendered redundant in the end by the test cases subse-

quently selected and , when a tie situation between multiple test cases happens, one

test case is randomly selected. In Table 3.1, the greedy approach will select t1 first

as it satisfied the maximum number of testing requirements, and then continues to

select t2 , t3 , and t4 . Unfortunately, after the selection of t2 , t3 and t4 , t1 becomes

redundant. This solution can be useful of the implications among test suites in case

to identify which test case became excessive in test suite reduction procedure [33].

Tallam and Gupta propose a new greedy heuristic algorithm called Delayed-Greedy,

that is guaranteed to obtain same or more reduction in the test suite size as compared

to the classical greedy [10] [18] heuristic.

15

3.2 Test Reduction Algorithm

3.2.1 HGS Algorithm

The implementation of our approach for test suite reduction with constrained vari-

ables is based on Harrold, Gupta, and Soffa [20] (HGS) heuristic method of test

suite minimization algorithm, so we first give a brief introduction of HGS algorithm

as follows:

1. Initial state:

a) Input data: T1 , T2 Tn testing sets for r1 , r2 ,rn respectively.

b) Output data: RS=empty, a representative set.

c) All requirements r1 , r2 , rn are unmarked.

2. Second step: For all test cases that is occurred only once in associated testing

sets for requirements respectively are selected and put into representative sets

RS, then marks all requirements(testing sets) which covered by these test cases.

3. Third step: Consider the unmarked requirements (testing sets) of cardinality

two.

a) If we only have one requirements with cardinality two, the test cases are

chosen and put into RS, then unmark the requirements which covered by

these test cases.

b) If we have several requirements with cardinality two, the test case which

has maximum number of occurrence of requirements is selected.

c) If several test cases are tied with maximum number of occurrence, check

these test cases in requirements with next successively higher cardinality,

16

if the maximum cardinality is reached and still remain several tied test

cases, and then select one test case arbitrarily from these tied test cases.

4. Fourth step: Repeat the third step, until reach maximum cardinality or all

requirements (testing sets) are marked.

We take the example in Table 3.2 to describe the procedure of the HGS algorithm

first. Requirements r2 is the only singleton testing set. Therefore, test case t5 is

selected and added into RS, requirements r1 and r2 are marked since they are covered

by t5 . Then, we study unmarked requirements with cardinality two r4 , r5 , r6 . Test

case t3 and t4 appears once in these requirements, test case t1 and t6 occurs two times

of these requirements. Now there is a tie between t1 and t6 with highest occurrence,

we continue check t1 and t6 in unmarked requirements with cardinality three, and

then r3 and r7 are checked next. At this time, we only compute the occurrence of the

tied test cases t1 and t6 in r3 and r7 . The test case t1 appears in r3 while test case t6

has zero appearance in both r3 and r7 . So that test case t1 is selected and put into

RS. Requirements r3 , r5 and r6 are marked which covered by test case t1 . Continue

the processing step with unmarked requirement r4 which only has cardinality two.

Now test case t3 and t6 is tie that makes us to continue check their occurrence in

unmarked requirements with cardinality three. We found that test case t3 is occurred

in r7 , thus test case t3 is selected and put into RS, and then remaining requirements

r4 , r7 , and r8 are all marked. Thus the minimized representative sets generated by

HGS algorithm for this example is r5 , r1 , r3 .

3.2.2 Our Most Constrained Variable Algorithm

Now we describe our Most Constrained Variable Algorithm (MCV) of test reduction.

It may be useful to select the specific test case first which has most constrained feature

17

Requirements
Test Case r1 r2 r3 r4 r5 r6 r7 r8
t1 X X X X
t2 X X
t3 X X X X
t4 X X
t5 X X X
t6 X X
t7 X X

Table 3.2: Requirements criterion coverage information for test cases in T

in the reduced test suites so that we will generate minimized reducted set while still

hold same coverage as the entire test suites, optimistically hold default detection

effectiveness of test suites.

The main algorithm is described in Figure 3.1

Consider the example in Table 3.2, the test suite TS consists of test cases, ti , the

test requirements, REQl or rl , and the associated testing sets, Tl. The heuristic first

computes value OCCURi of each test case ti : (t1, 4), (t2, 2), (t3 , 4), (t4 , 3), (t5 ,2),

(t6 ,2), (t7 ,2); set of RELATEi: (t1,(1,3,5,6)), (t2,(3,8)), (t3 ,(3,4,7,8)), (t4 ,(5,7,8)),

(t5 ,(1,2)), (t6 ,(4,6)), (t7 ,(7,8)).

Test case t1 and t3 both has max value of OCCURi, randomly choose t1 first and

add it to the representative sets. Then mark REQ1, REQ3, REQ5, REQ6, reduce the

value of OCCURi respectively: (t2, 2) to (t2, 1) , value of RELATEi: (t2,(3,8)) to

(t2,(8)) because of the REQ3 is covered. Same adjustment have done to other test

cases,

now we have: OCCURi (t1,0), (t2, 1), (t3 , 3), (t4 , 2), (t5 ,1), (t6 ,1), (t7 ,2);

and RELATEi: (t1,()), (t2,(8)), (t3 ,(4,7,8)), (t4 ,(7,8)), (t5 ,(2)), (t6 ,(4)), (t7

,(7,8)).

18

Algorithm ReduceConstrainVariable

1. Initial Step:

a) Read input data;

b) RS = { };
c) Unmark all requirements;

d) ReqSize = size of all requirements;

e) TestcaseSize = size of all test case;

f) For each requirement do:

i. testcase.frequency++;
ii. add requirement to test case covered set;

g) endfor

2. Second Step:

a) Compute frequency of each test case;

b) Record related test case property ri to test case;

c) Build binary heap based on frequency, root node has maximum frequency;

3. Third Step:

a) Next TestCase = SelectedTC;

b) RS = RS ∪ { SelectedTC };
c) Update frequency of test case related the requirement which covered by select-

edTC;

d) Mark the requirements which covered by selectedTC;

e) Remove selectedTC from binary heap;

f) Maintain binary heap;

4. Loop Step:

a) While binary heap size > 0 or frequency of selected test case = 0 do

i. Third Step;

b) endWhile;

Function selectedTC

1. While heap size > 0 do

2. maxNode = rootNode;

3. Switch rootNode and last node;

4. Size of binary heap reduce 1;

5. Maintain binary heap;

6. Return maxNode;

Figure 3.1: Algorithm for test suite reduction with constrained variables

19

Repeat step 2, pick up test case t3 to representative set. After modification we

have:

OCCURi (t1,0), (t2, 0), (t3 , 0), (t4 , 0), (t5 ,1), (t6 ,0), (t7 ,0)

and RELATEi: (t1,()), (t2,()), (t3 ,()), (t4 ,()), (t5 ,(2)), (t6 ,()), (t7 ,()).

Finally we pick up test case t5 and get the representative sets (t1,t3 ,t5).

3.2.3 Combination with HGS and Global Frequency

During the experiements of these HGS and MCV two techniques, it gives us another

idea of implementing HGS approach with global frequency of test case instead of the

frequency of test case in the smallest testing set with same cardinality. HGS algorithm

is always looking for the selected test case with higest occurence from lower testing

sets with same cardinality, it shows the importance of the test case in these handled

testing sets. MCV algorithm is likely to persue the test case with highest frequency in

the unmarked test suites, no matter it sitts in the testing sets with small cardinality

or enmours cardinality.

Now we combine these two properties of HGS and MCV, and developed the third

algorithm which illustrated in Figure 3.2

3.3 Experimental Results of Test Suites

Reduction

3.3.1 Virtual Input Data

In order to better illustrate the performance of our algorithm, we provide several

versions of our virtual input data described in table 3.3. We adopt the fixed number

20

Algorithm ReduceConstrainVariable

1. Initial Step:

a) Read input data;

b) RS = { };
c) Unmark all requirements;

d) TestcaseSize = size of all test case;

e) For each requirement do:

i. testcase.frequency++;
ii. add requirement to test case covered set;

f) endfor

2. Second Step:

a) Compute frequency of each test case;

b) Record related test case property ri to test case;

c) Build binary heap based on frequency, root node has maximum frequency;

3. Third Step:

a) Next TestCase = SelectedTC;

b) RS = RS ∪ { SelectedTC };
c) Mark the requirements which covered by selectedTC;

d) Remove selectedTC from binary heap;

e) Not update frequency of test case related the requirement which covered by
selectedTC;

f) Maintain binary heap;

4. Loop Step:

a) While binary heap size > 0 or frequency of selected test case = 0 do

i. Third Step;

b) endWhile;

Function selectedTC

1. While heap size > 0 do

2. maxNode = rootNode;

3. Find rest node which has same cardinality with the rootNode;

4. Check frequency of test case in these sets; /*not need next search*/

5. tempTC = test case with highest frequency;

6. Size of binary heap redue 1;

7. Maintain binary heap;

8. Return tempTC;

Figure 3.2: Algorithm for test suite reduction with HGS and Global Frequency

21

Input Data Max size of test case Max frequency
set per requirement per test case

1 5
2 10
3 (Max test case size 15
4 / Reqsize) * 4 20
5 25

Table 3.3: Test case input data argument setting

for the max size of testing set per requirement, and selected five groups of data of

max frequency per test case.

For each category we construct three groups of input data organization of the size

of requirements and test case: (1) requirements size from 25 to 5000 and test case size

5000, (2) requirements size 500 and test case size from 1000 to 9000, (3) requirements

size 1000 and test case size from 1000 to 9000.

3.3.2 Experimental results and analysis

For giving the distinction between the based algorithms used by Mary Jean Harrold

et al. for test suite minimization, our algorithm with constrained variables, and

another technique with combination of based Mary Jean Harrold algorithm and global

frequency, we respectively refer them as HGS algorithm, MCV algorithm, and HGF

algorithm.

We implement these three algorithms in C programming. We conduct the follow-

ing experiment using the five categories based on max frequency per test case includes

5, 10, 15, 20, 25. We fixed another important parameter max size of testing set per

requirements to four times of the ratio of test case size in test suite to requirement

size. The results of our experiment with the above arguments are respectively shown

from table 3.4 to table 3.6, the columns shown in these tables labeled Requirements

22

Input Data HGS MCV HGF
Index Requirements TeseCase Time Size Time Size Time Size

1 500 1000 0.024 191 0.002 172 0.023 191
2 500 2000 0.033 192 0.004 150 0.029 195
3 500 3000 0.049 187 0.007 140 0.040 188
4 500 5000 0.074 188 0.011 135 0.049 200
5 500 6000 0.096 185 0.015 129 0.054 192
6 500 7000 0.112 182 0.016 128 0.051 187
7 500 8000 0.117 179 0.018 130 0.068 192
8 500 9000 0.151 181 0.021 124 0.082 203

Table 3.4: Experiment results based on TestCase size, Max Frequency 5

(size of requirements of input data), Testcase (size of test case of input data), HGS

(Mary Jean Harrold et al. algorithm), MCV (our approach with most constrained

variables), HGF (combination of HGS and global frequency).

Before our experiment, we suppose that our approach MCV algorithm will have

the more minimal representative set that HGS algorithm according to our algorithm

implementation for choosing the most important test case first than the others, and

it may have less efficient running time than HGS algorithm.

3.3.2.1 Experiment 1 focus on Test Case Size

In the first category of our experiments, we let Requirement Size and Max Frequency

stable, to show the size of representative sets and running time based on the TestCase

size changing.

The values reported in the table 3.4 are the running time of the algorithm, and the

size of representative sets computed. For comparison with the above two techniques,

the original HGS algorithm is also implemented with respect to their requirements

criteron coverage. These results are shown for the TestCase Size range 1000-9000

while Requirement size 500 and Max Frequency 5 in table 3.4.

From the Figure 3.3 it shows that the size of minimal set generated by MCV

23

Figure 3.3: Running Time and Minimal Set according to TestCase size changing

algorithm is always smaller than the size of minimal set generated by either HGS

algorithm or HGF algorithm at any extent of testcase size in our selected experiments

results. The HGF approach gives us a little smaller size of minimal set than HGF

algorithm. For the running time, MCV algorithm still presents the better perfromance

than other two techniques, and HGF algorithm runns faster than HGS algorithm.

3.3.2.2 Experiment 2 focus on Requirement Size

In the follow category of our experiments, we let TestCase Size and Max Frequency

stable to show the results of the size of representative sets and running time based

on the Requirements Size changing.

24

Input Data HGS MCV HGF
Index Requirements TeseCase Time Size Time Size Time Size

1 25 5000 0.034 6 0.016 3 0.014 3
2 50 5000 0.020 7 0.016 5 0.012 3
3 100 5000 0.028 17 0.016 10 0.013 3
4 200 5000 0.029 30 0.016 20 0.015 3
5 400 5000 0.048 58 0.016 42 0.017 3
6 1000 5000 0.113 157 0.015 115 0.039 3
7 2000 5000 0.248 356 0.015 287 0.104 3
8 4000 5000 0.697 801 0.015 752 0.298 3

Table 3.5: Experiment results based on Requirement size, Max Frequency 20

The values reported in the table 3.5 are the running time of the algorithm, and

the size of representative sets computed. These results are shown for the Requirement

Size range 25-4000 while TestCase size 5000 and Max Frequency 20 in table 3.5.

The Figure 3.4 illustrates that the difference of size of minimal set between these

three implementations are slightly small when the max frequency of test case reaches

20. And we still yield the smallest size of minimal set among these three techniques.

On the other size, neither HGS algorithm nor HGF algorithm attempt to achieve

more quick running time than our approach—MCV algorithm.

3.3.2.3 Experiment 3 focus on Max Frequency

In the third category of our experiments, we let TestCase Size and Requirement Size

stable to show the results of the size of representative sets and running time based

on the Max Frequency changing.

The values reported in the table 3.6 are the running time of the algorithm, and the

size of representative sets computed. These results are shown for the Max Frequency

range 5-25 while TestCase size 5000 and Requirement size 20 in table 3.6.

Surprisingly note from the Figure 3.5 that when the max frequency reaches half

of test suies size(exceedingly rare), the size of minimal set generated by HGF algo-

25

Figure 3.4: Running Time and Minimal Set according to Requirement size changing

Input Data HGS MCV HGF
Index TestCase MaxFreq Time Size Time Size Time Size

1 5000 5 0.061 146 0.013 102 0.034 158
2 5000 10 0.077 87 0.012 63 0.033 104
3 5000 15 0.092 78 0.013 50 0.024 69
4 5000 20 0.048 58 0.016 42 0.017 58
5 5000 25 0.036 50 0.013 37 0.021 53
6 5000 1/3 TcSize 0.019 27 0.012 21 0.011 27
7 5000 1/2 TcSize 0.019 32 0.012 20 0.017 12

Table 3.6: Experiment results based on Max Frequency 5, Requirements size 400

26

Figure 3.5: Running Time and Minimal Set according to Max Frequency changing

rithm is smaller than MCV algorithm while MCV approach retain gets smaller size

of minimal set at other extents. The running time tells us that the approach of MCV

algorithm is better than HGS and HGF algorithm.

Now we observe from table 3.4 to table 3.6 that the final size of representative set

of test suites minimization with constrained variables generated by MCV algorithm

was always smaller than HGSs representative set, these results are expected, at mean

while its efficiency of running time is much better than HGSs algorithm. Neither

HGS algorithm nor HGF algorithm can reach smaller representative set. However,

the efficiency and final representative set from HGS and HGF are not determined

which one is better than the other.

27

Chapter 4

Granularity of Test Requirements

4.1 Related Research

Test suite reduction uses test requirement to determine if the reduced set maintains

the original suite’s requirement coverage. Based on observations from our previous

experimental researchs on test suite reduction discussed in Chapter 3, we suppose

there is a need for customized test requirements for fault detection of software. In

this section, we examine granularity-based customized test requirements for the fault

detection problem. We conduct an extensive experimental study to evaluate the effec-

tiveness between different depth control of test requirement with respect to reduced

set size, requirement size, and correct ratio comparision with original test suite.

Each test case generated automatically always comes with a set of test require-

ments, so that when the test case is used in software testing, we know that what

features of a system have been tested. Test requirements of test case from grammar-

based generation often have very complicated structure to describe the lefty-subtree

of the test case.

Test requirement granularity reflects the way that part property of test require-

28

ments are taken from it, and are grouped into a new test requirements set. Our

objective is to detect the fault of software through test requirements generated along

with test case. To do this, we try to obtain test requirement of varying granularities,

in a manner that extraction from test requirement with complicated structure might

help us to find the fault of software. Our approach is to construct new test require-

ments of varying granularities by requirement depth. Requirement depth is the flag

that determines how far away from the start variable to the stop position for a target

test requirement.

For example, if we have a test case t

320/567 ∗ (98) + 574

with a set of test requirement Rs {E1E0F1F2F0T0, T0, T1, E0F0T0, F0T0 }. We

try to use requirement depth to build new test requirement instead of itself. Take re-

quirement E1E0F1F2F0T0 as example, we have a new requirement based on different

granularity as shown in 4.1

Depth Requirement
1 E1
2 E1E0
3 E1E0F1
4 E1E0F1F2
5 E1E0F1F2F0
6 E1E0F1F2F0T0

Table 4.1: Substring as Requirement

29

4.2 Algorithm of Our Implementation

Our goal of is to build new test requirements of varying granularities by exploring

different depth. Take test requirement Rs {E1E0F1F2F0T0, T0, T1, E0F0T0, F0T0

} as example, if we choose 1 as requirement depth, then substring of E1E0F1F2F0T0

on depth 1 is E1, substring of E0F0T0 is E0, and substring of F0T0 is F0. So we

can get NRs {E1, T0, T1, E0, F0 } for next step. If we choose requirement depth as

2, then the NRs will be {E1E0, T0, T1, E0F0, F0T0 }, here any requirement whose

string length less than (requirement depth) * 2 will be kept in NRs. And so on

for requirement depth 3 until highest level.Full description is shown in Figure 4.1

Algorithm for Granularity of Test Requirement

1. First Step:

a) Input data: test requirement set Rs, depth d

b) Output: new test requirement set NRs = { };

2. Second Step:

a) For each test requirement r in Rs do:

b) If (length of r) <= (d * 2)

i. If r not in NRs, put r into NRs;
ii. else skip;
iii. Endif;

c) break;

d) Endif

e) Get d depth substring nr from r;

i. If nr not in NRs, put nr into NRs;
ii. else skip;
iii. Endif;

f) Endfor;

Figure 4.1: Algorithm for Granularity of Test Requirement

30

4.3 Experimental Results

Depth Reduced Set Requirement
1 1 8
2 3 19
3 9 46
4 31 110
5 96 238
6 189 393
7 265 499

none 299 543

Table 4.2: Size of Test Cases and Requirement for each depth

We take test suite (500 test cases) as the input data; extract substring of each

test requirement, through depth 1 to 7. None depth level means that we keep whole

string itself as test requirement. For each depth extraction we now have different size

of test cases and test requirements after test reduction as shown in Figure 4.2. For

depth 1, it has 8 requirements which describe 8 basic production rules in symbolic

context-free grammar 2 shown in Figure 6.1. We only need 1 test case in reduced

set which covers all these 8 test requirements. While we choose more deep depth to

control new test requirements generation, it gives us more and more test requirements

to describe the feature of test case. At meantime, the size of reduced set is rising. If

we do not control the depth of requirements, we may get total 543 test requirements

of 299 test cases in reduced set from original test suites with 500 test cases.

Then we feed these 8 groups, reduced set of test cases, into 13 Java program to

evaluate the mathmatics results shown in Figure 4.3. The left column is the index of

13 programs under test. The second column shows the correct ratio by feeding total

500 test cases. The right most column gives us the correct ratio by using none depth

control to reduce test suite. The rest columns describe the correct ration while using

31

Program Test Suite Depth Depth Depth Depth Depth Depth Depth Depth
Index 500 1 2 3 4 5 6 7 none

1 10.80% 0% 33.33% 2.11% 3.18% 3.10% 1.58% 2.32% 3.34%
2 78.00% 0% 33.33% 66.67% 77.42% 70.83% 76.19% 78.87% 77.10%
3 78.00% 0% 33.33% 66.67% 77.42% 70.83% 76.19% 78.87% 77.10%
4 100.00% 100% 100% 100% 100% 100% 100% 100% 100%
5 1.80% 0% 0% 0% 2.23% 2.08% 1.53% 2.51% 1.67%
6 4.40% 0% 33.33% 0% 0.45% 0.25% 0.41% 0.67% 1.00%
7 100.00% 100% 100% 100% 100% 100% 100% 100% 100.00%
8 8.80% 0% 33.33% 0% 5.68% 4.33% 4.47% 3.25% 3.34%
9 5.40% 0% 33.33% 0% 1.77% 2.38% 1.81% 1.95% 2.01%
10 100.00% 100% 100% 100% 100% 100% 100% 100% 100.00%
11 57.00% 100% 66.67% 66.67% 41.61% 45.21% 46.08% 46.98% 48.83%
12 1.20% 0% 33.33% 0% 1.45% 1.29% 1.49% 1.66% 0.33%
13 10.60% 0% 33.33% 4.11% 4.90% 4.46% 4.64% 4.32% 4.68%

Table 4.3: Ratio of Correctness on Depth Change

reduced set based on different depth control of test requirement. Here we select depth

control from depth 1 to depth 7.

For depth 1 and 2, the correct ratio may have significant difference to the original

test suite .It is suggesting that building new test requirement in depth 1 or 2 make no

sense, it will not help us anymore to detect the fault of software. Generally, correct

ratio of reduced set is supposed littler lower than correct ratio of original test suite.

However, for program 5, the correct ratio on depth 4, 5, 7, and none depth control

is higher than original test suite. Same situation also happens on program 12 for

granularity depth control 4, 5, 6, 7. And for program 2 and 3, this phenomenon

only happened on depth 7. This is because the new test requirement we extract from

original one based on granularity control may be cannot describe enough property of

that test case.

Based on our experimental results, we observe that correct ratio is generally arise

while the depth of requirement increase. More higher the granularity depth is, more

closer the correct ratio are to the original test suite. In this case, in next step fault

detection part, we directly use the whole requirement without any depth control to

identify the fault of software.

32

Chapter 5

Automatical Fault Detection in

Failed Test Cases

5.1 Automated Fault Detection Approach

Usually, test requirements are commonly used for test case minimization, prioriti-

zation etc. Compare to the test requirements from model-based generation, these

structured test requirements from grammar-based generation can even more effective

and critical to automatically detect the fault of software over the functionality of test

case reduction.

Now we feed the reduced test case set as the input to the software under test and

evaluate all of reduced test case set. Each failed test case ft which does not have

the expected results has an associated set of structured test requirements rs. Each

test requirement r in rs which describes a sub-structure of this test case t can be

instantiated to a new test case nt by an on-demand test case generator. The on-

demand generator can produce a just-enough instant test case nt corresponding to

the test requirement r, using standard derivation.

33

For example, the test requirement r E2E1E2E0 from rs of expression as shown in

Figure 2.1 , which describes the leftmost derivation sub-tree starting from a variable

E, followed by choice of production rules E2, E1, E2, and E0 in a sequential order.

The procedure of derivation of test requirement r E2E1E2E0 is shown as in Figure

5.1

E
E2

=⇒ E − [N]
E1

=⇒ E + E − [N]
E2

=⇒ E − [N] + E − [N]
E0

=⇒ [N]− [N] + E − [N]

Figure 5.1: Derivation of On-Demand Generator

With the string [N] - [N] + E - [N] derived from test requirement r E2E1E2E0 ,

our on-demand generator gives us an instant test case nt through substituting every

[N] with an instance number from the domain we defined in Figure 1.1, and replacing

E with a default base case (an instance of [N]).

Since test requirement r E2E1E2E0 comes from failed test case ft, so that the

back-produced test case nt can be also fed into the software under test to determine

whether the associated test requirement r E2E1E2E0 commits a fault to the failure

of the failed test case ft. The foundation of our automatic fault detection approach

is based on such an important observation to achieve our final goal.

5.2 Finest-Grained Faults Isolation

Although we get the test requirement from the above analysis to determine that

this test requirement would be one of the faults of software under test, but this test

requirement often too complicate due to the long structure of lefty-sub-tree from

34

derivation from failed test case ft. Can we locate the finer-grained structure of failed

test requirement r to identify more precisely issue of the software? The answer is yes.

Assume we have a software under test (SUT): S and a set of generated test cases

Ts = {t1, · · · , tn} where each element t of Ts is one test case. We describe a testing

procedure which returns a Boolean value indicating whether S runs correctly given

the test case t as T (t) . For simplicity, we hide a parameter S from the T procedure

and other following procedures as well, assuming S as a constant global variable. We

say t is a succeeded test case of S, if T (t) returns true; otherwise t is a failed test case

of S if false is returned.

For the set of generated test cases Ts = {t1, · · · , tn} and each test case ti, where

1 ≤ i ≤ n, we use Rs(ti) = {ri1, · · · , rim} to denote its associated set of test require-

ments. Each test requirement r can be instantiate to a new test case nt(r) of test

requirement r generated by the on-demand test generator. In this circumstances, for

each test case ti, we can define a set of faulty test requirements FRS(ti), where each

requirement r ∈ FRS(ti) has a failed instant test case, nt(r), with respect to the

software under test, as follows:

FRS(ti) = {r ∈ Rs(ti) | T (nt(r)) = false}.

FRS(t) is empty for a successful test case t, whereas for a failed test case t, FRS(t)

may not be null, representing a set of faults. We further extend the definition of FRS

on a given set of test cases Ts,

FRS(Ts) =
⋃
t∈Ts

FRS(t).

Note that if a test requirement r contributes a fault to the failure of software

35

testing, we expect T (nt(r)) to be false for any instant test case of r. Practically, the

fact may too far from our imagination when some instant test cases could accidently

produce expect results. Meanwhile, even for a failed test case t, its set of faulty test

requirements RFS(t) may still be empty. This scenario possibly happens because

of that test requirements only represent sub-structures (e.g., lefty subtrees) of input

data, which may not be plentiful enough to represent some more complicated faults

of S . In this special condition, a failed test itself ft can be treated as a fine-grained

fault of S.

The faulty test requirements FRS(Ts) itself is a set of detected faults; and the

structures of faulty test requirements can help us to identify the causes of software

failure. However, since the depth of left tree could be unbounded, and a test require-

ment r with a lefty-tree structure, may still be not too short to identify the exact

causes of software failure. On the other side, FRS(Ts) may still include too many

sub test requirements with various lengths, which is not helpful for us to determine

the precise causes of software failure.

To solve this problem, for each r ∈ FRS(Ts), we use an another independent

function, I(r), undertaking to find a set of finest-grained faults. Describe the test

requirement r be in a form of I1I2 · · · Ik, where k ≥ 1; we first define an isolation

function with a grain size d, I(r, d), where 1 ≤ d ≤ k, illustrated in Figure 5.2:

I(r, 1) = { Ii | 1 ≤ i ≤ k and T (nt(Ii)) = false }
I(r, 2) = { IiIi+1 | 1 ≤ i ≤ k − 1

and T (nt(IiIi+1)) = false }
...

I(r, k) = { I1I2 · · · Ik }

Figure 5.2: Finest-Grained Function

For a faulty test requirement r, every I(r, d) describes a set of fine-grained faults of

36

software under test S, in the form of r’s substrings of length d, each of which has a

failed instant test case. Now we can define the finest-grained faults with respect to r

I(r) = I(r,m),

where m is the smallest number between 1 and k such that I(r,m) 6= ∅. In another

word, no finer-grained faults I(r, l), where 1 ≤ l < m, can be found.

Therefore, given a set of generated test cases Ts, we have its finest-grained faults

F(Ts) defined as follows:

F(Ts) =
⋃

r∈FRS(Ts)

I(r).

It is suggesting that for each faulty test requirement r, we could find its cor-

responding finest-grained faults I(r) in first step; then the finest-grained faults of

Ts is basically an accumulated set of those finest-grained faults for each faulty test

requirement r ∈ FRS(Ts).

5.3 An Motivation Example

Back to the software under test SUT, S, whose input data is in the form of an

infix arithmetic expression, then transform the infix string of expression to postfix

string, and evaluates the arithmetic calculation results. Assume we have a typi-

cal java program S which mistakenly handles arithmetic operators (− and +) in a

right-associative implementation instead of left-associative approach. The inputs of

arithmetic expression are generated by grammar-based test generation with a given

grammar in Example shown in Figure 1.1. Suppose we have a test case t.

568 + 253− 863 + 303− 942− 138

37

Obviously from the comparison of arithmetic results comparison, t is a failed test

case ft of S because of the fact T (t) = false, due to its execution method of right-

associativity. At the meantime, we have its associated set of test requirements as

Rs(t) = {E2E1E0, E2E1E2E0, E0}

Through our on-demand test case generator, we can generate each one test case

per test requirements r belongs to Rs(t) as shown in Figure 5.3

nt(E2E1E0) = ”765 + 243− 839”

nt(E2E1E2E0) = ”192− 98 + 765− 752”

nt(E0) = ”258”

Figure 5.3: New Test Generation from On-demand Generator

The represented back-produced instant test cases from our on-demand generator

can be also treated as input data into S to identify whether each associated test

requirement r contributes to the failure of T (t) in this failed test case ft. Since we

know that, in advance, its mistakenly implementation of right-associativity instead of

left-associativity, we retrieve the set of faulty test requirements of t from failed test

case nt as follows:

FRS(t) = {E2E1E0, E2E1E2E0}

For each test requirement r ∈ FRS(Ts), we need to execute the isolation function

I(r) with different size of grain level. Take the test requirement r E2E1E2E0 as an

example, we have

I(E2E1E2E0, 1) = {}

The empty set of fine-grained faults of test requirement E2E1E2E0 on level 1, based

38

on the reason of that I(nt(I)) = true for each I ∈ {E2, E1, E0}. For level 2 of the

its set fine-grained faults, we have

I(E2E1E2E0, 2) = {E1E2}

results set because of that on-demand generated new test case nt(E1E2) and nt(E2E1),

respectively, generate instant test cases in form of [N]− [N]+[N] and [N]+[N]− [N],

where right associativity only affects the calculation result of the former one. Simi-

larly we have the fine-grained faults set on level 3 and 4 as

I(E2E1E2E0, 3) = {E2E1E2, E1E2E0}

I(E2E1E2E0, 4) = {E2E1E2E0}

If we take a further look at the fine-grained faults at different level, we can see that

all the faults found in the 3-rd level I(E2E1E2E0, 3) and 4-th level I(E2E1E2E0, 4)

are actually caused by the finer-grained faults E1E2, where the instant new test case

nt is in form of [N] − [N] + [N]. Therefore, in our practical implementation, the

identificaions of the fine-grained fault of 3-rd level I(E2E1E2E0, 3) and 4-th level

I(E2E1E2E0, 4) can be eliminated from our total fine-grained fault set. In another

word, if we find a fine-grained fault at n-th level of test requirement r, then we can

skip the (n+1)-th level until the highest level seeking.

Finally, we get our finest-grained faults from test requirements r E2E1E2E0 :

F(E2E1E2E0) = {E1E2}

39

5.4 Algorithm of Fault Detection via

Grammar-Based Test Generation

In a summary of above analysis, now we propose our novel automatic fault detection

algorithm via grammar-based test generation in detailed pseudo code as show in

Algorithm 1 and Algorithm 2.

5.4.1 Automated Fault Detection Algorithm

In our creative approach, we define a main function faultDetector(Ts,Rmap) illus-

trated in Algorithm 1, let Ts be a set of test cases from grammar-based test generation

and Rmap is a mapping function from a failed test case ft to a set of test requirements

Rs, which returns a set of detected finest-grained faults as F . The local variable F ,

start from an empty set (line 4), is applied to act in place of a set of finer faults found

in the main function faultDetector(Ts,Rmap) , which is keeping updated at runtime

of analysis procedure (line 13). For each test case t ∈ Ts, if it is a failed test case

ft (line 6, where ¬ is a logical operator of negation), we find faulty test requirements

ftr (lines 8-11) of each test requirement r, followed by using an on-demand generator

to instantiate each ftr to a new instance test case instancent , followed by observing

whether r contributes more finer faults or even finest fault to the result set F (lines

13-14, where finestGrainedFaults(r, F) is defined in Algorithm 2). For a failed test

case ft, if we can not to locate any finer faults other than ft, then the failed test case

ft itself will have none contribution to the fault of software and be printed out.

40

Algorithm 1 Automated Fault Detection Algorithm

1: [Input] Ts: a set of test cases; Rmap: a map function from a given test case to
a set of test requirements

2: [Output] a set of finest-grained faults of Ts
3: function faultDetector(Ts, Rmap)
4: F ← ∅ . an initial empty set of faults
5: for all t ∈ Ts do
6: if ¬T (t) then . a failed test case
7: faultFoundF lag ← false
8: for all r ∈ Rmap(t) do
9: instantnt ← nt(r) . an instant test case
10: . nt is an on-demand test case generator
11: if ¬T (instantnt) then
12: . r is a test requirement from failed test case ft
13: F ← finestGrainedFaults(r, F)
14: faultFoundF lag ← true
15: end if
16: end for
17: if ¬faultFoundF lag then
18: print t . no faulty test requirements of t
19: end if
20: end if
21: end for
22: return F
23: end function

5.4.2 Finest-Grained Faults Isolation Algorithm

Algorithm 2 defines a function finestGrainedFaults, which takes inputs r, a faulty

test requirement, and F , a set of found finer faults, checks whether r contributes

more finer faults into F , and incrementally update F as a return set. For each grain

size i from 1 to |r|, where |r| denotes the length or r, the algorithm searchs until a

non-empty set of faults of r is found (lines 5-22), otherwise if no finer faults of r can

be found, r itself will be added into F (lines 23-26). To search for the finest-grained

faults, we introduce a variable i to control the grain size from 1 to the length of the

test requirement r (line 7); once a non-empty set of finer faults of r is found, the

41

indicator, finerFaultFound, will be set true. Predicate substr(s,r) is used to check

whether s is a substring of r. For each substring s of r with the current grain size, we

first check whether s is already in F or there is a finer-grained fault of s already in F

(line 9). If either case holds, we skip processing s since finer-grained faults of s have

already been recorded in F ; otherwise if there is no finer-grained fault of s already

found, we produce an instant test case instanttc by using our on-demand test case

generator (line 13), followed by feeding instanttc to the SUT for testing. If instanttc

is a failed test case (line 14), we update F by first removing any found faults which

are coarser-grained than instanttc, then adding instantc into the fault set F (lines

15-16, similarly in lines 24-25).

One main advantage of maintaining a set of found faults, F , is that no fault,

as well as its coarser-grained ones, will be processed twice. This is consistent to

the strategy of dynamical programming, and makes our algorithm efficient. For our

on-demand test case generator tc, we assume that every generated instant test case

tc(r), given a same input r, has the same testing behaviors, either T (tc(r)) = true

or T (tc(r)) = false for any tc(r). However, practically we can only claim that r is a

fault if T (tc(r)) is false for some instant test cases; whereas if T (tc(r)) is true, we

are unable to affirm that r is not a fault. For this reason, we only maintain a set of

found faults F ; and for those r’s whose T (tc(r)) has been true before, they may have

chances to generate new instant test cases to be tested again on the SUT.

The running time complexity of our fault detection algorithm is O(N ∗ Lr ∗ Ltc),

where N is the size of (failed) test cases, and Lr and Ltc are the maximal lengths of

a test requirement and a test case, respectively. We disregard the complexity of the

procedure of T for testing the SUT, by simply assuming its time complexity O(1).

The time complexity of function finestGrainedFault, in Algorithm 2, is O(L2
r) due to

the fact that there are L2
r number of different grain-sized substrings to consider in the

42

worst scenario, given a test case r. The main procedure faultDetector, in Algorithm

1, calls the function finestGrainedFault at most N ∗K times, where K is the size of

a set of (faulty) test requirements. For a test case tc, its length Ltc roughly equals to

K ∗ Lr since Lr represents the length of a test requirement.

Algorithm 2 Finest-Grained Faults Isolation Algorithm

1: [Input] r: a faulty test requirement; F : a set of found faults
2: [Output] an updated set of faults
3: function finestGrainedFaults(r, F)
4: len← |r| . |r| returns the length of r
5: i← 1
6: finerFaultFound← false
7: while ¬finerFaultFound and i < len do
8: for all s s.t. substr(s, r) and |s| is i do
9: if ∃w ∈ F s.t. substr(w, s) or s ∈ F then
10: . fault s or its finer fault already found
11: finerFaultFound← true
12: else
13: instanttc ← tc(s) . an instant test case
14: if ¬T (instanttc) then
15: F ← F − {w ∈ F | substr(s, w)}
16: F ← F ∪ {s} . a finer fault
17: finerFaultFound← true
18: end if
19: end if
20: end for
21: i← i + 1
22: end while
23: if ¬finerFaultFound then
24: F ← F − {w ∈ F | substr(r, w)}
25: F ← F ∪ {r}
26: end if
27: return F
28: end function

43

Chapter 6

Experimental Study

6.1 A Grading System

An automatic grading system for Java programs was provided, using grammar-based

test case generation as input data. The Java programming assignment from grading

system which takes an infix arithmetic expression as an input string, converts the

input infix string into a postfix expression by executing stack operation, and finally a

result is returned by calculating the postfix expression. Assuming we have a correct

program to evaluate the expected results for each generated expression, and compares

the result with the one return from each assignment.

Table 6.1 shows the grading results on 13 Java program submissions, where the

middle column is correctness ratios returned from grading system using grammar-

based test generation 500 test cases as input, in another word feeding 500 different

arithmetic expressions into java program. The right column is the grading results

on 50 test cases which designed manually. Although the results from Table 6.1 show

that the grammar-based grading system may provide significantly different correctness

ratios, but interestingly, it reduces tester the time and cost of constructing all test

44

Java Program Grammar-Based Generation Manual Generation
1 10.80% 60%
2 78.00% 52%
3 78.00% 52%
4 98.40% 100%
5 1.80% 0%
6 4.40% 0%
7 100.00% 76.00%
8 8.80% 0%
9 5.40% 0%
10 100.00% 100.00%
11 57.00% 62.00%
12 1.20% 0%
13 10.60% 0%

Table 6.1: Ration of Correctness Compare :Automatic and Manual

cases and no need to concerns the coverage and balance of test case generation.

6.2 Test Case Reduction

Test Suites Test Requirements Reduced Set Reduced Ratio
100 203 89 11.00%
200 327 149 25.50%
300 432 217 27.67%
400 505 251 37.25%
500 543 299 40.20%
1000 884 506 49.40%

Table 6.2: Test Suites Reduction Results

Table 6.2 shows that each group of test suites has reduced from the original test

suites range from 11.00% to 40.20% while not losing any test requirements covered

by original test suites. It is very useful to help software testers to save lots of time

and effort to evaluate the software without concerning any loss of test requirements

that the system should be covered.

45

Grammar-based test generation not only free testers from manually design test

cases, but also can help us to reduce the test case set with its associate set of test

requirements. We implemented a test case reduction algorithm based on the greedy

heuristic in [10].The minimization algorithm takes a set of 500 test cases with 543 test

case requirements, generated by grammar-based test generation, and yields a reduced

set of test cases of size 299.

Java Original Reduced
program Test Case Set Test Case Set

Assignments Size: 500 Size: 299
1 10.80% 3.34%
2 78.00% 77.10%
3 78.00% 77.10%
4 98.40% 97.99%
5 1.80% 1.67%
6 4.40% 1.00%
7 100.00% 100.00%
8 8.80% 3.34%
9 5.40% 2.01%
10 100.00% 100.00%
11 57.00% 48.83%
12 1.20% 0.33%
13 10.60% 4.68%

Table 6.3: Ratio of Correctness on a Reduced Set 500

Table 6.3 shows the grading results on both original set of 500 test cases and

its reduced set. Except the extreme cases, Programs 7 and 10, the rest correctness

ratios on the reduced set are consistently lower than those on the original set. This

observation is quite reasonable since a reduced set, produced by a greedy algorithm

with a heuristic strategy trying to pick up a test case covering as many test case

requirements as possible, usually selects longer expressions. Such a longer expression,

with more test requirements, becomes much easier to fail a testing since one buggy

requirement is enough to fail the test case. At the same time, the total size of test

46

cases has been reduced; therefore, the correctness ratio becomes relatively lower on

the reduced set.

Java Original Reduced
program Test Case Set Test Case Set

Assignments Size: 1000 Size: 506
1 14.00% 6.13%
2 77.90% 77.08%
3 77.90% 77.08%
4 97.50% 96.44%
5 0.60% 0.40%
6 5.30% 2.57%
7 100.00% 100.00%
8 8.80% 2.96%
9 7.10% 2.37%
10 100.00% 100.00%
11 51.80% 42.69%
12 1.30% 0.79%
13 10.80% 4.94%

Table 6.4: Ratio of Correctness on a Reduced Set 1000

Table 6.4 shows the grading results on both original set of 1000 test cases and its

reduced set with 884 test case requirements. Except the extreme cases, Programs 7

and 10, same situation as with 543 test case requirements, the rest correctness ratios

on the on the original are consistently higher than those reduced set.

The experimental results in Table 6.4 also show consistent grading results, even

though slightly lower, between original test cases and their reduced set. It justifies

the effectiveness and usefulness of those associated test case requirements.

6.3 Fault Detection via Failed Test Cases

Our experiment uses grammar-based test generation to produce the test case suite

while each test case has an associate set of test requirements in the form of arithmetic

47

expression consists of different combination of arithmetic operator { +, -, *, /, () }

and integer numbers [N] from defined domain. The symbolic context-free grammar

of arithmetic expressions is described in Figure 6.1

E ::= F | E + F | E − F

F ::= T | F ∗ T | F / T

T ::= [N] | (E)

[N] ::= 1 .. 1000

Figure 6.1: Symbolic Context-free Grammar 2

The whole procedure from generate test case based on grammar approach to

identify the fault of software under test is briefly summarized as follow:

1. Field: data intensive, for example student homework grading

2. Grammar-based test case generation, each test case (math expression) is gener-

ated along with a set of requirements property of math expression, requirements

set is a set of left tree structure consists of the combination of operators

3. Test case reduction

a) Using requirements coverage as standard to minimize the test case

i. We use greedy approach to implement test case minimization, greedy

approach is heuristics, so that the representative sets of greedy mini-

mization is not optimal small, but approximately small

ii. Results show that the correct rate of the test case set after minimiza-

tion is close to the original correct rate but a little be lower

iii. The reason of the lower correct rate: greedy algorithm will always keep

the more complicated property rather than short property, and lead

to the wrong rate increase

48

iv. We assume we already have a correct program to generate the standard

answer of program

b) Evaluate these test cases(math expressions) after minimization, remove

those test cases which has correct math results, and keep the test cases

which have wrong results

4. Fault Detection idenfity the bugs of software under test

a) Build a new total requirement array (properties of each test case which

has wrong results, these test cases are already under minimization)

i. If it is a substring(include equal) of exist item, skip

ii. If exist item is a substring of it, replace exist item with it.

iii. Generate one Math expression based on each requirement, after eval-

uation in JAVA, remove those requirements which have right results,

keep the requirements which have wrong results.

iv. Now it is the subset requirements of total requirements array

b) For each requirement Ri in subset requirements

i. Analysis first level(single operator) of Ri, generate test cases

ii. Analysis second level (two operators) of Ri, generate test cases

iii. Until highest level(include whole requirement) of Ri, generate test caes

c) For each requirement Ri in subset requirements, evaluate the test cases

generated in Step 2

i. Traverse first level, if find error and this operator is not in FinalOuput

array, then put related operator in FinalOutput array, go through each

one in this level

ii. If find error in step 3.a, skip the rest level of this requirement

49

iii. If not find error in step 3.a, go to next level until highest level. In each

level, we should go through all the items in this level

d) FinalOuput array is our results

We take two groups of grammar-based test generation in size 500 and 1000 in our

experiment. For 1000 test cases group data, it has total 884 test requirements as

associate set of test cases. The size of reduced set of 1000 test cases is 506.

The experimental results in Table 6.5 are using another test suites with 500 test

cases along with 543 test requirements then reduced to 299 test cases which are fed

into our 13 java program. In spite of such large set of test requirements, and maybe

each test requirement could have a very long structure, we can still isolate the quite

specific with very short structure of finest-grained fault of software under test.

From Table 6.5 we can clearly observe the information for identifying the causes

of program failure. The set of finest-grained faults of program 1 and program 13

shows that these typical issues are related with handling arithmetic expressions to

explain that left-associativity of the task demand are not well processed, that lead

to the wrong computation of the expression results in those test cases have at least

two mathematic operators including ’ - ’ and ’ / ’ . And program 2 and 3 have same

problem that as long as the parentheses operator is part of the expression then it

will fail the program. For program 5 and program 12 almost fail all the test cases

that it is not working at all, even though a single number is fed to them. Program

6, 8 and 9 have similar execution behaviors which implement the program as right-

associativity instead of left-associativity and ignore the math operator precedence.

However, program 11 only has a specific fault patter as

[N] ∗ [N]/[N]

50

Test Suites Reduced Set Finest-Grained Causes of
Index Ratio Ratio Faults Failure

1 10.80% 3.34% {-+, //, /*, - -, */} right-associativity
2 78.00% 77.10% {(} parenthesis not prop-

erly handled
3 78.00% 77.10% {(} parenthesis not prop-

erly handled
4 100.00% 100.00% {} no fault found
5 1.80% 1.67% {+, -, /, (, *, [N]} not working at all
6 4.40% 1.00% {*+, //, /*, - -, *-,

*/, /+, /-}
right-associativity;
operator precedence
ignorance

7 100.00% 100.00% {} no fault found
8 8.80% 3.34% {-+, //, /*, *+, - -,

*-, */, /+, /-}
right-associativity;
operator precedence
ignorance

9 5.40% 2.01% {*+, //, /*, - -, *-,
*/, /+, /-}

right-associativity;
operator precedence
ignorance

10 100.00% 100.00% {} no fault found
11 57.00% 48.83% {*/} [N] ∗ [N]/[N]
12 1.20% 0.33% {+, -, /, (, *, [N]} not working at all
13 10.60% 4.68% {-+, //, /*, - -, */} right-associativity

Table 6.5: Finest-grained Faults and Interpretations

. Interestingly, although program 6, 8 and 9 have similar patterns of the issues,

but the program 8 has a little higher correct ration may not necessarily have the

smaller set of finest-grained faults than the other two programs, the reason is that in

our practical experiment, each pattern of fault only illustrates there is just a failed

instance of pattern.

However, our approach of automatic fault detection via grammar-based test gener-

ation may not always to locate the shortest structure of program faults. For instance,

we could design a long structure of defect pattern as given a pair of parentheses fol-

lowed by at least one ’ * ’ math operand and then followed by at least two ’ + ’ and

’ - ’ math operands, and put it into one correct program then the program returns a

51

wrong result. Our methods of fault detection, using a set of grammar-based gener-

ated test case, has the ability to find a set of fault patterns, as each pattern contains

’ (**+- ’, or ’ (**++- ’ etc. property illustrate the consistency to the designed fault.

52

Chapter 7

Related Work

7.1 Automatic Test Case Generation

Automatic test case generation is trying to find an input data that will be drive

execution of software under test (SUT) along a typical path in the control flow picture.

In recent years, automatic test case generation has turned into more essential part

of software testing, which frees the testers significant time and effort in software

development and maintenance.

W Krenn et al. [24] extend on the formalism of objected-oriented action systems

(OOAS) and describe a mapping of a selected UML-subset to OOAS by choosing

one of the several possible semantics of Unified Modeling Language (UML) Using

a model checker to generate test cases can be very straightforward in model-based

development, where we have an executable specification for the software that is in,

or is easily translate to, the language of a model checker.

PE. Ammann et al. [6] apply a model checker to the problem of test genera-

tion using a new application of mutation analysis, where the test case generation is

automatic and each counterexample is a complete test case, and equivalent mutant

53

identifications is also automatic in a sharp contrast to program-based mutation anal-

ysis. A Gargantini et al. [14] propose a specification-based method for constructing

a suite of test sequences, where a test sequence is a sequence of inputs and outputs

for testing a software implementation.

HS Hong et at. [19] present a theory of test coverage and generation from specifica-

tions written in extended finite state machines and describe a method for automatic

test generation which employs the capability of model checkers to construct coun-

terexamples. J Offutt et al. [30] take general criteria which include techniques for

generating tests at several levels of abstraction for specifications for generating test

inputs from stated-based specifications. L Tan et al. [34] consider the specification-

based testing in which the requirement is given in the linear temporal logic where its

property must be hold on all the executions of the system, which are often infinite in

size and length.

In our project, we take the test suites from the grammar-based test generation

as our automatic test case generator and feed these test cases where each test case

has an associate set of test requirements into the software under test to identify the

finest-grained fault of (SUT).

7.2 Automatic Fault Detection

Given a program and a failed test case which fails the software under test, fault

detection is seeking to identify the causes of failure including the location, type,

and possible fixes for the failure. Lots of researches in this field are falling into two

parts: statistical approaches to defect localization and experimental approaches rely

on analysis of execution traces.

54

7.2.1 Statistical Analysis Approach

JA Jones et al. [22] propose an interesting technique that uses visualization to assist

with locating the errors or faults of software. Their technique uses color to visually

map the participation of each program statement in the outcome of the execution of

the program with a test suite.

B Liblit et al. [25] present a low-overhead sampling infrastructure for gather-

ing information from the executions experienced by a programs user community.

Then statistical modeling based on logistic regression allows us to identify program

behaviors that are strongly correlated with failure. In [26] they design a statistical

debugging algorithm that isolates issues in programs containing multiple undiagnosed

bugs.

C Liu et al. [28] apply another statistical model-based approach to identify soft-

ware faults through modeling evaluation patterns of predicates in both correct and

incorrect test case running respectively and locates a predicate as fault-correlated. R

Abreu et al. [5] have a research on dynamic modeling approach to fault localization

which is based on logic reasoning over program traces.

As recent research has shown that software developers are not willing to go through

such long lists of unrelated potential fault locations while they may be only have very

little chances to reach the final fault of software.

7.2.2 Experimental Analysis Approach

A Zeller [37] discusses that delta debugging works the better the smaller the differences

are. The differences between the old and the new configuration can provide a good

starting point in finding the faults of software. In [38] he shows that how the delta

debugging algorithm how to isolate the relevant variables and values by systematically

55

narrowing the state difference between a passing run and a failing run which helps us

automatically reveal the cause-effect chain of the failure.

M Burger et al. [8] take failed test case into account that they record and minimize

the interaction between object to the set of calls relevant for the failure of software.

Our creative approach of automatic default detection complements these existing

experimental approach techniques by systematically narrowing down the test input

space to the simplest grammar instantiations which trigger the failure, it is suggesting

that we can tremendously reduce the traces to examine.

Our creative approach of automatic default detection complements these existing

experimental approach techniques by systematically narrowing down the test input

space to the simplest grammar instantiations which trigger the failure, it is suggesting

that we can tremendously reduce the traces to examine.

7.3 Code Coverage Test via Pex and Moles

It has been a tacit assumption that software test coverage criteria should use internal

information from either specification or program code. For example, code coverage

analysis [29] checks whether the system under test has been thoroughly reached at

all statements, all branches or even all execution paths.

We try this approach to apply typical white box analysis tool Pex to perform

systematic source code analysis, in a framework Moles which creates delegate-based

test stubs. Pex explores the procedures of a parameterized unit test using a technique

named dynamic symbolic execution.

Pex [35] is a testing tool that performs systematic code analysis, hunts for bound-

ary conditions and flags exceptions and assertion failures. Moles [11] is a framework

for creating delegate-based test stubs and detours in .NET Framework applications.

56

In general, all program analysis techniques are included the following two branches:

• Static analysis techniques: verify that a property holds on all execution paths

based on source code

• Dynamic analysis techniques: verify that a property holds on some execution

paths

It cannot detect bugs correctly when applying only static analysis or employing a

testing technique that is not aware of the structure of the source code.

Pex is a white box analysis tool which balance information about how one soft-

ware system is implemented on order to validate or falsify certain properties. Pex

implements white box test input generation technique that is based on the concept

of symbolic execution to achieve the final goal to automatically and systematically

produce the minimal set of actual parameters needed to execute a finite number of

finite paths.

However, applying symbolic execution to a real-world program is problematic

because of such a programs interaction with a stately environment cannot be forked.

Pex explores the procedures of a parameterized unit test using a technique named

dynamic symbolic execution which consists of the following steps:

1. Starting with very simple inputs

2. While performing a single-path symbolic execution to collect symbolic con-

straints on the inputs obtained from predicates in branch statements along the

execution

3. Using a constraint solver-Z3-to infer variants of the previous inputs in order to

steer future program executions along alternative program paths

57

Figure 7.1: C# Source Code from Java Program 2

Figure 7.2: Pex Running Result of Java Program 2

Now we change the JAVA code (take Pro 2 as example) to C# code as shown in

Figure 7.1 :

We use PexAllowedException to allow the null reference exception of list object.

After run Pex explorations, we will get two exceptions as shown in Figure 7.2:

This outputs show that the program will reach the Stack empty exception when-

ever the input is ’) ’ or consists of several ’) ’. And this results is consistent to the

fact that the program of student 2 has issues with ’ () ’.

58

Chapter 8

Conclusion and Future Work

we present a novel fault detection technique for structured input data which can be

represented by a grammar. This method can be applied in testing data-input-critical

software. We illustrate that test requirements coming from structured data can be

effectively used as coverage criteria to reduce the test suites. We then propose an

automatic fault detection approach to identify software bugs which have been shown

in failed test cases. Through our approach we can identify specific faults with very

short structure of finest-grained fault of software under test.

Furthermore, not all the patterns of fault could be detected by our approach. Fox

example, if we design a fault pattern as

[N] + [N] ∗ [N]

into a program, given a test case

t = 235 + 549 ∗ 176

our testing procedure is able to find that t is a failed test case, but the fault detection

59

part may not be able to identify the pattern of fault finer that t itself. The reason

of this situation is that our test requirements correspond to liner lefty derivation

subtrees; by using left-most derivation, the terminal symbol, ’ + ’ always terminates

the test requirement corresponding to ’ 235+ ’, and the second terminal symbol ’ *

’ corresponding to ’ 549* ’ will be represented in a second test requirement. Same

scenario is happened to the terminal symbol as parentheses.

Up to the present, our implementation of fault detection is applied to the arith-

metic evaluation system; in the future we will try to expand our approach to large

software system using structured data as input, such as compilers or translators.

We will also continue to explore alter strategies for producing test requirements and

compare their test coverage based on fault detection performance in our future.

60

Bibliography

[1] Coverity static analysis verification engine. http://www.coverity.com/

products/coverity-save.html.

[2] Find bugs in java programs. http://findbugs.sourceforge.net.

[3] Hp fortify static code analyzer. http://www.hpenterprisesecurity.

com/products/hp-fortify-software-security-center/

hp-fortify-static-code-analyzer/.

[4] Valgrind instrumentation framework. http://www.valgrind.org.

[5] R. Abreu, P. Zoeteweij, and A. J. van Gemund. An observation-based model for

fault localization. In Proceedings of the 2008 international workshop on dynamic

analysis: held in conjunction with the ACM SIGSOFT International Symposium

on Software Testing and Analysis (ISSTA 2008), pages 64–70. ACM, 2008.

[6] P. E. Ammann, P. E. Black, and W. Majurski. Using model checking to generate

tests from specifications. In Formal Engineering Methods, 1998. Proceedings.

Second International Conference on, pages 46–54. IEEE, 1998.

[7] B. Beizer. Software testing techniques. Dreamtech Press, 2002.

http://www.coverity.com/products/coverity-save.html
http://www.coverity.com/products/coverity-save.html
http://findbugs.sourceforge.net
http://www.hpenterprisesecurity.com/products/hp-fortify-software-security-center/hp-fortify-static-code-analyzer/
http://www.hpenterprisesecurity.com/products/hp-fortify-software-security-center/hp-fortify-static-code-analyzer/
http://www.hpenterprisesecurity.com/products/hp-fortify-software-security-center/hp-fortify-static-code-analyzer/
http://www.valgrind.org

61

[8] M. Burger and A. Zeller. Minimizing reproduction of software failures. In Pro-

ceedings of the 2011 International Symposium on Software Testing and Analysis,

pages 221–231. ACM, 2011.

[9] X. Cai and M. R. Lyu. The effect of code coverage on fault detection under differ-

ent testing profiles. In ACM SIGSOFT Software Engineering Notes, volume 30,

pages 1–7. ACM, 2005.

[10] V. Chvatal. A greedy heuristic for the set-covering problem. Mathematics of

operations research, 4(3):233–235, 1979.

[11] J. de Halleux and N. Tillmann. Moles: tool-assisted environment isolation with

closures. In Objects, Models, Components, Patterns, pages 253–270. Springer,

2010.

[12] G. Di Fatta, S. Leue, and E. Stegantova. Discriminative pattern mining in

software fault detection. In Proceedings of the 3rd international workshop on

Software quality assurance, pages 62–69. ACM, 2006.

[13] P. G. Frankl and E. J. Weyuker. An applicable family of data flow testing criteria.

Software Engineering, IEEE Transactions on, 14(10):1483–1498, 1988.

[14] A. Gargantini and C. Heitmeyer. Using model checking to generate tests from

requirements specifications. In Software EngineeringESEC/FSE99, pages 146–

162. Springer, 1999.

[15] D. Hao, Y. Pan, L. Zhang, W. Zhao, H. Mei, and J. Sun. A similarity-aware ap-

proach to testing based fault localization. In Proceedings of the 20th IEEE/ACM

international Conference on Automated software engineering, pages 291–294.

ACM, 2005.

62

[16] M. Harrold and P. Kolte. Combat: A compiler based data flow testing system. In

Proceedings of Pacific Northwest Quality Assurance(Oct.) Lawrence and Craig,

pages 311–323, 1992.

[17] M. J. Harrold, R. Gupta, and M. L. Soffa. A methodology for controlling the

size of a test suite. ACM Transactions on Software Engineering and Methodology

(TOSEM), 2(3):270–285, 1993.

[18] M. J. Harrold, R. Gupta, and M. L. Soffa. A methodology for controlling the

size of a test suite. ACM Trans. Softw. Eng. Methodol., 2(3):270–285, July 1993.

[19] H. S. Hong, I. Lee, O. Sokolsky, and H. Ural. A temporal logic based theory of

test coverage and generation. In Tools and Algorithms for the Construction and

Analysis of Systems, pages 327–341. Springer, 2002.

[20] D. Jeffrey and N. Gupta. Test suite reduction with selective redundancy. In Soft-

ware Maintenance, 2005. ICSM’05. Proceedings of the 21st IEEE International

Conference on, pages 549–558, 2005.

[21] D. Jeffrey and N. Gupta. Improving fault detection capability by selectively

retaining test cases during test suite reduction. Software Engineering, IEEE

Transactions on, 33(2):108–123, 2007.

[22] J. A. Jones, M. J. Harrold, and J. Stasko. Visualization of test information to

assist fault localization. In Proceedings of the 24th international conference on

Software engineering, pages 467–477. ACM, 2002.

[23] H. Kelly J, V. Dan S, C. John J, and R. Leanna K. A practical tutorial on

modified condition/decision coverage. 2001.

63

[24] W. Krenn, R. Schlick, and B. K. Aichernig. Mapping uml to labeled transition

systems for test-case generation. In Formal Methods for Components and Objects,

pages 186–207. Springer, 2010.

[25] B. Liblit, A. Aiken, A. X. Zheng, and M. I. Jordan. Bug isolation via remote

program sampling. In ACM SIGPLAN Notices, volume 38, pages 141–154. ACM,

2003.

[26] B. Liblit, M. Naik, A. X. Zheng, A. Aiken, and M. I. Jordan. Scalable statistical

bug isolation. ACM SIGPLAN Notices, 40(6):15–26, 2005.

[27] C. Liu and J. Han. Failure proximity: a fault localization-based approach. In

Proceedings of the 14th ACM SIGSOFT international symposium on Foundations

of software engineering, pages 46–56. ACM, 2006.

[28] C. Liu, X. Yan, L. Fei, J. Han, and S. P. Midkiff. Sober: statistical model-based

bug localization. ACM SIGSOFT Software Engineering Notes, 30(5):286–295,

2005.

[29] J. C. Miller and C. J. Maloney. Systematic mistake analysis of digital computer

programs. Communications of the ACM, 6(2):58–63, 1963.

[30] J. Offutt, S. Liu, A. Abdurazik, and P. Ammann. Generating test data

from state-based specifications. Software Testing, Verification and Reliability,

13(1):25–53, 2003.

[31] J. Radatz, A. Geraci, and F. Katki. Ieee standard glossary of software engineering

terminology. IEEE Std, 610121990:121990, 1990.

64

[32] P. R. Srivastva, K. Kumar, and G. Raghurama. Test case prioritization based

on requirements and risk factors. ACM SIGSOFT Software Engineering Notes,

33(4):7, 2008.

[33] S. Tallam and N. Gupta. A concept analysis inspired greedy algorithm for test

suite minimization. In ACM SIGSOFT Software Engineering Notes, volume 31,

pages 35–42. ACM, 2005.

[34] L. Tan, O. Sokolsky, and I. Lee. Specification-based testing with linear temporal

logic. In Information Reuse and Integration, 2004. IRI 2004. Proceedings of the

2004 IEEE International Conference on, pages 493–498. IEEE, 2004.

[35] N. Tillmann and J. De Halleux. Pex–white box test generation for. net. In Tests

and Proofs, pages 134–153. Springer, 2008.

[36] S. Yoo and M. Harman. Regression testing minimization, selection and priori-

tization: a survey. Software Testing, Verification and Reliability, 22(2):67–120,

2012.

[37] A. Zeller. Yesterday, my program worked. today, it does not. why? In Software

EngineeringESEC/FSE99, pages 253–267. Springer, 1999.

[38] A. Zeller. Isolating cause-effect chains from computer programs. In Proceedings

of the 10th ACM SIGSOFT symposium on Foundations of software engineering,

pages 1–10. ACM, 2002.

[39] A. Zeller and R. Hildebrandt. Simplifying and isolating failure-inducing input.

Software Engineering, IEEE Transactions on, 28(2):183–200, 2002.

[40] H. Zhu, P. A. Hall, and J. H. May. Software unit test coverage and adequacy.

ACM Computing Surveys (CSUR), 29(4):366–427, 1997.

	SOFTWARE FAULT DETECTION VIA GRAMMAR-BASED TEST CASE GENERATION
	Recommended Citation

	Contents
	List of Figures
	List of Tables
	Introduction
	Background Research
	Problem Statement and Our Approach
	Contributions and Significance
	Organization

	Structured Testing Requirements
	Test Coverage Criteria
	Test Requiremetns in Software Testing
	Grammar-Based Testcase Generation (GBTG) along with an Associate set of Test Requirements

	Test Suites Reduction
	Test Suites Reduction using Test Requirements
	Test Reduction Algorithm
	HGS Algorithm
	Our Most Constrained Variable Algorithm
	Combination with HGS and Global Frequency

	Experimental Results of Test Suites Reduction
	Virtual Input Data
	Experimental results and analysis
	Experiment 1 focus on Test Case Size
	Experiment 2 focus on Requirement Size
	Experiment 3 focus on Max Frequency

	Granularity of Test Requirements
	Related Research
	Algorithm of Our Implementation
	Experimental Results

	Automatical Fault Detection in Failed Test Cases
	Automated Fault Detection Approach
	Finest-Grained Faults Isolation
	An Motivation Example
	Algorithm of Fault Detection via Grammar-Based Test Generation
	Automated Fault Detection Algorithm
	Finest-Grained Faults Isolation Algorithm

	Experimental Study
	A Grading System
	Test Case Reduction
	Fault Detection via Failed Test Cases

	Related Work
	Automatic Test Case Generation
	Automatic Fault Detection
	Statistical Analysis Approach
	Experimental Analysis Approach

	Code Coverage Test via Pex and Moles

	Conclusion and Future Work
	Bibliography

