
University of Nebraska at Omaha University of Nebraska at Omaha

DigitalCommons@UNO DigitalCommons@UNO

Student Work

11-2013

Detecting Stable Communities In Large Scale Networks Detecting Stable Communities In Large Scale Networks

Sriram Srinivasan
University of Nebraska at Omaha

Follow this and additional works at: https://digitalcommons.unomaha.edu/studentwork

 Part of the Computer Sciences Commons

Please take our feedback survey at: https://unomaha.az1.qualtrics.com/jfe/form/

SV_8cchtFmpDyGfBLE

Recommended Citation Recommended Citation
Srinivasan, Sriram, "Detecting Stable Communities In Large Scale Networks" (2013). Student Work. 2890.
https://digitalcommons.unomaha.edu/studentwork/2890

This Thesis is brought to you for free and open access by
DigitalCommons@UNO. It has been accepted for
inclusion in Student Work by an authorized administrator
of DigitalCommons@UNO. For more information, please
contact unodigitalcommons@unomaha.edu.

http://www.unomaha.edu/
http://www.unomaha.edu/
https://digitalcommons.unomaha.edu/
https://digitalcommons.unomaha.edu/studentwork
https://digitalcommons.unomaha.edu/studentwork?utm_source=digitalcommons.unomaha.edu%2Fstudentwork%2F2890&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.unomaha.edu%2Fstudentwork%2F2890&utm_medium=PDF&utm_campaign=PDFCoverPages
https://unomaha.az1.qualtrics.com/jfe/form/SV_8cchtFmpDyGfBLE
https://unomaha.az1.qualtrics.com/jfe/form/SV_8cchtFmpDyGfBLE
https://digitalcommons.unomaha.edu/studentwork/2890?utm_source=digitalcommons.unomaha.edu%2Fstudentwork%2F2890&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:unodigitalcommons@unomaha.edu
http://library.unomaha.edu/
http://library.unomaha.edu/

Detecting Stable Communities In Large Scale Networks

A Thesis

Presented to the

Department of Computer Science

and the

Faculty of the Graduate College

University of Nebraska

In Partial Fulfillment

Of the Requirements for the Degree

Master of Science

University of Nebraska at Omaha

By

Sriram Srinivasan

November, 2013

Supervisory Committee:

Dr. Sanjukta Bhowmick

Dr.Robin A. Gandhi

Dr.Qiuming Zhu

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

Microform Edition © ProQuest LLC.
All rights reserved. This work is protected against

unauthorized copying under Title 17, United States Code

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, MI 48106 - 1346

UMI 1549028
Published by ProQuest LLC (2013). Copyright in the Dissertation held by the Author.

UMI Number: 1549028

Detecting Stable Communities In Large Scale Networks

Sriram Srinivasan

University of Nebraska, 2013

Advisor: Dr . Sanjukta Bhowmick

Abstract

A network is said to exhibit community structure if the nodes of the network can be

easily grouped into groups of nodes, such that each group is densely connected internally

but sparsely connected with other groups. Most real world networks exhibit community

structure.

A popular technique for detecting communities is based on computing the modularity of

the network. Modularity reflects how well the vertices in a group are connected as

opposed to being randomly connected. We propose a parallel algorithm for detecting

modularity in large networks.

 However, all modularity based algorithms for detecting community structure are affected

by the order in which the vertices in the network are processed. Therefore, detecting

communities in real world graphs becomes increasingly difficult. We introduce the

concept of stable community, that is, a group of vertices that are always partitioned to the

same community independent of the vertex perturbations to the input. We develop a

preprocessing step that identifies stable communities and empirically show that the

number of stable communities in a network affects the range of modularity values

obtained. In particular, stable communities can also help determine strong communities

in the network.

Modularity is a widely accepted metric for measuring the quality of a partition identified

by various community detection algorithms. However,a growing number of researchers

have started to explore the limitations of modularity maximization such as resolution

limit,degeneracy of solutions and asymptotic growth of the modularity value for detecting

communities. In order to address these issues we propose a novel vertex-level metric

called permanence. We show that our metric permanence as compared to other standard

metrics such as modularity, conductance and cut-ratio performs as a better community

scoring function for evaluating the detected community structures from both synthetic

networks and real-world networks. We demonstarte that maximizing permanence results

in communities that match the ground-truth structure of networks more accurately than

modularity based and other approaches. Finally,we demonstrate how maximizing

permanence overcomes limitations associated with modularity maximization.

i

Table of Contents

1. Introduction …………………………………………………………………………. 1

1.1Contribution…………………………………………………………………………...2

1.2Outline of thesis ……………………………………………………………………....2

2. Background …………………………………………………………………………. 4

2.1GraphTerminology ……………………………………………………………….......4

 2.1.1 Vertex Based Properties………………………………………………………5

2.1.2 Network Based Properties…………………………………………………….........6

 2.2.1 Community Detection ………………………………………………………7

 2.2.2 Normalized Mutual Infomration …………………………………………….8

2.2.3 LFR networks………………………………………………………………….........9

3. Parallelizing the Louvain Method for Modularity Maximization………………...10

3.1 Introduction …………………………………………………………………….......10

3.2 Background…………………………………………………………………………..11

3.3 Louvain Method……………………………………………………………………...12

3.4 Shared Memory Algorithm for Parallelizing the Louvain Method………………….14

 3.5 Empirical Results ………………………………………………………………..15

3.5.1 Scalability Results……………………………………………………………….....17

3.5.2 Evaluation of correctness ……………………………………………………….....17

3.6 Discussion ……………………………………………………………………...........19

4. Stable Communities………………………………………………………………….20

4.1 Introduction………………………………………………………………………….20

4.2 Sensitivity of Community Structure to Vertex Perturbation ……………………….20

 4.3Stable Community for Improving the Modularity………………………………......29

4.4 Discussion…………………………………………………………………………...34

5. Detecting Stable Communities for Maximization of Modularity…………………36

ii

5.1 Introduction…………………………………………………………………………..36

5.2 Related Research……………………………………………………………………..37

5.3Detecting Stable Communities in Complex Networks……………………………….37

5.4 Modularity Maximization Using Stable Communities………………………...........41

5.5 Shared Memory Algorithm…………………………………………………………. 46

5.6 Discussion …………………………………………………………………………...47

6. Detecting Communities Using Relative Permanence as a Metric………………...48

6.1 Introduction ……………………………………………………………………….....48

6.2 Related Research , Network Datasets and Ground Truth Communities……………..49

6.3 Permanence ………………………………………………………………………….51

6.3.1 Evaluating Community Scoring Functions...54

6.4 Senitivity of Permanence …………………………………………………………...56

6.4.1 Community Detection Based On Permanence ……………………………………58

6.4.1.1 Algorithm Overview……………………………………………………………..58

6.4.2 Performance Evaluation …………………………………………………………...60

6.5 Permanence Resolving Issues related with Modularity Maximization ……………..61

6.5.1 Terminology…………………………………………………………………….....62

6.5.2 Discussion on Issues in Modularity Maximization………………………………...63

6.5.3 Discussion………………………………………………………………………….65

7.Conclusion and Future Work ……………………………………………………….66

8.References…………………………………………………………………………......68

iii

List of Figures

Figure 2.1: Undirected Graph……………………………………………………………5

Figure3.1:Scalability Results for Parallel Louvain Method………………………….17

Figure 3.2: Variability in Modularity across Processors……………………………...18

Figure 4.1: Sensitivity of each network across 5000 permutations………………………23

Figure 4.2: Comparison between relative size ………………………………………24

Figure 4.3: Schematic diagram…………………………...26

Figure 4.4: Distribution of relative permanence values………………………............29

Figure 4.5: Variation of NMI for different values of mixing parameters…...............33

Figure 4.6 :Modularity after partially collapsing the stable communities……...........34

Figure 5.1. Partition of network into communities…………………………...............38

Figure 5.2: Modularity Values for the Dolphin Network……………………..............44

Figure 5.3: Modularity Values for the Power Network………………………..............45

Figure 5.4: Strong Scalability…………………………..47

Figure 6.1: Toyexample to measure permanence of vertex v………………................52

Figure 6.2: Computing the values of community scoring functions………………...55

Figure 6.3: Toy examples demonstrating four cases…………………………...............62

iv

List of Tables

Table 4.1:Networks……………………………………………………………………21-22

Table4.2:Modularity before and after preprocessing for real-world networks………….31

Table4.3: Modularity before and after preprocessing for LFR networks…….………..32

Table 5.1:Network Description……………………………………………………….......41

Table5.2 :Comparision of Modularity values using CNM method…............................44

Table5.3: Comparision of Modularity values using Louvain method...........................45

Table 5.4: Comparison of Execution Time………………………………………………..45

Table5.5: Node and Edge counts for networks………………………………………….46

Table 6.1: Real world network properties………………………………………..............50

Table 6.2: Performance of community scoring function…………………….................50

Table 6.5: Average improvement of our algorithm……………………….…………….61

1

Chapter 1

Introduction

Networks consist of a set of vertices and a set of edges and have been proven to be useful

for solving real world problems arising in systems of interacting objects. In a network

model, vertices represent objects and edges represent interactions between them. In the

study of networks such as social networks[24] and biological networks it has been found

that networks have common characteristic[24] like community structure and heavy tailed

degree distribution[24]. A network is said to have community structure if the nodes of the

network can be easily grouped in to set of nodes such that each set of nodes is densely

connected internally and sparsely connected externally[26].

A fundamental problem in network analysis is detecting communities correctly. Most

community detection algorithms are based on optimizing a combinatorial metric, for

example modularity [26] and conductance [27]. The goodness of community detection

algorithm is often measured according to how well they achieve optimization.

Optimization is generally NP- hard thus merely changing the ordering of the vertices

influences the community structure detected by any community detection algorithm. In

my thesis we study the effect of vertex perturbation on the community structure detected

using Louvain et.al[3] and Clauset et.al[4].

However there exist a group of vertices which are not affected by any vertex

perturbation, we call those set of vertices as stable community. We study various

characteristics of stable community and design an algorithm to identify such community.

In the next part of my thesis we have implemented a parallel version of the popular

2

modularity maximization approach called the Louvain method, which iteratively

optimizes local communities until overall modularity can no longer be improved. In this

process we discovered the modularity and other metrics like conductance suffer from a

resolution limit which makes it difficult to detect communities which is smaller in size.

We propose a new metric termed as relative permanence which overcomes the effect of

the resolution limit. In the final part of my thesis we develop a new algorithm to detect

communities using relative permanence as a metric.

1.1 Contribution

Given below is a list of our significant contributions.

 We have carried out comprehensive research on different community

detection algorithms that use modularity maximization and studied the

effects of vertex perturbations on them.

 We have designed an efficient constant community detection algorithm for

static networks that detects group of vertices which are not affected by vertex

perturbations.

 We designed and developed a new metric called relative permanence to

detect community in static networks.

1.2 Outline of Thesis

 This thesis is organized as follows. In chapter 2 we discuss background of graph

theory and community detection using modularity maximization. In chapter 3 we

present the parallel version of the popular modularity maximization approach known

as the Louvain method. In chapter 4 we discuss the effect of vertex perturbation on

3

the results of community detection algorithms and judge the goodness of a

community detection algorithm. In chapter 5 we present our new constant

community detection algorithm, which overcomes vertex perturbation.

In chapter 6 we discuss demerits of modularity maximization and propose a new

metric relative permanence to detect community in networks. In chapter 7 we

present our concluding remarks and present potential ideas for future research.

4

Chapter 2

Background

Many problems of practical interest can be represented as graphs. In computer science,

graphs are used to represent different networks such as biological networks and social

networks[24]. Each of these networks consists of a set of vertices and a set of edges. For

instance people in the social networks represent vertices in a graph and connections

between people are represented by the edges in social networks. Here, we introduce some

network or graph terminology. We classify the list of graph properties as (i) vertex based

properties, and (ii) network based properties.

2.1 Graph Terminology[25]

 A graph is collection of vertices and edges. Formally, G=(V,E) consists of set of vertices

V and a set of edges W, where E is subset of (V × V). In general graphs are classified as

directed and undirected. A graph is directed if edges point in one direction from one

vertex to another vertex, otherwise the graph is undirected.

5

Figure 2.1: Undirected Graph

Graph Properties

2.1.1 Vertex Based Properties

 Degree

 The degree of a vertex in a graph is the number of edges the vertex shares with

the other vertices. The degree of vertex v is denoted by deg(v). In a directed

graph, vertices have two different degrees, in-degree: number of incoming edges

and out-degree: the number of outgoing edges. In figure 2.1, degree of vertices

are deg(1)=2, deg(2) =3, deg(3)= 2, deg(4)=3 and deg(5)=2.

 Clustering Coefficient

 Clustering coefficient is a measure of the degree to which the nodes in a graph

tend to cluster together. Clustering coefficient is calculated as the ratio of the

edges between the neighbors of a vertex to the total number of possible

connections between them. In general, the higher the clustering coefficient the

6

more likely that vertex is part of a dense module. Mathematically clustering

coefficient of a vertex V is defined as,

Where denotes the number of connections connecting the neighbors of

vertex i to each other.

2.1.2 Network Based Properties

 Degree Distribution

Degree distribution is the distribution of the different degrees (and their frequency) of the

vertices over the network. Most scale free networks like social networks observe a power

law distribution [5] that is there exist many vertices with low degree and the number of

vertices exponentially go down as the degree increases.

 Modularity

 Modularity is a metric to determine how good a network is partitioned

into communities. Newman and Girvan proposed this metric to judge the

goodness of a community detection method. Modularity is based on the

conception that random networks do not form strong communities. Given a

partition of a network in to M groups, let Cij represent the fraction of total

connections starting at a node in group I and ending at group j.

7

Let ai =∑jCijcorresponds to the fraction of connections connected to subgroup i.

Probability of edges begin at i is ai, probability of edges that end at node j is aj.

Internal connections or within-community links of group i is ai
2
. Total number of

actual edges within each group i is Cii. Comparison of actual and expected

values, summed over all partitions gives us modularity. Q=∑(Cii-ai
2
). In general

high modularity gives us the better estimation of community structure in the

network. Maximizing modularity is a popular method for finding communities in

networks. However finding maximum modularity is an NP-hard problem [26].

There exist many heuristics for maximizing modularity. However our research

focuses on two popular agglomerative modularity maximization algorithms.

 2.2.1 Community Detection

 A network is said to have clusters if vertices of the network can be grouped into a set of

vertices such that each set of vertices are densely connected internally. Community

detection is a fundamental problem in network analysis. Newman and Girvan [3]

proposed a greedy algorithm based on maximizing the modularity metric for detecting

community. Clauset, Newman and Moore [4] (popularly known as CNM) proposed fast

implementation of a previous technique proposed by Newman et al[3]. The CNM method

is a greedy algorithm. This algorithm initially considers each vertex in network as

individual community. At each iteration pair of communities with high increase in

modularity is merged. This process is repeated until there exist no combination of

vertices that show increase in modularity.

8

Blondel et.al [3] proposed a faster and efficient method to detect communities. In this

approach all vertices are initially assigned as an individual community like CNM method.

However instead of a search over all edges, Louvain method searches over the edges of

each vertex. Each vertex is combined with the neighbor that shows highest increase in

modularity. In subsequent steps of the iteration neighbor itself can be detached from its

original community and join new one. Allowing vertices to be removed from earlier

communities, the Louvain method provides mechanism for rectifying bad choices.

Process of reassigning communities is repeated over several iterations until modularity is

increased. Once the first phase allocation of vertices is completed in second phase it

aggregates vertices belonging to same community and network is formed whose nodes

the communities. Two steps are repeated iteratively until modularity converges.

 While comparing Louvain method and CNM method Louvain method is generally faster

than two becomes it executes a combination for each vertex if possible. However CNM

method finds maximum over all edges per iteration. Another advantage of Louvain

method is to withdraw or backtrack from community if found necessary.

2.2.2 Normalized mutual information (NMI)

NMI is used to compare how good partitions produced by each approaches when

compared against the ground truth. Let C be the confusion matrix, and Nij represent the

element at row I and column j . Nij denote the number of nodes in the intersection of

original community I and the generated community j. if CA denote number of

communities in ground truth , CB number of communities generated by an approach, Ni

sum of row I, Nj the sum of column j, and N sum of all elements in C, then NMI score

9

between the ground truth partition A and the generated partition B can be computed as

shown in following equation.

 ∑ ∑

∑

 ∑

NMI value ranges between 0 and 1. 0 refers there is no match between with ground truth

and 1 refers to perfect match.

2.2.3 LFR networks

For our experiments we have used LFR benchmark model[18] to generate artificial

networks with a community structure[3]. LFR model allows us to control following

properties: number of nodes n, desired average degree k, maximal degree kmax, exponent

γ for degree distribution , exponent β for the community size distribution, and mixing

coefficient µ. The latter represents average proportion of links between a node and nodes

located outside its community, called intercommunity links. Portion of intra community

links is 1- µ. For our experiments we mostly vary nodes (n) and µ is varied from 0.1 to

0.6 remaining parameterswe use default values mentioned in implementation of

Lancichinetti and Fortunato[18].

10

Chapter 3

Parallelizing the Louvain Method for Modularity

Maximization

3.1 Introduction

 A popular method for finding communities in a network is by

maximizing modularity. Modularity measures how better the vertices in a community are

connected as opposed to a random connection as discussed in chapter2. As network size

increases, it is difficult to store them in memory so it is essential to develop parallel

implementations for the modularity maximization algorithms.

Parallel algorithms for graphs are a well-researched topic. There exist few parallel

algorithms for modularity maximization[12,13,14]. Most agglomerative methods for

obtaining high modularity require frequent synchronization, which reduces the scope of

parallelization. In addition we have observed results of modularity maximization are

affected by vertex perturbation. Therefore it is difficult to evaluate the accuracy of a

parallel algorithm.

In this chapter, we present a shared memory parallel algorithm for the Louvain method.

We are the first to introduce a parallel implementation of the original Louvain method.

In Section 3.2 we discuss some of the existing parallel algorithms for modularity

maximization. In Section 3.3 we describe the Louvain method. In Section 3.4 we discuss

11

a simple shared memory algorithm for parallelizing the Louvain method. In Section 3.5

we discuss scalability and correctness of our results.

3.2 Background

 Detecting communities using modularity maximization can be affected by the resolution

limit, that is, the algorithms are unable to detect communities smaller than a certain size

[5]. The Louvain method[2] addresses this problem by creating a hierarchy of

communities with the smaller ones discovered in initial iterations followed by larger ones

in subsequent iterations. This somewhat reduces the effect of the resolution limit

problem, compared to the CNM algorithm.

As networks increase in size, it is essential to use parallel algorithms to handle large data.

In our research on parallelizing modularity maximization algorithms we discovered there

are only two approaches. The first implementation is based on label propagation by

Raghavan et.al [11]. In this algorithm, initially all vertices are assigned a unique label

and with subsequent iterations the vertices adopt labels of their neighbors to denote the

community to which they belong. Label propagation is based on local updates. A highly

scalable implementation of this algorithm has been produced for GPGPUS by Soman

et.al [12].

The second implementation is based on the algorithm proposed by Clauset et.al [4]. In

this method each vertex is initially assigned to a separate community. In each subsequent

iteration the pair of vertices with the highest edge weight are combined. Reidy et.al [13]

implemented this algorithm (on CRAY XMT and Open MP).

12

3.3 Louvain Method

Assume that we start with a weighted network of N nodes. First each node of the network

is assigned to a different community. So, in this initial phase there are as many

communities as there are nodes. Then for each node i we consider its neighbors j and we

evaluate change in modularity that would take place by separating i from its community

and placing it in the community of j. The node i is then placed the community for which

change in modularity is maximum, but only if change is positive. If no positive gain is

possible, i stays in its original community. This process is repeated for all nodes until no

further improvement can be achieved. This simple algorithm improves the agglomerative

process of modularity maximization due to two major contributions.

First contribution is to increase the speed instead of considering all vertex pairs; the

Louvain method considers only maximum increase in modularity amongst every vertex

and its neighbors.

Second contribution is to improve flexibility Louvain methods attempts to improve on

modularity maximization by removing vertices from their assigned communities and

evaluating if modularity can be improved by re- assigning the vertex to any of the other

neighboring communities. This process is repeated over several iterations. These two

features of Louvain method should be preserved by any parallel algorithm. Algorithm 1

provides the pseudo code for the Louvain method.

13

Algorithm 3.1: Louvain Method for Modularity Maximization

Input: - A Graph G= (V, E). Vector A to store fraction of edges of each community.

Output: - A vector VID for mapping vertices to communities Q to store value of

modularity.

1. Procedure INITIALIZATION

2. Int=0

3. Degree =A // Store Values of A in degree

4. Q= - ∑v=1
[V]

 A[v]
2

5. Old_Q=Q-1 // Initialize Modularity Value

6. for all v ∈ V do // Assign individual communities to each vertex

7. set VID[v].node=v

8. set VID[V].comm=v

9. Set Total_comms to [V]

10. Procedure Louvain Method

11. whileold_Q<Q do

12. Old_Q=Q // Beginning Phase 2

13. whileIt_int<Total_its do // Beginning Phase 1

14. for all C<Total_comms do // Going through Each Community

15. Set Cur_comm to c // Initialize current community of c

16. //Remove C from Curr_Comm

17. Set dQ to increase in modularity by adding C to Cur_Comm

18. Q=Q-dQ

19. //Find best community for C

20. Find set of neighboring communities Nc of C

21. Max_dQ=dQ =dQ

22. for all n ∈Ncdo

23. Compute dQn, change in modularity by adding c to n

24. ifdQn>Max_dQ then

25. Set New_comm to n

26. Move c to New_Comm

27. A[cur_Comm]= A[cur_comm]-Degree[Cur_Comm]

28. A[New_comm]= A[New_Comm]+ Degree[Cur_Comm]

29. for all v ∈ V do

30. if VID[V].comm=curr_Commthen

31. VID[v].comm=New_Comm

32. Update Q= Q+ Max_dQ // End pf Phase 1

33. Combine communities to supervertices

34. Total_Comms= max(VID.comm)

35. Reduce size of A to only contain valid communities

14

3.4 Shared Memory Algorithm For Parallelizing The Louvain

Method

In this section we describe our parallel implementation of the Louvain method for

modularity maximization. We choose the regions with loops such as for and while as they

are the most natural part of code to exhibit parallelism. We have parallelized most of the

initialization process such as assignment of values to degree and assignment of vertices

to communities. Now we consider areas of iteration. We first consider the while loop at

line 13 and then two other regions within the while loop which can be parallelized. The

first is at Line 20 where we find the set of neighboring communities Nc. In this operation

at first we find the neighbors of the vertices within community c, and then the

communities of the neighbors to Nc. We can implement this process in parallel for each

vertex. In the next section of code we can parallelize the module for finding the best

community amongst the members of Nc. Change in modularity , dQn due to adding c for

each neighboring community n can be computed in parallel. If we store the dQn of each

community in a data structure like array or vector , then finding the maximum increase in

modularity becomes a reduction operation. Finally after detecting the most suitable

community to join we can update the assignment of communities to vertices in a critical

section.

Based on this analysis we discovered that in phase 1 (Lines 13- 33) the update of edges

associated with each community, A vector (line 17 and Line 28-29), the community

assignment, VID vector(Line 30 – 32), and modularity Q ,(Line 19, Line 33) needs to be

computed sequentially due to this the parallel potential of the code is reduced.

15

We can further improve our approach by reducing a few operations such as avoiding

computation of Q in phase 1. We can compute Q in phase 2 using community assignment

stored in VID and we can update the value of Q, where it will be a perfect parallel

operation. The value of dQ with respect to current community is already being computed

earlier, we can avoid that computation in (Lines 23- 27). Operations in (Line 28 -32)

needs to be performed only if a vertex is moved from its earlier community, i.e if

New_Comm is different from Cur_Comm. These updates are implemented as atomic

operations on A. This ordering ensures that communities are combined only when

modularity is increased.

We discovered in the second phase there is less scope for parallelization, and this

depends on the technique of operation. For example, to detect vertices belonging to the

same community, we sort the vector based on increasing order of communities such that

vertices within the same community are arranged consecutively. Sorting operation can be

done in parallel using parallel merge sort algorithm. Algorithm 2 provides pseudo code

for parallel implementation of Louvain algorithm.

3.5 Empirical Results

 In this section we present our experimental results that demonstrate that the algorithm is

highly scalable. We observed that if a network has a well-defined community structure,

then the algorithm is faster and deviation amongst the timings and the values are less than

networks with more unstructured communities. We implemented our algorithm on an

Opteron quad-core system with only 8 GB RAM. Our Experimental setup as follows; we

create set of LFR bench-marks [7] of 10,000 vertices with mixing parameters µ being

16

0.1,0.3,0.5 and 0.7. By lowering mixing parameter it is guaranteed to have more

distinctive community distribution. We kept average degree 15, maximum degree 50 .

The power –law exponent for degree distribution was 2 and exponent for community

distribution was 1. Community size ranges from 7 to 50.

Algorithm 3.2 : Parallel Implementation Louvain Method.

Input: - A Graph G= (V, E). Vector A to store fraction of edges of each community.

Output: - A vector VID for mapping vertices to communities Q to store value of modularity.

1. Procedure INITIALIZATION

2. Int=0

3. Total_its=4 The Number of outer iterations

4. Degree =A Values assigned in parallel

5. Q= - ∑v=1
[V] A[v]2Obtained by parallel reduction

6. Old_Q=Q-1

7. for all v ∈ V do in parallel

8. set VID[v].node=v

9. set VID[v].comm=v

10. Set Total_commsto [V]

11. Procedure Louvain Method

12. While old_Q<Q do

13. Old_Q=Q // Beginning Phase 2

14. WhileIt_int<Total_its do // Beginning Phase 1

15. for all C<Total_comms do // Going through Each Community

16. Set Cur_comm to c // Initialize current community of c

 //Remove c from Curr_Comm

17. Set dQ to increase in modularity by adding c to Cur_Comm

18. Find set of neighboring communities Nc of c in parallel

19. Max_dQ= dQ

20. Set New_Comm to Cur_Comm

21. for all n ∈Ncdo in parallel

22. Compute dQn, change in modularity by adding c to n

23. ifdQn>Max_dQthen use parallel reduction

24. Max_dQ= dQn

25. Set New_Comm to n

26. ifCur_Comm ¡= New_Comm then use atomic operations to update A

27. A[Cur_Comm]= A[Cur_Comm]- Degree[Cur_Comm]

28. A[New_Comm]= A[New_Comm]+ Degree[Cur_Comm]

29. for all v ∈ V do

30. if VID[V].comm=curr_Commthen

31. VID[v].comm=New_Comm // End of Phase 1

32. Combine communities to superverticesparallelmergesort

33. Compute Q in parallel

34. Total_Comms= max(VID.comm)

35. Reduce size of A to only contain valid communities

17

3.5.1 Scalability Results

 A parallel algorithm is scalable if execution time decreases as the number of processing

units is increased. We performed an experiment by changing the number of threads from

2,4,8,16 and 32. In Figure 3.1 we show the execution time progressively decreases as the

number of processing units are increased.

Figure3.1: Scalability Results for Parallel Louvain Method: Results for networks with 10

K vertices. Each point represents the total execution time of one network for a given

mixing parameter and a processor.

3.5.2 Evaluation of Correctness

 The empirical method for evaluating the correctness of parallel programs is by

comparing the communities obtained by its sequential counterpart. However as

mentioned earlier, results of Louvain method, like all other combinatorial optimization

18

techniques is dependent on the order in which vertices are processed. In other words it is

impossible to compare results. The effect is further aggravated in the parallel case, as the

sequence in which processors execute the code can change for each execution cycle. We

compared the communities using normalized mutual information (NMI). NMI values

range between 1 to 0, the higher the number the better the similarity between two sets of

communities. In our experiments we observe that for lower mixing parameters NMI

value across processor was around 0.90. For mixing parameter 0.7 the difference was as

much as 0.76. Ordering of vertices (which is affected by parallelization), plays important

role in the community distribution. Louvain method is ultimately designed to increase

modularity. More accurate evaluation of our algorithm is to compare standard deviation

of modularity value across each processor. In figure 3.2 we demonstrate the values of

modularity and standard deviation across networks among processors. In general standard

deviation values are quite low though the modularity values are more consistent when

µ=0.1. In general lowering mixing parameter produce higher modularity.

19

Figure 3.2: Variability in Modularity across Processors: Results for networks with 10 K

vertices.

3.6 Discussion

 In this chapter we presented a shared –memory algorithm for the Louvain method for

modularity maximization. Our results indicate our algorithm is scalable and produces

modularity values equivalent with those expected from sequential value. Performance of

our algorithm and variability of the results depends on properties of networks and its size.

20

Chapter 4

Stable Communities

4.1 Introduction

In previous chapters, we have mentioned community detection algorithms are based on

optimizing certain parameters such as modularity. Changing the order of vertices can

vary their mapping to a community. There has been less study on how vertex ordering

influences the results of community detection algorithms. In this chapter, we discuss the

properties of groups of vertices whose mappings to communities are not affected by

vertex ordering. This chapter is arranged as follows. In section 4.2 we discuss the

sensitivity of community structure to vertex perturbation. In section 4.3 we discuss how

detecting and using stable communities as a preprocessing step improves the modularity

value.

4.2 Sensitivity of Community Structure to Vertex Perturbation

 In this section we demonstrate that the modularity maximization method can

significantly change the results. Based on our results we define metrics to estimate the

tendency of a network to form communities. Finally we show that using stable

communities as a preprocessing step can help improve the modularity of the community

detection algorithm as a whole. We select two popular agglomerative modularity

maximization techniques; CNM and the Louvain method which are discussed in chapter

21

2. In general the Louvain method produces a higher value of modularity than CNM,

because it allows vertices to migrate across communities.

In order to detect these communities, for each network in the test suite, we applied CNM

and the Louvain method over different permutations of the vertices and we preserved

common groups across the different orderings. Common groups of vertices were marked

as a stable community for each respective network. Ideally the total number of different

orderings to be tested should be equal to the factorial of the number of vertices in the

network. If you consider the smallest network in our set(Chesapeake with 39 vertices)

this value is prodigious. We therefore restrict our permutations to maintain degree-

preserving order. The vertices are ordered such that the degree of vi is greater than the

degree of vj, then vi is processed prior to vj. The degree ordering permutation also has

another advantage if few vertices in network have high degree and more have low

degrees. Therefore arranging vertices with high degree guarantees that most of the

fluctuations will occur towards the later stage of agglomeration.

We conducted experiments on real-world data as networks generated using LFR model as

discussed in chapter2. We took real-world networks from the 10
th

 DIMACS challenge

website. We considered the following undirected and unweighted networks:

Network Size

Jazz V=198, E=2742

Polbooks V=105,E=441

Chesapeake V=39,E=340

Dolphin V=62,E=159

22

Football V=115,E=1226

Celegans V=453,E=2025

Power V=4941,E=6594

Email V=1133,E=5451

Table 4.1:Networks

Networks generated using the LFR model are associated with a mixing parameter µ that

indicates the ratio of external connections of a node to its total degree. We created LFR

networks based on the following parameters: number of nodes =500, average degree =

20, maximum degree =50, minimum community size =10, maximum community size

=50, degree exponent power law =2, community size exponent = 2 and community size

exponent = 3. We altered the value of µ from 0.05 to 0.90. In general low values of µ

correspond to well separated communities that can be detected easily andthese networks

contain a larger percentageof stable communities. As the value of µ increases,

community structure gets ambiguous or amorphous and community detection algorithms

give different sets of results.

We performed an experiment to study how the community structure of networks changes

under vertex perturbations. We measure change in community structure based on the

number of stable communities. We use sensitivity (ø change this symbol, it means

‘empty set’) as the ratio of the number of stable communities to the total number of

vertices. If ø is 1 each vertex itself will be a stable community (the trite case).The higher

the sensitivity metric, the fewer the vertices in individual stable communities. This metric

is helpful for detecting networks that have good community structure under modularity

maximization.

23

We plot the sensitivity of each network in Figure 4.1. X-axis indicates the number of

different permutations of the vertices and Y-axis plots the value of sensitivity. We

observed for most of the networks the number of stable communities becomes does not

increase within the first 100 permutations and sensitivity values are low. If sensitivity is

low there exist strong groups in the network that have to be combined to obtain high

modularity. For networks like Power grid and Email the number of stable communities

keeps increasing until sensitivity reaches 1 or close. Community detection for those

networks are extremely sensitive to vertex perturbations. This also indicates community

structure in those networks is very amorphous.

Figure 4.1: Sensitivity of each network across 5000 permutations

We investigate the properties of stable communities. Relative size (ξ) for a stable

community is the ratio of the total number of nodes in the stable community to the total

number of vertices in the network. Strength (Θ) is defined as ratio of the edges internal to

the stable community to the edges external to the stable community.

24

In Figure 4.2 we plot the relative sizes of stable communities with respect to their

strength. If the strength of a stable community in log scale is above 1 then the number of

internal connections is larger than external connections. In general, the higher the value

the more tightly connected the community. If the relative size of stable communities is

low then the remaining vertices have freedom to migrate across other communities.

Figure 4.2: Comparison between relative size and strength of stable communities. X- axis

indicates relative size in percentage and Y –axis indicates strength in log scale.

Relative size and strength together indicate the community structure of networks. When

we divide X axis at 17 and Y-axis at 1 we get four quadrants. In the upper right quadrant

communities have high size and high strength. In general if networks contain stable

communities in this quadrant then they are less likely affected by perturbations. The third

quadrant which is lower left contains communities of low relative size and low strength.

Networks having communities from this quadrant will be significantly affected by vertex

perturbations. In the upper left quadrant communities are strongly connected but have

small relative size. This indicates there is some portion of the network with strong

25

community structure. The fourth quadrant represents communities that have high relative

size and low strength.

In Figure 4.2 we noticed there are several communities whose strength is below one. It

means there are more external connections than internal connections. In general, good

community should have internal connections greater than external connections. Vertices

within the community do not experience significant pull from any external communities.

We mathematically define pull as follows:

Let v be a vertex in stable community, let D(v) denote degree of v and EN(v) and IN(v)

denote number of internal and external neighbors of v, i.e., D(v)= IN(v)+ EN(v). EN(v) is

divided in to k external groups. ENG(v) denotes a set of k elements. For example in

Figure 4.3 D(3)=6, IN(3)=2 & EN(3) =4.ENG(3)= {2,1,1} (2 external neighbors in

community 2, one external neighbors in community 3 and community 4). Similarly we

can calculate ENG(v) for all vertices in the graph and form a list DEGN(G) by

performing the union operation on ENG(V). The list is then ranked in ascending order.

For a particular vertex if the inverse rank of each external group is equal to one it would

point that all external neighbors are externally distributed. Therefore the pull experienced

will be minimum. If the value is much lower than one it implies the vertex experiences

strong pull from its external neighbors. Relative permanence can be expressed

mathematically as:

 ∑

26

Where

Ω(v)= Relative permanence of vertex v.

Θ(v)= Strength of vertex v.

Using an example we have demonstrated how to calculate relative permanence of a

vertex.

27

Figure 4.3: Schematic diagram illustrating computation of relative permanence of the

vertices.

Using Figure 4.3 I calculate relative permanence for vertex 3 in stable community .

Vertex 3:- IN(v) = Internal Connections (with in Community)

EN(v) = External Connections (Connections Outside the Community)

I(3) = 2 [2 Connections with in community 1]. Equation (1)

E(3)= 4 [4 external connections]. Equation (2)

D(3)= Degree= I(3) + E(3) = 2 +4=6 Equation (3)

Now I compute ENG(V) that is the number of connections to other communities for

vertex v.

ENG(V) is defined as Number of connections to external group.

ENG(3)= {2,1,1 } [Vertex 3 has 2 connection to community 2 , 1 connection to

community 3 , 1 connection to community 4). Equation (4)

Relative permanence of a vertex is defined as

------------Formula(1)

From equation (4) I get ENG(3) . I use value of ENG(3) and then calculate

∑

28

When k=1

∑

 =1/2------------Equation(5)

When k=2

∑

 = 1/1=1 ------------ Equation(6)

When k=3

∑

 = 1/1=1 ------------ Equation(7)

Now substituting values obtained from equation(5), equation (6) and equation (7) on

Formula(1) we get

From equation(1), equation(2) and equation(3) I get values for I(3) , E(3) and D(3)

respectively .

 =0.20833

Therefore Relative Permanence (3) = 0.208 .

Similarly relative permanence for all vertices is calculated using formula (1).

In Figure 4.4 we plot the cumulative distribution of the relative permanence over the

vertices in all networks. The X-axis indicates the value of relative permanence and the Y-

axis indicates the cumulative fraction of vertices having the corresponding value. The

29

cumulative distribution of vertices is roughly same across all networks except Email and

Power. The cumulative distribution of Email and Power indicate these networks have

lower relative permanence value and therefore experience more pull from external

communities. A high fraction of vertices in Jazz, Polbooks, Dolphin and Celegans have

relative permanence close to one. Therefore vertices in these networks experience less

relative pull from external communities.

Figure 4.4: Distribution of relative permanence values. X-axis indicate the values of

relative permanence and Y-axis indicate cumulative fraction of vertices which exhibits

relative permanence.

4.3 Stable Community For Improving The Modularity

In our experiments we discovered stable communities are formed only by a small

percentage of vertices. Finding stable communities is not sufficient as it may just provide

inadequate information about the relationship amongst the rest of the vertices. We

permute the vertices 5000 times in degree descending order as discussed in the previous

section. For each permutation we run the Louvain algorithm and obtain community

30

structure and a modularity value. From this community structure we detect stable

communities using algorithm 4.1.

Algorithm 4.1 : Modularity Maximization Using Stable Communities

Input: - A Graph G= (V, E); Community Detection Algorithm A.

Output: - Set of stable Community

1. Procedure Detect Stable Communities

2. Sort vertices in V degree descending order.

3. Apply degree preserving permutation P to vertices such that degree (vi)

>degree (vi+1) in P.

4. |P| is number of degree preserving permutations applied.

5. Initialize array vertex [|V |][|P|] to -1

6. Vertex [|V|][|P|]will store the community membership of vertices in each

permutation.

7. Set i=0

8. for all Pi∈P do

9. Apply algorithm A to find communities of the permuted network Gpi

10. If vertex v is in community c then

11. Vertex[v][i]=c

12. Applying A to Pi

13. i=i+1

14. set j=0

15. for all v ∈ V d

16. information stored in vertex

17. if vertex v is not in stable community then

18. create stable community CCj

19. Insert v to CCj

20. For a u ∈ V\CCj do

21. If vertex[v][i]=vertex[u][i]
22. Insert u to CCj

23. J=j+1

Initially vertices are ordered according to their degrees (Line 2). The permutations of the

vertex preserve this order, that is vertex vi is placed before vj in the list if degree(vi) >

degree(vj). In the next phase we detect communities for each permutation i. Stable

communities are those vertices which are assigned together (Line 13-20).

31

Table 4.2 shows the mean modularity and variance obtained by averaging the modularity

values of all iterations.

Networks Before

processing

(Mean)

Before

processing

(Variance)

After

processing

(Mean)

After

processing

(Variance)

Jazz 0.448 3.13e-6 0.452 0

Chesapeake 0.301 1.17e-5 0.303 3.36e-33

Polbooks 0.539 1.74e-5 0.557 1.24e-32

Dolphin 0.543 1.76e-5 0.550 0

Football 0.610 2.01e-5 0.623 0

Celegans 0.438 2.89e-5 0.442 1.33e-26

Email 0.542 6.89e-5 0.568 0.95e-12

Power 0.936 1.09e-5 0.937 2.25e-10

Table4.2:Modularity before and after preprocessing for real-world networks.

As shown in Table4.2 combining stable communities as a preprocessing step both

increases mean modularity. From our experiments on real –world networks we believe

that preprocessing using stable communities is more effective if a network is not

amorphous or has a strong community structure. To make our hypothesis stronger we

created LFR graphs with mixing parameter from 0.05 to 0.90. In general low mixing

parameter indicates good community structure. We repeat the same set of experiments as

discussed on real world networks and obtain mean modularity and its variance. Table 4.3

shows the mean modularity and variance.

32

µ Before

processing

(Mean)

Before

processing

(Variance)

After

processing

(Mean)

After

processing

(Variance)

0.05 0.834 1.98e-24 0.877 0

0.10 0.802 2.28e-28 0.817 0

0.20 0.690 5.74e-7 0.686 0

0.50 0.385 2.05e-6 0.389 1.58e-28

0.70 0.298 9.70e-10 0.219 1.04e-28

0.90 0.225 4.25e-10 0.205 5.64e-28

Table4.3: Modularity before and after preprocessing for LFR networks for different

mixing parameter (µ).

As LFR networks have ground truth i.e., correct distribution of communities. We used

NMI to compare the communities obtained, with and without using the preprocessing

step with the ground truth community structure of LFR graphs with different mixing

parameters. In Figure 4.5 when community structure is strong, stable communities push

the result towards ground truth. In contrast when the network is amorphous or community

structure is not well defined, the use of stable communities does not push the result

towards ground truth.

33

Figure 4.5: Variation of NMI for different values of mixing parameters. Broken line

represents to the experiment without preprocessing step and solid line represents

experiment with preprocessing step.

A stable community is meaningful if it is large in size and has high relative permanence.

We ordered stable communities according to decreasing order of size and decreasing

order of relative permanence. We combine stable communities into supper-vertices one

by one following the order obtained from (a) and (b) separately. After the combination

we compute modularity obtained using the Louvain method without any preprocessing.

Figure 4.6 distinguishes the modularity obtained by collapsing stable communities

according to order obtain from (a) (dotted blue line) and (b) (dotted green lines). For all

the networks there is a change when modularity values cross over the mean modularity

(solid red line). After this change the modularity value is generally high or equal to mean

modularity.

The critical point indicates the smallest fraction of stable communities required to

outperform the Louvain algorithm without preprocessing i.e., original algorithm. In

Figure 4.6 the broken green lines show a great increase in modularity value than the

34

broken blue lines after critical point. Therefore from our experiments we conclude

relative permanence is better indication of stable community.

Figure 4.6 :Modularity after partially collapsing the stable communities. Blue (broken

lines) are in decreasing order of size and green lines decreasing order of relative

permanence.

4.4 Discussion

 In this chapter we discussed the effect of vertex perturbation, how vertex perturbation

affects community structure and stable communities. We performed experiments to show

there exist stable communities in networks and using stable communities as a

35

preprocessing step to the original Louvain algorithm gives improvement in modularity

value if network has good community structure.

36

Chapter 5

Detecting Stable Communities for Maximization of Modularity

5.1 Introduction

Modularity maximization is an NP- hard problem [3]. There exist many classes of

heuristics to maximize modularity including agglomerative, diverse and spectral methods

[3]. In general like other NP- hard combinatorial optimization problems, the value of

modularity and the partition of vertices into communities are dependent on the order in

which the vertices are processed.

We assume that if the network is not modular enough to be classified into communities

then these instabilities may occur. Some portions of the network have a tendency to form

natural communities, while the remaining vertices are mapped to communities based on

combinatorial parameters of the underlying algorithms and permutations to the input. We

define a stable community to be a group of vertices which are always mapped to the same

community independent of the perturbations to the input. The number of stable

communities can give a rough estimate of modularity. In this chapter, we discuss an

algorithm to detect stable communities. We also demonstrate that combining vertices in

stable communities as a preprocessing step to agglomerative community detection can

improve the value of modularity.

The rest of the chapter is arranged as follows. In section 5.2 we discuss some related

research in this area. In section 5.3, we present our algorithm to detect communities in

networks. In section 5.4 we demonstrate using experimental results, on a test suite of

37

networks, how detected stable communities as preprocessing step can increase the

modularity value. In section 5.5 we present the parallel template of our algorithm and

applications to biological networks. In section 5.6 we conclude with discussions.

5.2 Related Research

 The effect of perturbations of the input to the community detection is

still a major issue. Karrer et.al[5] conducted a study by comparing change in community

structures after perturbing the connectivity of the network. In chapter 4 we have

perfomed experiments and discussed effects of vertex ordering and its effect on

community structure.

5.3 Detecting Stable Communities in Complex Networks

 Given a network, our objective is to estimate whether the network

possesses distinct communities. We have observed that permutations of the vertex order

can change the partition into communities and if the network has amorphous community

structure these partitions can significantly vary. We conducted an experiment for finding

stable communities, that is, groups of vertices that are always grouped together over

different permutations.

A ideal method for detecting these stable communities might be to search for densely

connected sets of vertices, preferably large cliques. However members of cliques may not

always fall in the same community. For example let us consider an example shown in

Figure 5.1 In the given example vertices {2,3,4,5} form a clique. If we consider the

following partition of six vertices ({1},{2,3,4,5},{6}). This partition gives negative

38

modularity of -0.06. Even though the vertices in the clique are tightly coupled or

connected we get negative modularity. This is because each subgroup (2,3) and (4,5) has

a strong connection to an external community. For example (2,3) has two edges to

external vertex(1) and also two edges to internal vertex(4). Thus (2,3) has equal

probability to combine with vertex(1), vertex (4) or with vertex(5). In general each

subgroup within a stable community should have more internal connections than external

connections. It is expensive to detect groups of vertices that satisfy this condition. We

therefore relax the definition and detect communities where the number of internal

connections is considerably greater than the external connections. Stable communities

having external edges are fine as long as the pull from other communities is less. We

assume stable communities are of at least size 2. Stable communities are composed of a

core vertex, its distance 1 neighbors and neighbors of neighbors, i.e. vertices at distance 2

from the core vertex.

Figure 5.1. Partition of network into communities.

39

We detect stable communities by computing the fill-in [6] of the vertices as discussed in

chapter 2. We consider only those vertices with low fill-in (generally 0 -2). We form a

temporary community C composed of the vertex v and its neighbors. If the number of

internal connections of each vertex in C is more than twice the number of external

connections then C is designated as a stable community. Otherwise, we consider set N of

the distance 2 neighbors of v, that are not elements of C. Edges in N can be classified as

follows; (1) one endpoint connected to a vertex in community C (Case 1); (2) both

endpoints connected to vertices in set N (Case 2) and (3) one endpoint connected to a

vertex that is neither in C nor N (Case 3). A vertex in C is considered to be eligible for a

stable cluster if that vertex has fewer edges of case 1 than case2 ;(Condition1) and fewer

edges of case1 and case2 together than case3 ;(Condition2). Condition (1) guarantees

that distance 2 neighbors do not have enough connections to vertices in a stable

community. Condition 2 ensures that the set of external vertices has a larger pull from

external communities other than C such that those sets don’t exert much pull on vertices

within C.

In general it is possible vertices can be assigned to multiple stable communities. If we

discover that a vertex has been assigned to multiple communities we remove it.

Algorithm5.1 provides pseudocode for our proposed stable community algorithm.

Algorithm 5.1 Detecting Stable Community in Networks

40

Input: - A Graph G= (V, E).

Output: - Stable Communities C1, C2,………Cn .

1. procedure Detecting Stable Communities

2. Set max-fill for Fill-In threshold

3. for all v ∈ V d

4. Compute Fill-In of v

5. if Fill-In of v<max_fillthen

6. Create cluster Cv of v and its neighbors

7. In_Edge= Internal Edges of Cv

8. Ex_Edge= External Edges of Cv

9. if Ex_Edge<In_Edge /2 then

10. Associate cluster id v for each vertex in Cv

11. Mark Cv as stable community

12. else

13. Create set N of n // n is a distance 2 neighbor of core vertex v

14. Edgecase1= Edges with both end points in N

15. For all u ∈ Cv do

16. Edgecase2 = Edges with one endpoint in N and other in u

17. Edgecase3= Edges with one endpoint in N and not other not in u

18. if Edgecase2 < Edgecase3 AND (Edgecase1 + Edgecase2)<Edgecase 3

then

19. if Vertex u does not have cluster id then

20. Associate cluster id v with u

21. Mark u as a vertex in stable community.

The primary objective of our algorithm is to detect whether a network has community

structure. Our algorithm will not detect any stable community if there exists no

community structure in the network.

41

5.4 Modularity Maximization Using Stable Communities

Detecting stable communities can be used as a preprocessing step to improve the results

of modularity maximization. The vertices with the same stable community id are

assigned to the same community and then modularity maximization algorithm is applied

to the transformed network. In this section we present the results of using this

preprocessing technique combined with CNM and Louvain methods discussed in chpater

2. Our test network consists of unweighted and undirected networks obtained from

DIMACS website[27]. Networks and their description are discussed in Table 5.1.

Network Network Size Network Description

Karate (V=34, E=78) Network of members in

karate club.

Jazz (V=198, E=2742) Network of Jazz musicians

PolBooks (V=105, E=441) Network about USA politics

Celegans (V=453, E=2025) Metabolic network

Dolphin (V=62, E=159) Social network

Email (V=1133, E=5451) Network of e-mail

interchanges

Power (V=4941, E=6594) Topology of power grid

PGP (V=10680, E=24316) Network of users of the

Pretty-Good –privacy

algorithm

Table 5.1:Network Description

42

Empirical Results. We applied permutations to each of the networks in the test suite. For

each permutation we applied CNM and the Louvain method as well as the methods after

detecting and combining stable communities. Some statistics for modularity obtained by

the four methods are given in Tables 5.2 and 5.3.

Name Modularity using

CNM

Modularity using

CNM+ stable

community

Stable Community

%

Karate 0.3938 (Avg)

0.4156(Max)

0.4022(Avg)

0.4197(Max)

29%

Jazz 0.43877(Avg)

0.4388(Max)

0.4234(Avg)

0.4442(Max)

26%

PolBooks 0.5019(Avg)

0.5019(Max)

0.5140(Avg)

0.5260(Max)

27%

Celegans 0.4046(Avg)

0.4149(Max)

0.4231 (Avg)

0.4327(Max)

30%

Dolphin 0.4802(Avg)

0.5094(Max)

0.4904 (Avg)

0.5242(Max)

22%

Email 0.4715 (Avg)

0.5201(Max)

0.4908(Avg)

0.5462(Max)

27%

Power 0.8997(Avg)

0.9221(Max)

0.9148(Avg)

0.9200(Max)

9%

PGP 0.8628(Avg)

0.8696(Max)

0.8616(Avg)

0.8716(Max)

40%

TABLE 5.2 :Comparision of Modularity values obtained by using CNM method and

stable community preprocessing. Last column gives percentage of vertices in stable

community.

Name Modularity

using Louvain

Modularity using Louvain+

stable community

Karate 0.4156(Avg)

0.4198(Max)

0.4170(Avg)

0.4198(Max)

Jazz 0.4427(Avg)

0.445(Max)

0.4435(Avg)

0.445(Max)

PolBooks 0.5258(Avg)

0.5268(Max)

0.5266(Avg)

0.5268(Max)

Celegans 0.4355(Avg)

0.4421(Max)

0.4320(Avg)

0.4447(Max)

Dolphin 0.5202(Avg) 0.5200(Avg)

43

0.5233(Max) 0.5241(Max)

Email 0.5671(Avg)

0.5555(Max)

0.5664(Avg)

0.5745(Max)

Power 0.9360(Avg)

0.9365(Max)

0.9359(Avg)

0.9370(Max)

PGP 0.8776(Avg)

0.8807(Max)

0.8775(Avg)

0.8796(Max)

TABLE 5.3: Comparision of Modularity values obtained by using Louvain method and

stable community preprocessing.

In general we observe that detecting stable communities as a pre processing step

increases the final modularity value. However we observed there are a few exceptions

such as the average for Jazz and maximum for power in CNM and average for Email and

Celegans and max for PGP in Louvain. In general, improvement is higher for CNM than

for the Louvain methods. In the CNM method once vertices are assigned to a community

in a later step it doesn’t have any back tracking feature to assign itself to a better

community if discovered. However in the Louvain method if a vertex is assigned to a

community and it is discovered at later stage of the algorithm that vertex may better fit in

a different community, so the vertex is mapped to the most suitable community. This

feature is called backtracking. From our results and observations we discover our

preprocessing step woruld be more effective when the underlying algorithm doesn’t

contain a backtracking feature like CNM.

In Figure 5.2 and Figure 5.3 we plot the change in modularity over all the permutations of

the Dolphin and the Power networks. In the dolphin network we can see using stable

communities as a preprocessing step gives a significant boost to the CNM method. We

also observe the Louvain method in general always produces high modularity. There

exist certain cases where the CNM method along with preprocessing step is equivalent to

the Louvain method. Dolphin network possesses good community structure. The values

44

in the Power network are well separated. Seperation of values by two algorithms indicate

the power network does not have strong community structure.

In Table 5.4 we present the average time (in seconds) to compute individual methods ,

individual methods with preprocessing and time for the preprocessing step. Codes were

compiled with GNU-g++ and experiments were performed on dual-core processor with

2.7 GHZ speed and 32 GB RAM. In some cases we observed the preprocessing step

reduces the overall agglomeration time, however detecting stable communities is

generally expensive.

Figure 5.2: Modularity Values for the Dolphin Network

45

Figure 5.3: Modularity Values for the Power Network

Name CNM CNM+Preprocessig LVN LVN+Preprocessing Preprocessing

Jazz 1.50 1.51 0.57 0.68 0.45

Polbooks 0.085 0.067 0.06 0.05 0.04

Celegans 3.67 1.80 1.35 1.50 0.86

Dolphins 0.01 0.018 0.003 0.005 8e-04

Email 32.31 18.6 11.84 10.31 3.15

Power 52.59 50.19 24.12 24.68 31.4

PGP 760.78 757.25 579.88 577.87 25.79

Table 5.4: Comparison of Execution Time (In Seconds) of both methods and time to

detect stable community.

46

5.5 Shared Memory Algorithm for Parallelizing the Stable

Community Detection method

 In this section we present our parallel implementation of the stable community algorithm

to detect stable communities. We consider regions with loops as they are the most natural

part to exhibit parallelism. We have parallelised line 4 that is computing the fill-in for

each vertex v. We divide the vertices across threads and each thread computes the fill-in

for each vertex mapped to its thread id. Once all threads are executed we combine the

fill-in values for each vertex and based on the threshold of fill-in, the cliques are formed.

The remaning portion of the code is sequential as discussed in section 5.3. We tested

scalability on larger networks obtained from creatine and untreated mice and breast

cancer networks. In Table 5.5 we list the node and edge counts for the networks . We

conducted experiments using an opteron multicore processor with 64 cores per node and

256GB Ram per node. We used shared memory OpenMp and tested the scalability of the

algorithm by execution over 1 to 64 threads. Figure 5.4 demonstrates our algorithms

shows good scalability.

Network Node Edge

Untreated 45020 655698

Creatine 45023 714628

Familal 48803 687783

Non 48803 1109553

Table5.5: Node and Edge counts for networks.

47

Figure 5.4: Strong Scalability for the parallel implementation of stable community

algorithm.

5.6 Discussion

 In this chapter we have attempted to design and develop an algorithm to detect stable

communities in a network. We detect stable communities as a preprocessing step and use

those stable communities in well known algorithms like CNM and Louvain to detect

communities.The percentage of stable communities in the initial step can give a rough

indication of how modular a network is. In general we conclude if the percentage of

vertices within stable communities is high, detecting communities in such networks will

be of practical value else detecting communities will be only of academic interest.

48

Chapter 6

Detecting Communities using Relative Permanence as a Metric

6.1 Introduction

Modularity isa widely accepted metric for detecting and estimating thequality of

community structure as discussed in chapter2. However many researchers have begun to

discover the demerits or limitation of the maximizing modularity approach for

community detection. Various limitations include the resolution limit, the degeneracy of

solutions and asymptotic growth of modularity value. There still exist fundamental

questions which arenot answered – does a network possess community structure? Or

would the partition be accurate. In this chapter we answer those questions by proposing a

novel metric called permanence which is built on pull experienced by a vertex from

neighbors that is mapped to adifferent community. We show that our new metric when

compared to modularity and conductance is a better optimization parameter for detecting

communities on synthetic networks and real-world networks. We also demonstrate

permanence is more sensitive to different perturbations applied to community structures.

The rest of the chapter is arranged as follows. In section 6.2 we present network datasets

and ground truth communities. In section 6.3 we discuss permanence, community

detection algorithms and evaluate the community scoring function. In section 6.4 we

present our new community detection algorithm named Max_Permanence based on

maximizing permanence, we study the performance of our proposed algorithm. In section

49

6.5 we discuss how permanence resolves issues related with modularity maximization

and finally conclude with dicussion and results.

6.2 Related Research, Network Datasets and Ground Truth

Communities

Fortunato and Barthelemy[15] presented a resolution limit problem of modularity, which

states that optimizing modularity will fail to detect communities smaller than a threshold

size or weight[16]. Good et al.[17] presented another issue of modularity called

degeneracy of solutions which states that for a single graph we can get adiffferent

community structure for exponential number of high modularity . They also studied

limiting thebehaviour of modularity foran infintely modular network and show that it

strongly depends on both thesize of the network and thenumber of modules it contains.

Lancichinetti and Fortunato[18] presented that the multi resolution version of modularity

is not only inclined to merge small communities but also to split large well defined

communities.

We provide a description of the networks used for our experiments. We used theLFR

benchmark model[19] to generate artifical networks with a well defined community

structure.The LFR benchmark model has been discussed in chapter 4 and 5. In this

chapter for our experiments we have usedthe following LFR benchmark parameters. We

set thenumber of nodes (n) as 1000 and µ is varied between 0.1 to 0.6. We used three

large real-world networks whose well defined community structure are available.

Network properties are discussed in Table 6.1.

50

Networks N E <K> Kmax C nc
min

nc
max

Football 115 613 10.57 12 12 5 13

Railway 301 1224 6.36 48 21 1 46

Coauthorship 103677 352183 5.53 1230 24 34 14404

Table 6.1: Real world network properties where N and e are number of nodes and

number of edges , C is the number of communities, <K> and Kmax average and maximum

degree, nc
min

nc
max

 size of smallest and largest communities.

Football network as discussed in chapter 4 contains the network of American football

games between Division IA colleges during regular season Fall 2000. Indian Railway

proposed by Ghosh et.al[20] consists of nodes representing stations and two stations

connected by an edge if there exist at least one train –route such that both stations are

scheduled stop or hault on that route. In case of the weighted version the weight of an

edge will be thenumber of train –routes on which both station are scheduled halts. We

mark each station with region (state in India). States act as communities because the

number of trains within each state is higher than the number of trains between two

stations.

A coauthorship network is developed by Chakraborty et al.[21] from the citation dataset.

The dataset contains information of all the papers of computer science published

between 1960 to 2009 archived in DBLP. From this dataset we build an undirected

coauthorship network where each node represents an author and an edge is drawn if two

authors collaborate at least once via publishing a paper. Each paper is categorised by its

related field. We map this field as the research area of the authors writing that paper.

Author may be mapped to more than one research area of interest. We resolve this issue

51

by mapping author to the major field of interest in which they have written most of their

papers.We consider research area or major field as the ground truth communities since

author have tendency to cite papers belonging to same area.

6.3 Permanence

 In this section we develop the formula for permanence based on the

following two assumptions : (1)a vertex should have more internal connections than the

number of connections to any of the neighboring communties. (ii) The substructure of a

community’s internal neighbors of vertex should be highly connected among each other.

In general both assumptions guarantee the number of internal connections is larger than

the number of connections to any one single external community. The permanence of a

vertex v is given below

]

Where I(v) is the number of internal neighbors of v, D(v) is the degree of v, Emax(v)

number of connections of v to that external community (maximum) neighbors of v, and

cin(v) is the clustering coefficient of v . We use few toy example Figure 6.1 to measure

permanence of vertex v.

According to Figure 6.1 for vertex v I(v) =4, Emax(v)= 2 and cin (v)= 5/6. Using

permanence formula we substitute the value of I(v) , Emax(v) and cin (v) we get perm(v)=

0.12. If vertices do not have any external connections permanence of vertex v is set to its

internal clustering coefficient. Perm(v) is set to 0 if vertices in communities is less than 3

entries. If the vertex is a part of clique then Perm(v) obtain its maximum value 1. For

every vertex v, -1<Perm(v) ≤1 . Overall permanence of a graph G(V,E) is given by

Perm(G)= 1/v ∑v∈V(Perm(v)).

52

Figure 6.1. Toy example to measure permanence of vertex v.

We perform an experiment to determine whether permanence is a good community

scoring function by comparing it with other scoring functions like modularity,

conductance and cut ratio.We run several community detection algorithms on the graph

and obtain a community set pertaining to each algorithm. We compute different

community scoring functions and rank each algorithms based on the value of metric. We

also compare the community set detected using a different validation measure such as

NMI and purity as discussed in chapter 2.

There exist various community detection algorithms, we have categorized the set of

algorithms based on the principle they use to detect communities.

53

(i) Modularity based approaches: Modularity based approaches are discussed

in chapter 2 we use CNM and Louvain algorithm for our experiments.

(ii) Node similarity approaches: In this category community is determined as

group of nodes which are similar to each other and dissimilar from rest of the

network. For our experiments in this category we select Walk Trap[27]

algorithm.

(iii) Compression-based approaches: In this approach community structure is

the set of nodes represented in the adjacency matrix which has maximizing

compactness while information loss is minimum. Popular algorithms are

InfoMod[27] and InfoMap[27].

(iv) Significance- based approaches: Community structure can be expected

under certain circumstaces, however group of densely connected nodes can

appear by chance.

(v) Diffusion-based approaches: In this approach assumption is that information

is more efficiently exchanged between nodes of the same community. In

community Overlap Propagation Algorithm (COPRA)[27] information takes

the form of a label, and the propagation mechanism relies on a vote between

neighbors. Group of nodes with same label form communities.

54

6.3.1 Evaluating Community Scoring Functions and Ground-

Truth Comparison Metrics

We run each algorithm discussed in section 6.3 on all datasets mentioned in section 6.2.

We computed modularity, permanence,conductance and cut-rato and ranked algorithms

based on each of the community scoring functions separately. In Figure 6.2 we present

score and rank (in parenthesis) for the football network. We use three standard validation

metrics:- Normalized Mutual Information (NMI)[27], Adjusted Rand Index (ARI)[27]

and Purity (PU)[27] to measure the accuracy of detected communities with respect to

ground-truth. These measures are not relevant in the context of network analysis.

Modified versions of NMI, ARI and Purity are Weighted-NMI (W-NMI), Weighted-

ARI(W-ARI) and Weighted-Purity (W-PU) respectively. We performed experiments

using all six measures to validate the results. We performed the same experiments on

LFR and real-world datasets. We compare the ranks obtained from community score

functions with ranks obtained from validation measures.We assume that the rank of the

best community scoring function should match the rank produced by the validation

measures.

55

Figure 6.2: We compute the values of four community scoring functions on output

obtained from eight different algorithms and validation measures using ground –truth

communities.

In Table 6.2 we present correlations of these community scoring functions across all the

validation measures for each of the networks.

Networks Modularity Permanence Conductance Cut

LFR(µ=0.1) 0.88 0.88 0.88 0.02

LFR(µ=0.3) 0.61 0.74 0.72 0.28

LFR(µ=0.6) 0.87 0.96 -0.18 -0.44

Football 0.25 0.43 -0.29 -0.41

Railway 0.43 0.46 0.08 -0.48

Coauthorship 0.92 0.92 0.76 0.86

Table 6.2: Performance of community scoring function averaged overall validation

measures for each network.

6.4.1 Community Detection Based On Permanence

 We develop a community detection algorithm by maximizing permanence. Our

algorithm Max_Permanence is motivated by the Louvain method[8] for modularity

maximization. The pseudo code is presented in Algorithm 6.1.

6.4.1.1 Algorithm Overview

 Each vertex in the network is initialized to a singelton community and their

permanence is set to 0. For each vertex we test whether combining the vertex to a

56

neighboring community will increase its permanence. If permanence is found to be

increased we join vertex and its appropriate vertex neighboring community. The process

is repeated for each vertex and the entire location of all vertices is repeated over several

iterations until the permanence value remains constant or converges. Our proposed

algorithm always tries to maximize permanence. Our apporach is to move vertices to a

community that preserves community structure. If such a move is not possible then the

vertex remains in a singleton community or moves to another community where it is

tightly coupled to its neighbors.

6.4.2 Performance Evaluation

In table 6.3 we present the average improvement of our algorithm over others for each

validation metric. In general we discovered on average communities obtained by

maximizing permanence matches known ground truth communities quite well for allmost

all networks except LFR (µ=0.6).

As we discussed the permanence metric works good if the network has modular

structure. If the network isn’t modular enough the permanence value tends to degrade

indicating that detecting communities in such networks is just of academic interest.

For the railway network our algorithm detects three singelton communities. Even the

ground truth community structure for the railway network contains one of these singelton

communities. Among all the algorithms discussed only our algorithm captures those

singelton communities. We summarize that if a network is really modular or has good

community structure like (LFR µ=0.1) ,maximizing permanence efficiently captures

realistic modules.

57

Input : A graph G.

Ouput :- Permanence of G and community set.

1.Procedure Max permanence (G(V,E))

2.Each vertex assigned to a singelton community.

3.Set value of maximum iterations as maxIt

4. Sum=0

5.Old_sum= -1

6. Itern=0

7.While sum !=old_sum and Itern < maxIt do

8. Itern = itern +1

9. Old_sum=sum

10. Sum=0

11. for all v ∈ V do

12.(compute current permanence of v)

13.Cur_perm=perm(v)

14. if cur_perm==1 then continue

15.N is set of neighboring communities of v

16.for all n ∈ N do

17. Move v to community n

18.(Compute permanence of v in community n)

19.n_perm=Perm(v)

20.if cur_perm < n_perm then

21. cur_perm=n_perm

22. else

23. retain v in its original community

24.sum=sum+cur_perm

Algorithm 1 Max_Permanence

58

We also observed if intercommunity edge density starts to increase our algorithm’s

performs better to capture communities within a certain limit like(LFR µ=0.3) after

which it starts deteriorating as the network doesn’t have good community structure or is

less modular.

Validation

Metrics

LFR(µ=0.1) LFR(µ=0.3) LFR(µ=0.6) Football Railwa

y

Coauth

orship

NMI 0.04 0.15 -0.31 0.04 0.15 0.04

ARI 0.06 0.21 -0.39 0.07 0.03 0.03

PU 0.04 0.17 -0.38 0.01 0.13 0.03

W-NMI 0.02 0.14 -0.41 0.09 0.26 0.05

W-ARI 0.05 0.19 -0.35 0.05 0.02 0.04

W-PU 0.03 0.17 -0.45 0.00 0.05 0.02

Table 6.3: Average improvement of our algorithm over different algorithms for each

network in terms of different validation measures.

6.5 Permanence Resolving Issues Related with Modularity

Maximization

We have seen and discussed in previous chapters that modularity suffers from (a)

resolution limit, (b) degeneracy of solutions (c)dependency on the size of the graph. In

this section we present how each of these problems are resolved by maximizing

permanence.

We use a simple example of two communities A and B connected by one vertex v (as

shown in Figure 6.5). In this example the community mapping is primarily determined by

v and its neighbors. We also assume apart from the edges through v, there is no

connection between communities between A and B. Figure 6 shows four possible ways of

assignment of v into communities. These are as follows: Case 1: v joins community A;

Case 2: v joins community B; Case 3: community A,B and vertex v merge together;

Case 4: communities A,B and v remain as three separate communities.

59

Figure 6.3: Toy examples demonstrating four cases.

6.5.1 Terminology

We assume vertex v as shown in Figure 6 is connected to α(β) nodes in communityA(B),

and these (α(β)) nodes from the set N α (Nβ). The total number of vertices in community A

is x+ α , and the total number of vertices in community B is y+ β. Before v is added the

average internal degree for community A and community B is I A and I B respectively.

The average internal clustering coefficient of neighbouring nodes in communities A andB

be CA and CB. If v is added to communities A(B) then average internal

clusteringcoefficient of v becomes CA
v
(CB

v
). The average clustering coefficient of nodes

in N α(Nβ)becomes Cα(Cβ).

We also assume communities A and B are tightly connected internally such that both

communities have greater CA and CB. Cα(Cβ) values dependent on connections of v to

communities and connections of vertices in N α (Nβ).We assume neighbors of v are not

60

connected with each other, then the average clustering coefficient will decrease. If v does not

add any new edges to group of neighbors then

 and

6.5.2 Discussion on Issues in Modularity Maximization

In this section we show how permanence overcomes issues of modularity maximization.

Degeneracy of solution :- In figure 6.5 if we consider α=β then the community scoring

function such as modularity will have multiple distinct high scoring solutions and will

lack global maximum. We encounter a tie-breaking situation [23]. Modularity

maximization will assign vertex v arbitrarily to A or B. In our algorithm or our metric

permanence will assign v as a individual community as long as it maintains conditions as

discussed below.

Condition 1. If α=β ,

 communities A,B and v will remain separate rather

than v joining A if (

)

 if α=β=1 then CA

v
=0 then communities

will remain separate. As α increases the left hand side of the equation will remain larger

than the right which guarantees they remain separatecommunities. We experimentedour

metric with a 5×5 complete grid we observed permanence generates one solution by

assigning eachvertex into a separate singeltoncommunity; whereas modularity provides

multiple solutions by combining two or more vertices. Vertex v will remain in the same

community if vertex v is loosely connected to its neighboring community and has an

equal number of connections to each community. However permanence doesn’t provide

the complete solution to Degeneracy of solution. In a few cases we get high permanence

if vertex v is combined with community A or community B.

61

Resolution limit:- Communities of certain small size fail to be detected as they are

merged to larger communities. We have witnessed the classic examples where the

modularity metric fails to detect communities of small size in a cycle of m cliques since the

maximum modularity is obtained by merging two neighboring cliques. If we use permanence

as a metric we can determine four cases discussed above. We explore the condition to

determine whether v will join community A rather then being separate (similarly we can do

analysis if v joins community B).

Condition 2. Joining v to community A gives higher permanence rather than merging

thecommunities A, B and v if ; =

, and

 +

 where

γ= α/β and also if ;

 , and

+

 +

 .

If we consider the clique example as a special case where v is connected by one edge to

community B and is connected all nodes in community A. We observe β=1 and adding v

decreases internal clustering coefficient of B. In general in a network if a node has lees than

two neighbors we set permanence as zero. As A is a clique so CA
v=1 and CB

v=0. After

subsituting all the values in condition 2 we observe we get a higher permanence when we

combine vertex v with community A and neighboring communities shouldn’t be merged. Our

observation is independent of the size of cliques. This phenomena highlights that if v is

tightly connected to a community and very loosely connected to another community ; highest

permanence is obtained by combining vertex v with community to which v is more

connected.

62

6.5.3 Discussion

 In this section we proposed a new metric called permanence which overcomes issues or

shortcomings of modularity. We have demonstrated with analytical proofs with

experiments on synthetic and real-world networks that permanence is effective

community evaluation metric compared modularity.

63

Chapter 7

Conclusion And Future Work

In my thesis we have proposed a parallel template for the Louvain method for

modularity maximization. Our results show our proposed template is scalable, and

produces modularity equivalent to those expected from the sequential case. In the future

we plan to apply or further improve our template on dynamic networks. We have

presented the effects of vertex perturbation on community structure and discussedthe

existence of stable communities. We have also shown if a network has a good community

structure then using stable communities as a preprocessing step to the Louvain or CNM

algorithm wecan get an improvement in the modularity value. Our algorithm to detect

stable communities has room for improvement. We consider only distance-1 neighbors as

stable communities. We have to include vertices at longer distances to create a stronger

stable community. Our proposed algorithm has a tendency to pick up some false

positives if vertices have two nearby consensus communities that are tightly connected.

In future we have to improve the conditions on stable communities to reduce false

positives. In the final leg of my thesis we have discussed the limitation of modularity

maximization and proposed a new metric called permanence which is able to reduce

many of the shortcomings of modularity. We have also shown our proposed metric is

effective when compared to other metrics on real –world and synthetic networks. Our

proposed metric calls for more deeper levels of investigation. We have to test our metric

on more diverse areas to prove the robustness. In my thesis we have restricted our

64

discussion on non overlapping communities. In the future we plan to further extend the

permanence metric to evaluate overlapping community structure.

65

References

[1] S. Bansal, S. Bhowmick and P. Paymal. Fast Community Detection ForDy-

namic Complex Networks, Communications in Computer and Information Sci-

ence Volume 116. Proceedings of the Second Workshop on Complex Networks

(2010).

[2] V.D. Blondel, J.-L.Guillaume, R. Lambiotte and E. Lefebvre. Fast unfolding of

community hierarchies in large networks. J. Stat. Mech. 2008 (10).

[3] U. Brandes, D. Delling, M. Gaertler, R. Gorke, M. Hoefer, Z. Nikoloski, and D.

Wagner. On modularity clustering. IEEE Transactions on Knowledge and Data

Engineering, 20(2):172188, (2008).

[4] Clauset, A., Newman, M.E.J. and Moore, C. Finding community structure in

very large networks. Phys. Rev. E. 70(6), 66111 (2004).

[5] B. H. Good, Y.-A.deMontjoye and A. Clauset The performance of modularity

maximization in practical contexts. Phys.ical Review. E, 81, 046106 (2010).

[6] D. Ediger, J. Riedy, H. Meyerhenke, and D.A. Bader. Tracking Structure of

Streaming Social Networks, 5th Workshop on Multithreaded Architectures and

Applications (MTAAP), (2011).

[7] A. Lancichinetti A and S. Fortunato Benchmarks for testing community detec-

tion algorithms on directed and weighted graphs with overlapping communities.

Phys Rev E 80: 016118 (2009).

[8] M.E.J. Newman, M. Girvan. Finding and evaluating community structure in

networks.Phys. Rev. E 69(2), 026113 (2004).

[9] M. A. Porter, J.-P. Onnela, and P. J. Mucha. Communities in networks. Notices

66

of the American Mathematical Society. 56, (2009).

[10] W. Rand, Objective criteria for the evaluation of clustering methods. J. Am.

Stat. Assoc. 66 (336), 846850 (1971).

[11] U.N. Raghavan, R. Albert, R. and S. Kumara. Near linear time algorithm to

detect community structures in large-scale networks. Phys Rev E 76, 036106.

(2007).

[12] J. Soman and A. Narang. Fast Community Detection Algorithm with GPUs

and Multicore Architectures. Proceedings of the 2011 IEEE International Par-

allel& Distributed Processing Symposium. (2011).

[13] E. J. Riedy, H. Meyerhenke, D. Ediger, and D. A. Bader. Parallel community

detection for massive graphs. In 10th DIMACS Implementation Challenge -

Graph Partitioning and Graph Clustering. (2012).

[14] V.A. Traag, P. Van Dooren, Y. Nesterov. Narrow scope for resolution-limit-free

Community detection. Phys. Rev. E 84, 016114 (2011).

[15] S. Fortunato and M. Barthelemy. Resolution limit incommunity detection. PNAS,

Jan. 2007.

[16] J. W. Berry, B. Hendrickson, R. A. LaViolette, and C. A. Phillips. Tolerating the

community detection resolution limit with edge weighting. Physical ReviewE,

83(5):056119, May 2011.

[17] B. Good, Y. D. Montjoye, and A. Clauset. Performance of modularity maximization

in practical contexts. Phys. Rev. E, 81(4):046106, 2010.

67

[18] A. Lancichinetti and S. Fortunato. Consensus clustering in complex networks.

Scienti_c Reports, 2,2012.

[19] A. Lancichinetti and S. Fortunato. Benchmarks for testing community detection

algorithms on directed and weighted graphs with overlapping communities.

Phys. Rev. E, 80(1):016118, July 2009.

[20] S. Ghosh, A. Banerjee, N. Sharma, S. Agarwal, and N. Ganguly. Statistical analysis

of the indian railway network: a complex network approach. Acta Physica Polonica B

Proceedings Supplement, 4:123{137, March2011.

[21] T. Chakraborty, S. Sikdar, V. Tammana, N. Ganguly,and A. Mukherjee. Computer

science _elds as ground-truth communities: Their impact, rise and fall.

In ASONAM, pages 426 { 433, 2013.

[22] J. Yang and J. Leskovec. De_ning and evaluatingnetwork communities based on

ground-truth. In Proceedings of the ACM SIGKDD Workshop on Mining Data

Semantics, MDS '12, pages 3:1{3:8, New York, NY, USA, 2012. ACM.

[23] B. Good, Y. D. Montjoye, and A. Clauset.Performance of modularity maximization

in practicalcontexts. Phys. Rev. E, 81(4):046106, 2010.

68

[24] M. Newamn, “Scientific collaboration networks: Ii. shortest paths, weighted

networks, and centrality”, Phys. Rev. E, vol. 016132, 2001.

[25] J. L. Gross and J. Yellen, “Handbook of Graph Theory and Applications”. CRC

Press, 2004.

[26] T. Chakraborty, S. Srinivasan, N. Ganguly, S. Bhowmick, and A. Mukherjee.

ConstantCommunities in Complex Networks. ScientificReports, 3, May 2013.

[27] T. Chakraborty, S. Srinivasan, N. Ganguly, S. Bhowmick, and A. Mukherjee.

Stay where you belong : on the permanence of vertices in network communities WWW

2014(Submitted).

	Detecting Stable Communities In Large Scale Networks
	Recommended Citation

	tmp.1561149678.pdf.fGyFA

