
University of Nebraska at Omaha University of Nebraska at Omaha

DigitalCommons@UNO DigitalCommons@UNO

Student Work

3-13-2014

MULTI-ROBOT COVERAGE WITH DYNAMIC COVERAGE MULTI-ROBOT COVERAGE WITH DYNAMIC COVERAGE

INFORMATION COMPRESSION INFORMATION COMPRESSION

Zachary L. Wilson
University of Nebraska at Omaha

Follow this and additional works at: https://digitalcommons.unomaha.edu/studentwork

 Part of the Computer Sciences Commons

Please take our feedback survey at: https://unomaha.az1.qualtrics.com/jfe/form/

SV_8cchtFmpDyGfBLE

Recommended Citation Recommended Citation
Wilson, Zachary L., "MULTI-ROBOT COVERAGE WITH DYNAMIC COVERAGE INFORMATION
COMPRESSION" (2014). Student Work. 2900.
https://digitalcommons.unomaha.edu/studentwork/2900

This Thesis is brought to you for free and open access by
DigitalCommons@UNO. It has been accepted for
inclusion in Student Work by an authorized administrator
of DigitalCommons@UNO. For more information, please
contact unodigitalcommons@unomaha.edu.

http://www.unomaha.edu/
http://www.unomaha.edu/
https://digitalcommons.unomaha.edu/
https://digitalcommons.unomaha.edu/studentwork
https://digitalcommons.unomaha.edu/studentwork?utm_source=digitalcommons.unomaha.edu%2Fstudentwork%2F2900&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.unomaha.edu%2Fstudentwork%2F2900&utm_medium=PDF&utm_campaign=PDFCoverPages
https://unomaha.az1.qualtrics.com/jfe/form/SV_8cchtFmpDyGfBLE
https://unomaha.az1.qualtrics.com/jfe/form/SV_8cchtFmpDyGfBLE
https://digitalcommons.unomaha.edu/studentwork/2900?utm_source=digitalcommons.unomaha.edu%2Fstudentwork%2F2900&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:unodigitalcommons@unomaha.edu
http://library.unomaha.edu/
http://library.unomaha.edu/

MULTI-ROBOT COVERAGE WITH
DYNAMIC COVERAGE

INFORMATION COMPRESSION

A Thesis

Presented to the

Department of Computer Science

and the

Faculty of the Graduate College

University of Nebraska

In Partial Fulfillment
of the Requirements for the Degree

Master of Science in Computer Science

University of Nebraska at Omaha

by

Zachary L. Wilson

March 13, 2014

Supervisory Committee:

Professor Prithviraj Dasgupta

Professor Stanley Wileman

Professor Robert Todd

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

Microform Edition © ProQuest LLC.
All rights reserved. This work is protected against

unauthorized copying under Title 17, United States Code

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, MI 48106 - 1346

UMI 1554814

Published by ProQuest LLC (2014). Copyright in the Dissertation held by the Author.

UMI Number: 1554814

MULTI-ROBOT COVERAGE WITH DYNAMIC
COVERAGE INFORMATION COMPRESSION

Zachary L. Wilson, MS

University of Nebraska, 2014

Advisor: Professor Prithviraj Dasgupta

This work considers the problem of coverage of an initially unknown environment by a set

of autonomous robots. A crucial aspect in multi-robot coverage involves robots sharing in-

formation about the regions they have already covered at certain intervals, so that multiple

robots can avoid repeated coverage of the same area. However, sharing the coverage infor-

mation between robots imposes considerable communication and computation overhead on

each robot, which increases the robots’ battery usage and overall coverage time. To address

this problem, we explore a novel coverage technique where robots use an information com-

pression algorithm before sharing their coverage maps with each other. Specifically, we use

a polygonal approximation algorithm to represent any arbitrary region covered by a robot

as a polygon with a fixed, small number of vertices. At certain intervals, each robot then

sends this small set of vertices to other robots in its communication range as its covered

area, and each receiving robot records this information in a local map of covered regions so

that it can avoid repeat coverage. The coverage information in the map is then utilized by

a technique called spanning tree coverage (STC) by each robot to perform area coverage.

We have verified the performance of our algorithm on simulated Coroware Corobot robots

within the Webots robot simulator with different sizes of environments and different types

of obstacles in the environments, while modelling sensor noise from the robots’ sensors.

Our results show that using the polygonal compression technique is an effective way to

considerably reduce data transfer between robots in a multi-robot team without sacrificing

the performance and efficiency gains that communication provides to such a system.

i

Dedicated to Bridgette, the light of my life.

ii

Acknowledgements

I’d like to acknowledge and give my thanks to Professor Raj Dasgupta, Professor Robert

Todd, and Professor Stanley Wileman for their time and consideration as my committee. I’d

also like to acknowledge the CMANTIC Research Group for the resources and the Office

of Naval Research for the funding which made this work possible.

iii

Contents

1 Introduction 1

2 Related Work 4

2.1 Mobile Robots and Software Agents . 4

2.2 Multi-Robot Coverage . 5

2.3 Map Information Compression . 10

3 Coverage 12

3.1 Algorithm Description . 15

4 Map Compression by Polygonal Approximation 21

4.1 Polygonal Representation of Regions . 21

4.2 Polygon Compression . 22

4.3 Region Combination . 25

5 Experimental Results 27

5.1 Hardware and Software . 27

5.2 Simulation Results . 31

Area Covered . 32

Distance Travelled . 35

Communication and Aborted Blocks . 36

iv

6 Future Work and Conclusions 39

6.1 Lessons Learned . 39

6.2 Future Work . 40

6.3 Summary . 41

1

Chapter 1

Introduction

Multi-robot systems are systems which utilize some number of robotic platforms which

work in parallel to perform a given task. This sort of system is utilized in applications

where a single monolithic robot is too expensive but a single small robot is incapable of

performing the required task in an adequate time-frame. Multi-robot systems are also useful

in situations in which robustness and resource redundancy are desirable traits. A coopera-

tive multi-robot system is made up of interacting robotic platforms which solve a problem

in a distributed manner (Parker, 1999). However, communication itself incurs a cost on

real-life systems in the form of power expenditure and computational resources which are

at a premium in certain types of systems. One problem for which cooperative multi-robot

systems are typically used for is efficient area coverage; that is, ensuring that the sensor of

a robot fully covers some region of space while minimizing overlap. This thesis addresses

the problem of minimizing communication costs associated with cooperative multi-robot

area coverage. Cooperative multi-robot area coverage is a challenging problem due to the

fact that excluding coverage data results in an inaccurate map being shared between robots

in the system. This, in turn, results in repeated coverage and additional overhead. Sim-

ilarly, limiting time between communications enhances the possibility of repeat coverage

between data bursts due to the fact that a robot may cover an area covered by another robot

2

before receiving up-to-date coverage information. Therefore, the system must communi-

cate often enough that maps are kept reasonably up to date, yet must limit the amount of

data sent while still offering a sufficiently accurate representation of the area covered by

each robot to every other robot in the system.

The problem of autonomous multi-robot coverage falls into the field of autonomous robotic

control, which concerns itself with the implementation of software agents which utilize the

sensors and actuators on a robotic platform to interact intelligently with the robot’s sur-

rounding environment. Autonomous multi-robotic control has the added complication of

requiring interaction between multiple robotic platforms and their controlling agents to en-

sure that the system as a whole works in a coordinated and efficient manner. Such a system

of multiple robots with interacting agents is called a multi-robot system. In the study multi-

robot systems, there is a strong focus on time efficiency and completing goals with the

minimum distance travelled possible (Gabriely and Rimon, 2003). However, little research

which addresses the approach of minimizing communication while limiting potential time

and distance costs has been done.

In this thesis, the problem of limiting data transfer between agents in a multi-robot system

as applied to the coverage problem is accomplished by utilizing polygonal approxima-

tion to perform compression on coverage information. The main idea of our compression

scheme is to significantly reduce the amount of coverage information communicated be-

tween robots, while slightly sacrificing the exactness of the coverage data. The primary

contribution of this thesis is the novel application of polygonal approximation to coverage

data compression, for purposes of limiting data transfer in multi-robot coverage systems.

To show the operation of this system, we have applied the technique specifically to the prob-

lem of robotic coverage of an unknown environment with obstacles inside the environment.

The utilization of robotic systems to cover an environment can be applied to humanitarian

3

de-mining (the removal of land mines from past conflict areas for the benefit of civilians),

application of chemicals to crops, vacuuming floors, and any other situation where it’s de-

sirable to have every position within an area subject to a sensor or tool. In this research, an

accurate simulated model of the Corobot robot from CoroWare has been created within the

Webots robot simulation suite. This is a relatively cheap commercially available wheeled

robotic platform which runs on Windows XP or Linux; a larger, outdoor-capable variant

called the Explorer robot is also available at an increased price. The primary advantages

to using a commercially available, off-the-shelf robotic platform are economy of scale in

production results in lowered costs and that hardware support from the original vendor is

available, as well as the simple fact that any algorithm implemented on this hardware can

be put immediately into use.

Our experimental results show that the premise of the algorithm is sound; a super-linear

increase in the team’s coverage and effectiveness is shown, demonstrating that severely

restricted, approximate coverage information exchange still permits effective cooperative

behavior in multi-robot teams.

The rest of this document will examine the topics discussed in this chapter more closely.

Chapter 2 covers the body of previously performed academic work relevant to the topic.

Chapter 3 describes the basic, single-robot portion of the coverage algorithm utilized by our

implementation. Chapter 4 presents the novel aspect of our algorithm, the use of polygonal

approximation to compress area coverage information for communication between robots

in a team. Our experimental results are presented and discussed in chapter 5, and this work

is summarized in chapter 6.

4

Chapter 2

Related Work

In this chapter, we will introduce work currently applicable to the area of multi-robot cover-

age and dynamic coverage information compression. In the first section, we will introduce

mobile robots and software agents. In the second section we will introduce multi-robot

coverage and discuss why it is superior to single robot coverage. Finally, we will intro-

duce work pertaining to area information compression and how it applies to systems with

multiple robotic platforms.

2.1 Mobile Robots and Software Agents

A robot is defined as a mechanical device which is capable of gathering information about

its surrounding environment using sensors and interacting with the environment via actu-

ators; a mobile robot is a robot which has actuators that allow it to move around within

the surrounding environment. The logic which maps sensory input to mechanical output

is called a controller which is a type of software agent. Software agents perform tasks

autonomously (without direct human intervention).

The ability of a robot to act autonomously based on what it senses in its environment makes

it a flexible tool for use in applications where tasks are too dangerous, too expensive, or too

5

sensitive to error to be performed by human beings. Static robots are used in automobile

assembly lines to rapidly and precisely weld vehicles together, while mobile robots can take

the form of agricultural tractors (Reid et al., 2000), for example. Mobile robots can also

be designed for tasks such as humanitarian de-mining, search and rescue, and battlefield

surveillance. However, demanding applications can take a large amount of time for one

robot to perform and large, expensive robots are not ideal for hazardous environments

which may result in a loss of hardware. In these situations, a system which utilizes multiple

less capable, less expensive robots which work in parallel has advantages over those which

use a single more capable, yet more expensive, robot.

2.2 Multi-Robot Coverage

The use of multiple robots to accomplish a task is a broad subject; however in this thesis

we will focus primarily on how a group of robots can be used to cover (touch every part of)

an environment. A group of robots can be used to accomplish such a common task through

coordinated use of the sensors and actuators available to the group as a whole and in do-

ing so can complete the task more quickly than a single robot. Such systems can utilize

multiple overlapping sensors to reduce the effects of sensor noise (Stachniss et al., 2008).

This permits scalability, as robots can be added as task size increases and robustness, as the

failure of an individual robot does not result in failure of the task.

There are challenges introduced when utilizing multiple robots to perform coverage which

either don’t exist or are trivial when implementing a single-robot solution. These include,

but are not limited to (a) avoiding repeated coverage to limit time and energy waste;

(b) storing and communicating coverage information to permit intelligent coverage be-

havior; and (c) permitting the task to continue when robots move out of communication

range. Examples of this style of approach are target utility based exploration (Burgard

6

et al., 2005), cooperative rectilinear environment coverage (Butler, 2000), pheremone-

based coverage (Koenig et al., 2001), Boustrophedon coverage (Rekleitis et al., 2008),

and segment-partitioning exploration (Wurm et al., 2008). While none of these approaches

are utilized in our algorithm, details follow for the purpose of comparison.

In target utility based exploration, multiple robots are assigned target points based on the

cost to the robot to reach that point and the expected utility of exploring that point; assign-

ment of a point to a robot reduces the expected utility of the environment area visible from

that point. Any given area is ”explored” or ”unexplored” as a binary value and coordina-

tion is performed without consideration to the amount of information being sent between

the agents performing the work. The system detailed is able to map the initially unknown

environment utilizing ranged sensors and unlimited communication in both real and simu-

lated environments.

Cooperative rectilinear environment coverage, in contrast to the previous algorithm, per-

forms actual coverage of the environment rather than simply building a map of the area.

This algorithm is designed around the use of square robots with minimal sensing capability

– contact sensors only – to cover bounded environments which are able to be split up into

a finite number of discrete rectangles (environments whose boundaries and obstacles are

straight and intersect at right angles). The free space of the environment is bounded by

the robots, which identify points at which partitioning of the environment would produce a

convex rectangle containing no unreachable points; said rectangle then becomes a subtask

to be assigned to one of the cooperating robots. The algorithm is shown to be complete via

proof and simulation for the subset of environments for which it was designed; however,

hardware experimentation was not done and specifics with regard to communication were

not discussed. This is a centralized algorithm with an overseer which collects information

about the environment and assigns tasks to the robots.

7

Pheromone-based coverage utilizes very limited robotic platforms which use non-optimal

real-time search techniques and alleviate the need for on-board maps by leaving markers in

the environment which signify that the area in question has been covered in the past; said

markings can be sensed by every robot in the team and therefore not only serve as a means

of replacing on-board memory, but also as a means of communication between the agents

in the system. Such an approach has clear advantages in terms of cost savings in hardware,

but also replaces fairly compact electronic components with an actuator which is capable

of altering the environment in a measurable way and a sensor which is capable of detecting

those alterations. This adds complexity to the hardware which, at least partially, offsets the

benefits of the algorithm’s simplicity in real-world applications.

Boustrophedon coverage has two primary modes of operation: the restricted and unre-

stricted communications cases. In restricted communication scenarios, robots split into two

teams – one for exploration and mapping of region boundaries and one for coverage of the

mapped regions. In the unrestricted communication scenario, the exploration and coverage

tasks occur simultaneously. In each case, the environment is partitioned into strips which

are further partitioned into cells: in the unrestricted case, partitions are then auctioned off

to robots based on cost of each robot to cover the indicated strip. Actual coverage is a

fairly typical cellular decomposition and cellular coverage problem. In either case commu-

nication occurs frequently even if the amount of information shared is restricted: robots are

aware of each others’ locations. The unrestricted case is shown to be efficient and complete,

while the restricted case – due to coverage being restricted by the speed of the exploration

team – can result in significant idle time for the coverage team.

Segment-partitioning exploration is an exploration algorithm which splits up the boundary

between explored and unexplored area and assigns those partitions to the robots in a way

8

that minimizes sensor overlap and travel costs. Partitioning and assignment of the robots to

”frontier” regions is done on-line. Communication is not a consideration in this algorithm,

nor are the details of the map representation.

There are two categories of coverage algorithms which will, in contrast to the above, be

the primary focus of this thesis. These are algorithms which accomplish one of the desired

tasks – either complete coverage or complete minimization of communication – and thus

are of great interest as starting points for our work. The first approach, dispersion-based

coverage, emphasizes simplicity over efficiency. In dispersion-based algorithms, robots do

not store or exchange any coverage information and disperse themselves via potential fields

(Batalin and Sukhatme, 2002; Howard et al., 2002).

Dispersion by the use of potential fields is accomplished by assigning a virtual repulsive

force to each object the robot should be avoiding, then summing those forces to generate

a composite vector. The directional component of the resulting vector is the direction in

which the robot should travel to avoid the objects in question. This technique is relatively

well-established and commonly used for the purposes of dispersion (Howard et al., 2002).

Potential fields dispersion has the advantage of requiring only positional information from

its environment (if avoiding obstacles and/or environmental features) and/or robots (if a

robot is dispersing from its teammates). No higher-level processing is necessary; however,

as a result, repeated coverage can be a significant drain on algorithmic efficiency.

The second approach is to build a cellular graph which models the environment, and al-

low the robots to construct the least-cost spanning tree of the graph; examples include

MSTC (Hazon and Kaminka, 2008) and collaborative on-line cellular swarm-based cover-

age (Rutishauser et al., 2009). MSTC is a multi-robot implementation of the STC algorithm

originally proposed by Gabriely and Rimon, which is utilized as a component of our own

9

algorithm. In STC, an area is partitioned into a cellular grid composed of square cells; each

cell has four sub-cells which are roughly the size of the footprint of the covering robot.

Cells are created in a spanning tree from the cell at the robot’s initial position, and traversal

of the tree is done using depth-first search. Each logical edge traversal prompts a physical

cell traversal. In MSTC, the STC path is computed and then partitioned into sections for

traversal by multiple robots, which know the complete tree and follow their subtrees of the

path. Communication is considered in this work only as a requirement, but implementation

details are not discussed. However, robustness and efficiency of motion/time are shown to

be excellent in the best case. Running time depends heavily on the robots’ initial positions;

worst-case performance is shown to be approximately equivalent to the single-robot STC

performance.

Collaborative on-line cellular swarm-based coverage is an algorithm designed for com-

plete coverage using a large number of small robots with error-prone sensors. Limits in

communication range are considered, though no hardware testing is performed in this work.

In the single-robot case, the environment is decomposed into cells which are traversed by

robots moving to the closest (in terms of graph distance) uncovered cell. In multi-robot

cases, collaboration is performed by the robots broadcasting their complete map of covered

cells every time a new cell is covered, which allows the other robots to add any cells in

that robot’s covered set to their covered set, and delete those cells from their uncovered

sets. This is a very robust method of map data transfer, but is also exceptionally costly.

Throughout the system, maps are transmitted once for every cell in the map; therefore, the

system-wide efficiency of the communication of the coverage data is O(n2).

Our approach fuses elements of classic, communication-centric coverage algorithms, po-

tential field dispersion, and single-robot spanning tree coverage algorithms in order to max-

imize coverage while minimizing the amount of data transmitted between robots. The en-

10

vironment, as a result, is decomposed in layers, all computed and explored on-line while

communication is limited to very small bursts of positional data only when coverage of a

significant subsection of the map is completed.

2.3 Map Information Compression

While modern computing hardware has reduced the need for minimizing the size of datasets

in most computational situations, mobile robotic platforms come in many different forms;

some of these forms have limited working memory, communications bandwidth, or both.

In such situations, compression of the explored area information can have noticeable ben-

efits in terms of memory used and communications overhead when transmitting that data.

Work has been done on the topic of map compression in the past; however, the techniques

in question have limitations which make those approaches unsuitable for use in the context

of mobile exploration of an unknown environment.

Both approaches we shall examine model the environment as a set of vectors, rather than a

rasterized cellular map; as previously discussed, our model of the environment and the re-

gions which our agents have explored is also in vector form, using continuous coordinates

as opposed to a discrete cellular model.

The first approach utilizes correlation between observations by static sensors in proxim-

ity to one another to ensure compressibility of the aggregate output of the sensor network

(Baek et al., 2004). Optimal compression is achieved by distributing the sensors in such a

way that correlation is maximized. The weakness in this approach for our use case is that

mobile robots performing coverage in an unexplored environment can not ensure that all

sensor observations will be optimally distributed for maximization of correlation between

11

observations: the algorithm depends on a known and unchanging position from which mea-

surements of the environment are made; this is incompatible with our problem definition.

The second approach performs dictionary encoding on the map information prior to trans-

mitting or storing the data, which relies on common elements within the vector information

to construct a dictionary with which to compress the information (Shekhar et al., 2002).

This is incompatible with our use case as well, as dictionary compression requires the cre-

ation of a new encoding dictionary every time new information is added to the dataset to

be compressed. Our algorithm explores an unknown area and is continually updating its

map with a list of previously covered regions within that area; consequentially, the cover-

age map is constantly changing. Change in the dataset to be compressed causes continual

reconstruction of the encoding dictionary and, for other robots to be able to decode that

information, the updated dictionary must be sent with the compressed data every time the

dictionary changes. This causes a large amount of communications overhead and largely

negates the efficiency gains made by compressing the map coverage data.

Our algorithm instead uses a mathematical approximation of the enclosing polygon of the

area covered by a robot via usage of the min-ε algorithm (Perez and Vidal, 1994). This

algorithm outputs a polygon with a user-defined number of vertices which most closely

approximates a given source polygon with a larger number of vertices. This causes a loss

of coverage information, but permits any given region of coverage to be represented in

constant space.

12

Chapter 3

Coverage

In this chapter, we will discuss the problem of performing complete coverage with a team

of mobile robots. We will also examine applications of multi-robot coverage as well as

sources of inefficiency and overhead, and introduce the rationale for our approach. We will

then present the simulator we used to develop our approach, the simulated robotic platform

used, and the real hardware it simulates. Finally, we will explain the single-robot coverage

technique used by the robots in our solution.

The problem of coverage can be defined informally as ensuring that a sensor, actuator, or

other device touches every part of an area. It is assumed for our purposes that said area

is a patch of ground represented in two dimensions. This is a common real-life problem

which occurs in agricultural, military, and humanitarian situations such as crop-spraying,

de-mining, and search and rescue operations. A typical coverage algorithm must determine

what areas need to be covered and assign each coverage subtask to an individual robot.

Each robot must then travel to the region it was assigned and perform coverage while stor-

ing the information obtained via sensor into a map. That map is then shared in some way

with the robot’s teammates (Stachniss et al., 2008).

13

The effectiveness of a given coverage algorithm can be measured in two ways: complete-

ness of coverage (which should be maximized) and repeated coverage (which should be

minimized). In order to have any appreciable effect on these values, a map of the space

the robot has previously covered is generally required, and allows the robot to remember

where it has been and where it has not yet covered. This requires the robot have adequate

memory to (a) store the complete map; (b) store some subset of the map or (c) store an

approximation of the map.

In coverage algorithms utilizing multiple robots, preventing repeated coverage requires that

each robot not only builds a map of the space it has previously covered, but also communi-

cates that map to the other robots so that those robots will not cover the area it has already

covered. This requires the robot have energy to accomplish the communication, as well as

adequate time and communication speed to send the complete map, a subset of the map,

an approximation of the map, or an incremental update of the changes to the map since the

last communication sent.

Limiting factors on a multi-robot system’s coverage effectiveness are inefficiency and over-

head. Inefficiency is defined as coverage that occurs in excess of what is required (repeated

coverage) while overhead is defined as robot travel between periods of coverage, compu-

tations spent on map operations and both computation and time spent communicating with

other robots. Ideally, minimizing inefficiencies and overhead is the idea. However, there

exists a trade-off between these two. Reducing inefficiency usually has an overhead cost

and reducing overhead usually has an efficiency cost in practice. Finding a balance between

the two factors which minimizes the total detriment to the algorithm as a whole results in

a more capable algorithm than an algorithm which focuses on minimizing one factor and

does not consider the other; this is called cost minimization.

14

Every action a robot takes incurs a cost in the form of energy used and time passed while

the task is accomplished. When considering energy costs, a mobile robot without a tether

has finite energy stores which must be carried with the robot itself. From a perspective

of cost and robustness, minimizing the amount of energy which must be stored on a robot

in order for that robot to complete a particular task also results in a minimization of cost

for that robot, and the development of efficient algorithms which limit the waste of energy

minimizes the cost of the system required to run that algorithm. In the case of the use of

off-the-shelf hardware, maximizing the area which can be covered by a single robot be-

fore energy depletion allows fewer units to be used to complete the system’s assigned task,

which reduces hardware costs of the system. In both situations, minimizing energy ex-

pended in movement, communication, and data processing has real-world benefits in terms

of monetary cost.

In certain situations utilizing very small robots with limited capabilities – such as search

and rescue and extraterrestrial exploration – time is also a significant factor: in the former

case locating severely injured people in a timely manner is extremely important and explo-

ration of tight spaces may require very small platforms, while in the latter case platform

size and weight is limited due to the prohibitive costs of launching heavier, more capable

systems. In both cases, time costs incurred in map computation operations and map com-

munication may be unacceptable, and as such the amount of time spent on overhead should

be minimized.

Traditionally, multi-robot coverage algorithms have taken two primary forms: the first is

the dispersion-based approach, which minimizes overhead by not communicating at all, but

makes no attempt to prevent repeated coverage; while the second requires agents to send

complete or partial map data frequently and guarantees that minimal or no repeat coverage

takes place. This thesis will present an algorithm that combines these approaches to maxi-

15

mize coverage while minimizing both repeat coverage and communication.

3.1 Algorithm Description

The algorithm that is the focus of this thesis has two primary components. The first is

the main coverage algorithm which handles the sensing, navigation, and coverage of the

robot’s environment, and that is the portion that will be covered in this section. The next

chapter focuses primarily on the contributions of the author with respect to how the map is

stored and communicated between robots using polygonal approximation. We call this the

Polygonal Approximation Coverage algorithm or PAC algorithm.

Figure 3.1: Robot controller state dia-
gram.

The robot’s controller is constructed as a fi-

nite state machine which changes between reac-

tive behaviors according to certain conditions;

the behaviors in question are dispersion, re-

gion/block definition, and region/block cover-

age. See Figure 3.1 for a visual representa-

tion of the algorithm’s state machine and Figure

3.2 for the region coverage algorithm in pseu-

docode. The initial state is dispersion, where the

robot examines its map and moves away from

previously covered areas and the boundaries of the work area using potential fields until

the robot reaches a local minima in the field. At this point it designates a new region, and

enters the region covering phase of the algorithm. Regions are represented as polygons

while work area boundaries are represented as line segments; however, the virtual repelling

forces which act on the robots are point sources. Regions are represented as point sources

16

by their centroids, whilst work area boundaries are represented by the point nearest the

robot which lies upon the line segment. Force intensity is directly proportional to the area

of the region in question, for regions, and equal to the area of the largest region for work

area boundaries; forces fall off linearly with distance. The algorithm by which the disper-

sion angle is calculated on each iteration of the controller while in the dispersion state is

more formally defined in Figure 3.3.

Figure 3.4: Diagram showing the poly-
gon chaining behavior. Note that a single
line can be drawn through the centroids
of all three polygons.

The region covering phase of the algorithm is

split into 3 distinct parts: polygon definition,

polygon bounding, and polygon coverage. A re-

gion is initially defined as a single polygon of

either three or an even number of sides. How-

ever, upon completion of the coverage process

of a given polygon P, a new polygon P+1 is de-

fined with its first edge directly opposite the first

edge of the previous polygon P. Polygons are, as

a result, constructed in a continuous strip such

that a straight line can be drawn through the cen-

troids of P, P+1, and P+2, as seen in Figure 3.4. Polygon bounding occurs immediately

after polygon definition: the robot moves from vertex to vertex of the polygon, bounding

its exterior and discovering any obstacles which intrude or bisect it and discovering which

vertices are reachable and which vertices are not. After this is accomplished, the robot

performs coverage of the interior of the polygon boundary using the single-robot spanning

tree coverage (STC) algorithm (Gabriely and Rimon, 2003).

Throughout the algorithm, various reactive behaviors can be activated and deactivated by

conditions encountered by the robot and the robot’s current state, which are illustrated in

17

Figure 3.5. For the polygon bounding portion of the algorithm, behaviors include:

• edge following (in which the robot moves along a virtual edge between two points in

two dimensional space) which is triggered by the polygon bounding state,

• obstacle avoidance (in which the robot sharply turns to avoid an obstacle in its path

of travel) which is triggered by the front-facing infrared sensors detecting an object,

• wall following (in which the robot maintains a distance from an obstacle on either its

right or left side) which is triggered by the obstacle avoidance behavior while in the

polygon bounding and dispersion states.

• block aborting (in which the robot detects that it’s either moved into a previously

covered region, or has encountered an obstacle it cannot get around)

Figure 3.5: Diagram showing the edge
following, obstacle avoidance, wall fol-
lowing, and block aborting behaviors.

The obstacle avoidance behavior overrides all

other behaviors to prevent a damaging en-

counter between the robot and obstacles in the

environment, which leads to the wall follow be-

havior. The wall follow behavior only termi-

nates when the robot crosses from the interior

to the exterior of the virtual polygon it was at-

tempting to bound, at which point the robot

notes the edge it has just crossed, marks any ver-

tices between the edge it was on when it began

the behavior and the current edge as unreach-

able, and resumes the edge following behavior

on the newly encountered edge to continue the

bounding task.

18

Note that these behaviors are exclusive to the bounding state and do not take place while ac-

tual coverage occurs: the recursive STC algorithm instead begins by splitting each polygon

into a discrete cellular grid – each cell of which is split into four sub-cells – which it then

covers by selecting a cell, scanning it for obstacles, and moving into one of the sub-cells

of the cell. When the chain of cells which the robot has been covering comes to an end

due to the robot either encountering the polygon boundary or an obstacle, the robot then

backtracks physically and logically, moving through the uncovered sub-cells of its previ-

ously covered cells as it does so. It then finds the last cell with another valid, unoccupied

neighboring cell and begins to recurse from that point down another branch of the tree of

cells.

19

Figure 3.2: Pseudocode for region-based coverage algorithm.

state← NEW-REGION-SETUP
while state! = STOP do

if state = NEW-REGION-SETUP then
disperse();
if accessibleAreaFound() = true then

state← NEW-POLY-SETUP
else

state← STOP
end if

else if state = NEW-POLY-SETUP then
if lastPolyVerticesUnaccessible() = true then

state← NEW-REGION-SETUP
else

define-poly-in-random-direction();
state← DEFINE-BOUNDARY-EDGE

end if
else if state = DEFINE-BOUNDARY-EDGE then

if checkForObstacles() = true then
state← DEFINE-BOUNDARY-AVOID-OBSTACLE

else if allVerticesVisited() = true then
state← TRAVEL-TO-CENTER

else
followEdge();

end if
else if state = DEFINE-BOUNDARY-AVOID-OBSTACLE then

if checkForObstacles() = true then
avoidObstacle();

else
state← DEFINE-BOUNDARY-WALL-FOLLOW

end if
else if state = DEFINE-BOUNDARY-WALL-FOLLOW then

if isInPoly() = true then
followWall();

else
state← DEFINE-BOUNDARY-EDGE

end if
else if state = TRAVEL-TO-CENTER then

travelToCenter();
state← STC

else if state = STC then
performSTCCoverage();
state← NEW-POLY-SETUP

end if
end while

20

Figure 3.3: Dispersion Angle Calculation

Given that all polar coordinates are with respect to a robot d and that:

d : position of robot

R : set of regions

B : set of boundaries

Rc
i : centroid of region i

Bc
i : closest point to robot d

RA
i : area of region i

dist(p,d) : distance between point p and robot d

bear(p,d) : angle between point p and robot d

cart(r,θ) : global cartesian point represented by polar coord. (r,θ) w/ respect to robot d

polar(x,y) : polar point w/ respect to robot d represented by global coord. (x,y)

amax : area of the largest region in R

px :x coordinate of point p

py :y coordinate of point p

pθ :θ coordinate of point p

...and...
∀r ∈ R,(D← D∪dist(rc,d),A← A∪ rA)

∀b ∈ B,(D← D∪dist(bc,d),A← A∪amax)

Then the angle at which the robot disperses is:

polar

(
||R||

∑
i=0

[
cart

(
Ai

Di
,bear [Rc

i ,d]x

)]
,
||R||

∑
j=0

[
cart

(
A j

D j
,bear

[
Rc

j,d
]

y

)])
θ

21

Chapter 4

Map Compression by Polygonal

Approximation

The primary contribution of this work is not in the coverage algorithm itself, but how the

coverage information is stored in memory. While detailed cellular coverage maps are held

for long enough to cover each polygon within a region, cellular maps are also large and

of variable size. A more abstract representation which approximates the cellular data can

be retained between region coverage operations. Approximation of the original coverage

information requires less memory to store and less time and energy to transmit than the full

map. The detailed cellular data gathered by the coverage algorithm shall be called short-

term memory, and the approximate polygonal region representation derived from that data

shall be called long-term memory.

4.1 Polygonal Representation of Regions

The storage of map data can be performed in one of two major ways: raster-type discrete

cellular maps (as discussed in several of the algorithms in Section 2.2) or vectorized con-

tinuous maps (as discussed in Section 2.3). In Section 2.3, it was briefly stated that the

proposed algorithm represents regions previously covered by the robots in vector form;

22

more precisely, each region is a convex polygon, stored as a set of points P and edges E.

Point and edge data is redundant in the case of convex polygons; that is, with the informa-

tion in one set, the other can be reconstructed. Therefore, to reduce overhead, only P is

sent between robots when coverage information is shared.

4.2 Polygon Compression

Compression of the information about the robots’ coverage histories is extremely impor-

tant. Coverage information is captured as a series of points which are collected during the

polygon bounding process and during the STC algorithm. Transferring these points as a

whole would be resource-intensive, and the points themselves are not of much utility to the

robots. Transforming the point data into a useful, compact form is accomplished in two

steps: first the coverage data of a given region is trimmed down to just those points which

make up the convex hull of the whole dataset, then the resulting convex hull is approxi-

mated via the min-ε algorithm. These steps are illustrated in Figure 4.1.

Figure 4.1: Illustration of the polygon compression algorithm. The
bold outlined area is the original area, the crosshatched area is the
convex hull of the original area, and the shaded area is the min-ε
approximation for n = 4 points.

The convex hull is a well-documented problem in computational geometry; the two-dimensional

23

convex hull is a trivial problem with many pre-existing algorithms used to solve it. The al-

gorithm used in this work is the gift-wrapping algorithm, which sacrifices efficiency for

ease of implementation: it is an output-sensitive algorithm with efficiency O(nh), where n

is the number of input points and h is the number of output points. Better algorithms exist

which can reach a running time ofO(n∗ logh). The output of this algorithm is a set of points

which represent the vertices of a convex polygon. A convex hull operation is capable of

greatly reducing a set of coverage data, not least because a great deal of coverage informa-

tion is gathered during the STC process; this comes at the cost of occasionally erroneously

including area which has not been covered into the ”covered” region. The resulting average

number of points output by the convex hull algorithm given for between 4 and 200 random

input points is shown in Figure 4.3a; 200 input points is reduced to, on average, under 15

output points.

void compressPolygon returns double e,
Polygon newPoly

inputs: VertexSet oldPoly; int m;
variables: Matrix distance, indices;
//initialize matrices
m ← m + 1;
indices[0..oldPoly.size][0..oldPoly.size] ←∞;
distance[0..oldPoly.size][0] ←∞;
//minimum-e computation
for i = 1 to m

for j = i to oldPoly.size
distance[j][i] ← min(distance[i-1][i-1] +

squaredError(i-1, j,oldPoly),...
...,distance[j-1][i-1] +

squaredError(i-1, j, oldPoly));
indices[j][i] ← minIndex(distance[i-1][i-1] +

squaredError(i-1,j, oldPoly),...
...,distance[j-1][i-1] +
squaredError(i-1, j, oldPoly));

//backtracking
newPoly[m-1] ← oldPoly.size - 1;
for i = m TO 0 descending

newPoly[i-2] ← indices[newPoly[i-1]][i-2];
e ← distance[oldPoly.size - 1][m - 1];
return newPoly; e;

Figure 4.2: Pseudocode of min-ε algorithm

The min-ε algorithm (Perez and Vidal,

1994) is a less well-known algorithm which

generates the least-error approximation of a

convex polygonal curve of n points using a

maximum of m points, where m is defined

by the user. This permits finding the poly-

gon of a constant number of vertices (and

thus a constant amount of data) which best

approximates the convex hull found in the

first step of the compression algorithm; by

sacrificing data fidelity, we are able to com-

press a large number of data points to a sin-

gle region of known, constant size. Figure

4.3b shows the accuracy of approximations

24

0 50 100 150 200
5

6

7

8

9

10

11

12

13

14

15

Number of Points in Dataset

N
u

m
b

er
 o

f
P

o
in

ts
 in

 H
u

ll

(a) Hull size for values of n

0 50 100 150 200

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Number of Points Before Compression

A
re

a
o

f
A

p
p

ro
xi

m
at

io
n

 /
A

re
a

o
f

C
o

n
ve

x
H

u
ll

8 point approximation

6 point approximation

4 point approximation

3 point approximation

(b) Fidelity of min-ε for values of n and m.

Figure 4.3: Results of performing convex hull and min-ε algorithm on random datasets of
size n and number of output points m.

of randomly generated convex polygons of

various sizes for several different approximation sizes, while Figure 4.2 shows the algo-

rithm itself. More vertices in the approximation results in less error at the cost of additional

memory; for the experiments in chapter 5, we selected m = 4 points to demonstrate the al-

gorithm effectiveness when using a small number of vertices with a relatively large amount

of error.

0 50 100 150 200
0.96

0.98

1

1.02

1.04

1.06

1.08

1.1

1.12

Number of Points

C
o

m
p

re
ss

ed
 S

iz
e

o
ve

r
U

n
co

m
p

re
ss

ed
 S

iz
e

u
si

n
g

 D
E

F
L

A
T

E

Figure 4.4: Average data compression
ratio of random point sets using the DE-
FLATE algorithm.

We believe that our approach – which values

the compactness of the data over the accuracy

of the data – is very suitable for multi-robot

coverage applications. Our compression ratios,

which – in the case of a 4-point approximation

– can reach a reduction in data size of 98% for

a 10% loss of fidelity compare favorably to the

relatively small compression ratios achieved by

standard, lossless data compression algorithms

such as DEFLATE, as shown in Figure 4.4.

25

4.3 Region Combination

In situations where a robot receives information about a covered region which overlaps an-

other region in its memory in some way, it would be beneficial to combine those regions in

some way if they overlap substantially and if the combination operation does not introduce

too much error into the resulting combined region. In this section, a relatively straightfor-

ward method of region combination will be discussed.

Figure 4.5: Min-ε region combination of
two overlapping regions where m = 4 .
Solid areas indicate original polygons;
the dark gray area indicates explored
area lost during combination, while the
lined area indicates the uncovered area
included during combination.

Upon receipt of a communicated region, a

robot checks for overlap between that re-

gion and all regions currently in its mem-

ory. When an overlap is detected, the

robot combines the regions through the fol-

lowing process: first the two regions’ ver-

tices are combined into a single set. The

convex hull of the set is then approxi-

mated with the min-ε algorithm. The re-

sulting approximation is the combined re-

gion.

A combined region can either be accepted or

rejected based on two metrics: the area erro-

neously included in the approximate combined

region which is not a part of either of the original regions, and the area in the original re-

gions which falls outside of the approximate combined region (see Figure 4.5). These are

expressed as ratios; the first is measured in comparison to the total area of the approximate

combined region, while the second is measured in comparison to the combined area of the

original two regions. In either case, high ratios indicate a poor fit which should be rejected,

26

while low ratios indicate a good fit which should be retained; the exact point where a metric

indicated a good or poor fit depends on the application and can be set by the user of the

system.

27

Chapter 5

Experimental Results

In this chapter, we discuss how the PAC algorithm was tested and the performance of

the both the compression phase on its own as well as the effect of the compression and

communication phases with respect to reference algorithms.

5.1 Hardware and Software

(a) Empty (0% obsta-
cles) arena.

(b) 10% obstacles
arena.

Figure 5.1: Webots
used as a simulation
environment.

In this work, the coverage system has been implemented using

Webots version 6.1.3, a realistic robot simulator which models

physical interactions between objects in the environment, sensor

noise, the effect of obstacle coloration on sensors using emitted

light, and other real-world complications encountered in an ac-

tual work environment. Webots offers the advantage of including

these complications, but permitting multiple experiments to be run

rapidly. It simulates in faster than real time while also removing

complicating factors such as physical space constraints, cost of

purchasing many robots for larger scale experiments, and time lost

in recharging and servicing actual hardware. Instead, each con-

troller is instantiated as its own process while the physics simula-

28

tion and visualization are handled in the main simulator process,

which permits true modeling of interaction between asynchronously controlled robots in

an environment which is not forced to slow down and wait for inefficient robot controllers.

(a) A Corobot with Stargazer module. (b) A simulated version of the Corobot.

Figure 5.2: Comparison of real and simulated Corobots.

The robot modeled in Webots for this work is the Corobot (manufactured by CoroWare

Incorporated), configured to mirror the real hardware used for experimentation in the C-

MANTIC laboratory. It is a 4-wheel robotic platform, twelve inches long and thirteen

inches wide, with a maximum battery life of 2.5 hours and a differential wheel motor con-

troller. For our application, we have added two crossed infrared sensors in a bumper con-

figuration on the front of the robot to permit obstacle detection and avoidance, one infrared

sensor on each side of the robot to permit wall following, and the Stargazer localization

device which can localize the robot’s position within two centimeters. Other devices which

appear on the hardware version of the robot – such as the webcam and optional robotic arm

– are unused by any of the tested algorithms. This robot was chosen as a cheaper alternative

for indoors experimentation to the more expensive Explorer robot, which is a more capa-

ble robot manufactured by the same company used for outdoors applications with stronger

motors and a suspension system. The robots share a common API and thus, for experimen-

tation purposes and potential future transfer of this work to hardware, are nearly identical

29

apart from the modelled hardware and capabilities.

Figure 5.3: Response of
Sharp GP2Y0A21YK sen-
sor, showing output volt-
age vs. distance.

In order to show that our algorithm can function in a realistic

environment, accuracy of the simulated model was a priority.

This was accomplished by ensuring that complications that

would affect a physical robot were modelled in the simulated

environment. The rolling friction of the robot’s wheels, the

weight of the robot, the reflectivity of objects in the environ-

ment and the noise in the Stargazer module’s results were all

taken into account. The components with the most compli-

cated behavior, however, were the two Sharp GP2Y0A21YK

80cm sensors mounted on the front of the robot for obstacle

avoidance, and the two Sharp GP2Y0A02YK0F 150cm sen-

sors mounted on the sides of the robot for wall following. Both of these sensors are analog

infrared range-finders that work by measuring the angle at which emitted IR radiation re-

flecting off of an obstacle impacts the IR receiver on the sensor package, and both have

a non-linear response curve which report inaccurate results within a minimum range, as

shown in Figure 5.3 (Sharp Corporation, 2005).

The algorithm itself was implemented in C++ and compiled by the MinGW (Minimal-

ist GNU for Windows) compiler bundled with Webots and the Webots robotics libraries.

The controller is 7126 lines of code, split up into the main controller loop and methods at

2145 lines, the STC sub-controller at 2079 lines, the min− ε algorithm at 604 lines, plus

additional utility code: 1387 lines of computational geometry objects and algorithms, 308

lines of code to interface the controller with the Webots libraries, and 603 lines of miscel-

laneous code. Table 5.1 shows the different parameters and their values that were used to

test our proposed algorithm.

30

Table 5.1: Configurable parameters within the algorithm and values used during experi-
mentation.

Experiment Main Controller Parameters
Parameter Name Description Units Value
INSIDE POLY PERMISSIBLE
ERROR

Number of degrees of error allowed in the
winding angle algorithm’s return value at
which the algorithm will assume the point is
inside the polygon.

degrees 42.0

NEXT VERTEX IF CLOSER
THAN

Distance from a vertex at which the robot
controller assumes the robot is ”at” the ver-
tex in question.

meters 0.21

TURN IF DEVIATION
GREATER THAN

Angle offset at which a robot following an
edge will stop and turn back towards the edge.

degrees 8

PLOT IF DEVIATION
GREATER THAN

Angle offset from previous coverage history
data-point plot at which the robot controller
stores another data-point.

degrees 12

PLOT ON TURN ALWAYS Whether or not the robot plots a point every
time the robot executes a turn.

boolean FALSE

EDGE LENGTH IN METERS Length of the edges of the individual regular
polygons of a region.

2.0 2.0

NUM SIDES Number of sides in the individual regular
polygons of a region.

4 4

Experiment STC Controller Parameters
Parameter Name Description Units Value
angle threshold As per TURN ERROR, but for the STC por-

tion of the algorithm.
degrees 8

edge threshold Distance from an edge at which the robot is
considered to be ”at” that edge.

meters 0.15

cell distance Size of an individual STC cell. meters 0.45
width of robot Size of the robot in its largest dimension. centimeters 24.5

31

5.2 Simulation Results

Figure 5.4: Coverage area of are-
nas that are: (a) empty; (b) 10%
obstructed; (c) 25% obstructed; (d)
corridor-like.

The system was tested with simulated Corobots in a

20 meter by 20 meter square arena, bounded on each

side by a wall. Four different arena environments

were tested: an empty arena, an arena in which 10%

of the area within was occupied with various ob-

stacles, an arena in which 25% of the area within

was occupied with various obstacles, and an arena

which simulated two rooms separated by a narrow

hallway. Each environment was covered with a two

robot team, a three robot team, and a four robot team

for a total of twelve environment/team-size pairings,

described in Figure 5.2. Each pairing was simulated

ten times at two hours each; two hours was chosen as

an arbitrary period of time to gauge the performance

of the algorithm during a known period of time. All

results were averaged over the ten simulation runs,

and the results have been reported after removing runs in which the entire system failed

(those runs where total system coverage was equal to zero); this is to remove bias and error

introduced by issues related to inaccuracies in the physical simulation and code faults.

Identical sets of simulations were run using two comparison algorithms. The first such

algorithm is the PAC algorithm, but with all ability to communicate disabled; this is to

illustrate the performance gain or loss which is introduced by the small amount of com-

32

munication within the multi-robot team. The second such algorithm is a standard coverage

approach in which the environment is partitioned into a Voronoi field based on each robot’s

initial position and each partition is covered by a single robot using the STC algorithm.

Table 5.2: Description of the environments used in experimentation.

Scenario Name Arena Area Obstacles Number of Robots Run Time
0%, 2 robots

400 sq. meters

None
2 robots

2 hours

0%, 3 robots 3 robots
0%, 4 robots 4 robots
10%, 2 robots

Objects, 10% of total arena area
2 robots

10%, 3 robots 3 robots
10%, 4 robots 4 robots
25%, 2 robots

Objects, 25% of total arena area
2 robots

25%, 3 robots 3 robots
25%, 4 robots 4 robots
Corridor, 2 robots

Corridor and rooms
2 robots

Corridor, 3 robots 3 robots
Corridor, 4 robots 4 robots

The metrics tested via simulation were: the total amount of area covered by the multi-robot

team, the total distance travelled by the team while performing coverage, the total distance

travelled by the team while travelling between coverage areas, the total number of regions

communicated between the robots within the team, and the total number of times region

coverage was aborted due to a robot entering a region which was already previously cov-

ered. Only communication-enabled PAC reports all metrics; PAC without communication

does not report a communication metric, and the Voronoi/STC algorithm only reports the

area of all completely covered cells.

Area Covered

The first metric to examine is, perhaps, the most obvious: how much area was covered by

the multi-robot teams in two hours of simulation? By examining this metric, we can get an

immediate picture of the effectiveness of the algorithm as a whole.

33

Figure 5.5 shows quite clearly that in the case of an empty, unobstructed arena, the cover-

age algorithm performs very well: on average, a three robot team covers the entirety of the

arena, and a four robot team covers the area fully and then some (the arena is 400 square

meters in area). Coverage in excess of 400 square meters is due to repeated coverage.

In comparison, the reference algorithms perform much more poorly in this environment.

Non-communicative PAC shows uniformly inferior performance to standard PAC regard-

less of the number of robots, and Voronoi/STC coverage is unable to complete a full unwind

of many of the STC cells before the simulation completes; however, Voronoi/STC coverage

is much more consistent.

In the 10% and 25% environments coverage does not approach completion, showing that

the environment is more difficult. However, moving from two to three robots more than

doubles the performance of the system as a whole, and moving from three to four robots

doubles performance once again, showing a super-linear improvement in system perfor-

mance. The super-linear increase in performance between a two and three robot system in

both the unobstructed arena and in the twenty-five percent obstructed area, and the super-

linear increase in performance between the three and four robot systems in the ten percent

obstructed arena, suggests that the robots are working together to maximize efficiency in

coverage.

Comparison to non-communicative PAC shows inferior performance in the three and four

robot cases in the 10% obstructed environment, and widely varying performance in the

two robot case. Variations in performance are likely due to variable amounts of con-

flict and overlap each run due to randomized starting locations. Two robot Voronoi/STC

displays near-zero performance, while performance in the three and four robot cases is

34

superior to both other algorithms on average; however, standard PAC occasionally out-

performs Voronoi/STC as evidenced by the displayed deviation. In the 25% obstructed

case, Non-communicative PAC outperforms standard PAC in the two robot system, but

under-performs by a wide margin in the three and four robot systems. Voronoi/STC con-

sistently under-performs in the two and three robot systems, but has higher average perfor-

mance in the four robot system; however, as before, standard PAC occasionally outperforms

Voronoi/STC.

The corridor environment is obviously the most challenging environment for the robot

teams, and also has the least amount of free area. The two, three, and four robot teams seem

to all perform poorly in this environment. Not much can be determined from this metric

alone; however, it’s likely that the other metrics will offer more insight into the reasons

behind the failure of the system in this environment. By comparison, non-communicative

PAC is similarly non-performant, Voronoi/STC only accomplishes coverage in three and

four robot systems, with only marginal performance.

0

200

400

600

800

Scenario

A
re

a
C

ov
er

ed
 (

sq
ua

re
 m

et
er

s)

Coverage Area Comparison

N
o

ob
s;

 2
 ro

b
N

o
ob

s;
 3

 ro
b

N
o

ob
s;

 4
 ro

b
10

%
 o

bs
; 2

 ro
b

10
%

 o
bs

; 3
 ro

b
10

%
 o

bs
; 4

 ro
b

25
%

 o
bs

; 2
 ro

b
25

%
 o

bs
; 3

 ro
b

25
%

 o
bs

; 4
 ro

b
C

or
rid

or
; 2

 ro
b

C
or

rid
or

; 3
 ro

b
C

or
rid

or
; 4

 ro
b

PAC coverage with communication
PAC coverage without communication
Naive Voronoi Coverage

Figure 5.5: Average area covered by the team using each algorithm, by scenario.

35

Distance Travelled

The metrics for distance travelled allow examination of the efficiency of the algorithm.

Distance travelled is moderately related to time spent, as the robots move quickly during

coverage and between regions, more slowly during wall-following, and very slowly during

obstacle avoidance.

Robot motion for the unobstructed arenas using standard PAC is high, as is to be expected.

However, the three and four robot teams travelled almost the exact same distance, yet the

four robot team accomplished more coverage. This implies two things: first, communi-

cation between robots allowed the robots to recognize regions covered by others and sub-

sequent dispersion from those areas; second, the four robot team had more overlapping

coverage due to more simultaneous coverage (coverage of an area is only transmitted to

the team at large once the region’s coverage is finished). Non-communicative PAC shows

a similar amount of useful travel but for a much lower amount of resulting coverage; this

seems to indicate a large amount of repeated coverage; this is supported by lower overhead

(dispersion) distances travelled, showing that less effort to avoid re-covering previously

covered areas was undertaken.

Distance travelled by standard PAC is lower for the rest of the environments, indicating a

slower pace due to obstacle avoidance. For the ten and twenty-five percent environments,

the coverage/overhead ratio was over 1.0; more distance was travelled during coverage than

while transiting between regions. The corridor environment’s efficiency ratio is close to or

under 1.0, showing that the environment was very difficult for the teams.

Non-communicative PAC shows fairly flat useful travel distance for the system in both the

10% and 25% obstructed arenas for all numbers of robots, which corresponds strongly

to the fairly flat (and low) performance in terms of area coverage over those same cases.

36

Useful distance travelled in the corridor environment for non-communicative PAC is ex-

tremely variable; combined with the lack of performance in terms of area covered, the al-

gorithm seems to be unable to cope with the challenging environment. Overhead/dispersion

distance travelled is widely variable in almost every obstacle-containing area for non-

communicative PAC aside from the 4 robot system in the 25% environment. Variability

is much higher than for standard PAC in all these cases, indicating that the uncoordinated

nature of the robots’ behavior leads to widely varying system efficiency. The reason for

more uniform overhead in the case of the 4 robot system in the 25% environment is unclear,

but does not seem to have an effect on useful distance travelled nor system performance.

0

100

200

300

400

500

600

700

800

Scenario

D
is

ta
nc

e
T

ra
ve

lle
d

(m
et

er
s)

Distance Travelled for Coverage

N
o

ob
s;

 2
 ro

b
N

o
ob

s;
 3

 ro
b

N
o

ob
s;

 4
 ro

b
10

%
 o

bs
; 2

 ro
b

10
%

 o
bs

; 3
 ro

b
10

%
 o

bs
; 4

 ro
b

25
%

 o
bs

; 2
 ro

b
25

%
 o

bs
; 3

 ro
b

25
%

 o
bs

; 4
 ro

b
C

or
rid

or
; 2

 ro
b

C
or

rid
or

; 3
 ro

b
C

or
rid

or
; 4

 ro
b

PAC coverage with communication
PAC coverage without communication

(a) Distance travelled during coverage.

0

50

100

150

200

250

300

Scenario

A
m

ou
nt

 o
f O

ve
rh

ea
d

(m
et

er
s)

Overhead Distance Travelled

N
o

ob
s;

 2
 ro

b
N

o
ob

s;
 3

 ro
b

N
o

ob
s;

 4
 ro

b
10

%
 o

bs
; 2

 ro
b

10
%

 o
bs

; 3
 ro

b
10

%
 o

bs
; 4

 ro
b

25
%

 o
bs

; 2
 ro

b
25

%
 o

bs
; 3

 ro
b

25
%

 o
bs

; 4
 ro

b
C

or
rid

or
; 2

 ro
b

C
or

rid
or

; 3
 ro

b
C

or
rid

or
; 4

 ro
b

PAC coverage with communication
PAC coverage without communication

(b) Distance travelled between regions.

Figure 5.6: Total distance travelled by the robot team, by task, in each scenario.

Communication and Aborted Blocks

These metrics are both related to end-of-region activities. Communication occurs at the

end of every successful region coverage, while aborted region coverage only occurs in the

case of a robot stumbling into a previously covered area during coverage.

In the unobstructed environments, the number of successfully completed regions is greater

than in the other environments and, in the three and four robot teams, the number of aborted

block definitions is very high. This indicates a very high degree of arena coverage and at-

37

tempted overlapping coverage as the simulation progressed. The low number of aborted

block definitions in the two-robot case indicates that the dispersion algorithm was success-

ful in avoiding an undue amount of repeated coverage.

In the partially obstructed environments, aborted region coverage instances were all but

nonexistent, indicating a reduced amount of coverage and success in dispersion. The num-

ber of communication instances shows that adding more robots resulted in a fairly linear

increase in the amount of successfully covered regions in the ten and twenty-five percent

environments, while the corridor environment showed a sub-linear increase in successful

coverage – again, most likely due to the challenging nature of the environment.

Non-communicative PAC cannot be used to compare the communication metrics; however,

a comparison of aborted blocks immediately demonstrates that in the environment most

prone to repeated coverage – the unobstructed arena – the number of aborted blocks is ex-

tremely low. This seems to indicate that the lack of communication between robots within

the system results in a large amount of repeated coverage of the same area, as less effort is

expended in attempts to avoid it. This supports the same indications seen in other captured

metrics.

Analysis of the experimental results shows that the algorithm is very successful in unob-

structed environments analogous to fields, plains, deserts, and other agricultural, rural, and

some military environments. It is shown that communication has a distinct positive, super-

linear impact on coverage in these and lightly obstructed environments, showing that the

algorithm enables successful teamwork with a very limited amount of shared data between

the agents in the system. This is supported by comparison to the performance of the same

algorithm without communication; the difference in performance resulting from even the

most token amount of shared coverage information is striking. Similarly, a comparison

38

0

2

4

6

8

10

12

14

16

Number of Communication Events

Scenario

of

 e
ve

nt
s

N
o

ob
s;

 2
 ro

b
N

o
ob

s;
 3

 ro
b

N
o

ob
s;

 4
 ro

b
10

%
 o

bs
; 2

 ro
b

10
%

 o
bs

; 3
 ro

b
10

%
 o

bs
; 4

 ro
b

25
%

 o
bs

; 2
 ro

b
25

%
 o

bs
; 3

 ro
b

25
%

 o
bs

; 4
 ro

b
C

or
rid

or
; 2

 ro
b

C
or

rid
or

; 3
 ro

b
C

or
rid

or
; 4

 ro
b

(a) Region transmissions during the standard
PAC algorithm.

0

5

10

15

20

25

30

35

40

Scenario

of

 A
bo

rt
ed

 B
lo

ck
s

Aborted Blocks Comparison

N
o

ob
s;

 2
 ro

b
N

o
ob

s;
 3

 ro
b

N
o

ob
s;

 4
 ro

b
10

%
 o

bs
; 2

 ro
b

10
%

 o
bs

; 3
 ro

b
10

%
 o

bs
; 4

 ro
b

25
%

 o
bs

; 2
 ro

b
25

%
 o

bs
; 3

 ro
b

25
%

 o
bs

; 4
 ro

b
C

or
rid

or
; 2

 ro
b

C
or

rid
or

; 3
 ro

b
C

or
rid

or
; 4

 ro
b

PAC coverage with communication
PAC coverage without communication

(b) Aborted region coverage attempts during
each PAC algorithm.

Figure 5.7: Average number of different events by algorithm and scenario.

to naive Voronoi/STC coverage shows that in time-sensitive situations, coverage in unob-

structed environments is more complete.

39

Chapter 6

Future Work and Conclusions

In this chapter, we discuss the challenges encountered while designing, implementing, and

analyzing the PAC algorithm as well as discuss what additional work can be performed to

refine the algorithm and increase its performance. We then go on to summarize the work

and our results.

6.1 Lessons Learned

While the theory behind the PAC algorithm is robust, implementation challenges have had a

considerable impact on the performance of the algorithm and the system utilizing it. While

many projects of this type use an abstract and highly discrete model for robot behavior,

we selected a simulation suite which performs accurate and near-continuous physics sim-

ulation and requires the robots to interact with their environment using nothing but their

simulated sensors and actuators. The robots were given no a priori knowledge of the envi-

ronment.

Our algorithm was required to be robust when encountering sensor noise modelled as part

of the simulation, collisions with obstacles, loss of wheel traction, and other issues which

can and did result in individual robots being placed in unrecoverable situations where they

could no longer maneuver in or interact with the environment. Such issues greatly compli-

40

cated the implementation of a robot controller which reliably accomplishes its goals. Robot

failures due to environmental hazards was an ongoing issue throughout the implementation

process and the many failure modes of the system impacted the experimental results of the

simulations.

6.2 Future Work

Given the effect of simulated failures on the system, the largest gains in algorithm perfor-

mance and efficiency would be earned by further hardening of the algorithm against adverse

environmental conditions. Such work would take the form of more reliable obstacle han-

dling and avoidance techniques, cataloging obstacles and using that knowledge during the

dispersion phase of the algorithm, and altering variables such as region combination fitness

parameters, the number of vertices in polygonal approximations, and finding the highest

safe limits to wheel speed of the robots in various controller states.

Future alterations to the algorithm’s design might include: determining a termination con-

dition for the algorithm; optimizing the amount of erroneous map gain and map loss for

different algorithm applications; and transmitting robot position at the beginning of a re-

gion coverage phase for use in other robots’ dispersion behavior to limit region overlap.

Further analysis and experiments might include: introducing limits to the number of regions

which can be stored by the robots at a given time in order to model robots with extremely

limited storage capabilities; comparing performance to a version of PAC that transmits its

entire cellular coverage map; and determining at what point the algorithm begins to per-

form either excessive repeat coverage or is unable to complete a polygonal region segment

without some number of aborts occurring in a row.

41

6.3 Summary

We presented a novel algorithm for multi-robot area coverage which focuses on minimiz-

ing the amount of coverage data transmitted between robots during the coverage process.

The body of existing work related to this problem was presented, including work con-

cerning mobile robots, multi-robot coverage, and map information compression. Having

established that this problem has not been addressed in the past, we described the coverage

algorithm and the polygonal compression algorithm, which is the main body of the work.

The results of our simulated experiments were shown and discussed in the context of four

different environments, covered by teams of two, three, and four robots. After analyzing

the area coverage, distance travelled during and outside of coverage, and the amount of

communication and coverage interruptions due to overlapping coverage areas both of the

proposed algorithm and a version of that same algorithm lacking communication, as well as

a reference algorithm, it was determined that the algorithm was demonstrated to be effective

even with extremely limited data transfer between the robots within the teams and that the

implementation could be improved in order to show that effectiveness in more complex,

challenging environments.

42

Bibliography

Baek, S., de Veciana, G., and Su, X. (2004). Minimizing energy consumption in large-

scale sensor networks through distributed data compression and hierarchal aggrega-

tion. IEEE Journal on Selected Areas in Communications, 22(6):1130–1140.

Batalin, M. and Sukhatme, G. (2002). Spreading out: A local approach to multi-robot

coverage. In in Proc. of 6th International Symposium on Distributed Autonomous

Robotic Systems, pages 373–382.

Burgard, W., Moors, M., Fox, D., Simmons, R., and Thrun, S. (2005). Collaborative multi-

robot exploration. IEEE Transactions on Robotics, 21(3):376–386.

Butler, Z. (2000). Distributed coverage of rectilinear environments. PhD thesis, Carnegie

Mellon University.

Gabriely, Y. and Rimon, E. (2003). Competitive on-line coverage of grid environments by

a mobile robot. Computational Geometry, 24:197–224.

Hazon, N. and Kaminka, G. (2008). On redundancy, efficiency, and robustness in coverage

for multiple robots. Robotics and Autonomous Systems, 56(12):1102–1114.

Howard, A., Mataric, M., and Sukhatme, G. (2002). Mobile sensor network deployment

using potential fields: A distributed, scalable solution to the area coverage problem. In

in Proc. of 6th International Symposium on Distributed Autonomous Robotic Systems,

pages 299–308.

43

Koenig, S., Szymanski, B., and Liu, Y. (2001). Efficient and inefficient ant coverage meth-

ods. Annals of Mathematics and Artificial Intelligence, 31(1-4):41–76.

Parker, L. (1999). Adaptive heterogeneous multi-robot teams. Neurocomputing, 28(1-

3):75–92.

Perez, J. and Vidal, E. (1994). Optimum polygonal approximation of digitized curves.

Pattern recognition letters, 15(8):743–750.

Reid, J. F., Zhang, Q., Noguchi, N., and Dickson, M. (2000). Agricultural automatic

guidance research in north america. Computers and Electronics in Agriculture, 25(1-

2):155 – 167.

Rekleitis, I., New, A., Rankin, E., and Choset, H. (2008). Efficient boustrophedon multi-

robot coverage: An algorithmic approach. Annals of Mathematics and Artificial Intel-

ligence, 52(2-4):109–142.

Rutishauser, S., Correll, N., and Martinoli, A. (2009). Collaborative coverage using a

swarm of networked miniature robots. Robotics and Auton Systems, 57(5):517–525.

Sharp Corporation (2005). Sharp GP2Y0A21YK Optoelectronic Device. 22-22 Nagaike-

Cho, Abeno-Ku, Osaka 545-8522, Japan.

Shekhar, S., Huang, Y., Djugash, J., and Zhou, C. (2002). Vector map compression: a

clustering approach. In Proceedings of the 10th ACM international symposium on

Advances in geographic information systems, pages 74–80.

Stachniss, C., Mozos, O., and Burgard, W. (2008). Efficient exploration of unknown indoor

environments using a team of mobile robots. Annals of Mathematics and Artificial

Intelligence, 52(2-4):205–227.

Wurm, K., Stachniss, C., and Burgard, W. (2008). Coordinated multi-robot exploration

44

using a segmentation of the environment. In in Proc. of International Conference on

Intelligent Robots and Systems, pages 1160–1165.

	MULTI-ROBOT COVERAGE WITH DYNAMIC COVERAGE INFORMATION COMPRESSION
	Recommended Citation

	tmp.1561408097.pdf.pfTkA

