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Abstract

Expectation-Centered Analytics for Instructors and Students

Suzanne L. Dazo , MS

University of Nebraska, 2016

Advisor: Brian Dorn, Ph.D.

Learning analytics is the measurement, collection, analysis, and reporting of data about

learners and their contexts. An outcome and primary goal of learning analytics should be to

inform instructors, who are primary stakeholders, so that they can make effective decisions

in their courses. To support instructor inquiry, I apply theory on reflective practice to

learning analytic development. Articulating an instructor’s pedagogical expectations is one

way to begin facilitating a reflective practice. Expectations based on instructor goals serve

as a natural next step and the springboard from which data can be collected. I hypothesize

that a learning analytic that encodes and reifies instructors’ individual expectations will

better support reflective practice for instructors and allow students to more reliably meet

set expectations.

I took a user-centered approach to learning analytic research and development. First

I triangulated empirical analysis of analytic use with focus groups to understand how in-

structors interacted with analytics. Instructors had a wide range of behaviors, needs and

expectations. For most instructors, analytics were used very briefly (less than 1 minute).

Instructors also requested a way to aggregate data from different analytics to better sup-

port their information needs. Based on these findings, I developed learning analytics within

TrACE to allow for instructors to specify expectations and see student progress related to

sdazo@unomaha.edu


those expectations. Students could also view their progress towards completing expecta-

tions.

Finally, I conducted a field study to compare both instructor analytic use and stu-

dent compliance to expectations without and with the presence of these analytics. The

results of the field study did not support the hypothesis. Instructors for the most part did

not change their behaviors with the introduction of these analytics. Students also did not

meet expectations more reliably, but one course saw a significant improvement in perfor-

mance. Without visible expectations, students met significantly fewer posting expectations

than other expectations. With explicit expectations, posting performance was no longer

significantly less.
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Chapter 1

Introduction

With the emergence and widespread use of technology for educational contexts, the use of

learning analytics for classrooms has been praised as having made data about learners visible

that has previously been “unseen, unnoticed, and therefore unactionable” (Bienkowski et al.,

2012). In practice, this newly available information may not be as actionable as we expect.

Instructors, who play an integral role in the classroom, are also necessary for the effectiveness

of these analytics. Although data is more available, a major issue in facilitating interaction

between instructors and students is that many existing learning analytics do not provide all

of the information needed for instructor interventions to take place (Dyckhoff et al., 2013).

This study aims to fill that gap through the development of a learning analytic designed

towards instructor needs. Additionally, this analytic is evaluated by its impact on instructor

and student behaviors in the classroom.

Learning analytics are defined as the measurement, collection, analysis, and report-

ing of data about learners and their contexts for purposes of understanding and optimizing

learning and the environments in which it occurs (Ferguson, 2012, Siemens and Long, 2011).
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The goals of learning analytics are to improve course activities, identify problematic stu-

dents/imbalances in the class dynamic, and allow for quick intervention by the instructor

(Charleer et al., 2014).

Current research has given excellent evidence on what qualities can make for effec-

tive analytics (Scheffel et al., 2014) and many tools exist with the intention of informing

instructors about student activities (see e.g., (Dawson et al., 2010, Romero et al., 2010)).

However, Dyckhoff et al. (2013) identified that of almost 30 learning analytics analyzed, they

do not yet answer all the questions teachers have for their classes. Additionally, instruc-

tors had challenges interpreting visualizations which are often created with the assumption

that users are familiar with data mining techniques and complex analysis methods (Scheffel

et al., 2011). Many learning analytics focus on reporting preset quantitative measures that

may or may not be important to an instructor and do not cover the full extent of their

data needs. In order for learning analytics to be more relevant to an instructor’s practice,

these analytics need to address the instructor’s data needs for their specific course context.

Learning analytic design should articulate the pedagogical intent of the teacher as opposed

to being imposed by developers (Lockyer and Dawson, 2012, Wise, 2014).

Some setbacks include a gap in studies on the entire course context Greller and Drach-

sler (2012), a lack of time in development to involve teachers, and a lack of existing commu-

nity that prioritizes the involvement of instructors in design (Nelson et al., 2008). It has been

suggested that researchers should focus instead integrating learning analytics into everyday

practice and develop better and more usable tools for learners and teachers (Chatti et al.,

2012, Dyckhoff et al., 2013). In moving forward, one way to address these issues is with a

user-centered approach that seeks to understand how instructors are actually using learning

analytics for their pedagogical interventions in course settings. I do this with TrACE, a
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tool that has encountered many of these pitfalls in learning analytic design (Elson, 2016).

TrACE is an online video-playback platform that was developed with the goal of sup-

porting collaboration among students within video-based course contexts (Dorn et al., 2015).

Instructors upload videos to this platform for students to watch, and the system allows stu-

dents to annotate and reply to annotations in videos. As a part of this system, an analytic

dashboard was developed to allow for instructors to interpret student viewing behaviors,

which was a need identified among several practitioners and education researchers (Maher

et al., 2015, Lacher and Lewis, 2015). A study on this system in particular is useful as video

elements are widely used in large-scale online education platforms (e.g. Coursera, Udacity,

Khan Academy), but as a research prototype, it serves as a more flexible platform that is

responsive to instructor needs on a smaller scale during development.

In developing learning analytics for TrACE and similar systems, it is necessary design

based on education theory. The learning analytics cycle and reflective practice are two

theories that can inform an improvement on the quality of intervention through learning

analytics (more details in Chapter 2). The rationale behind this is that awareness and

reflection support for educators are major goals for learning analytics (Scheffel et al., 2014).

First, the learning analytic cycle (Clow, 2012) describes the flow of information in learning

analytics. Some sort of intervention has an effect on learners, and these interventions are

originally informed by learner-generated data in the form of metrics or analytics. Instructor

actions are one type of intervention. Through analytics, instructors can make predictions

about their students and take actions that would serve as an intervention on either current

learners or future ones. To improve the quality of instructor interventions, the outcome

and a primary goal of learning analytics should be to properly inform instructors so that

they can make effective decisions. Reflective practice is a theory which can be a guide



4

in how to aid instructor intervention. Reflective practice is a way in which instructors can

consider the goals important to them in their course contexts, gather data, and process that

data to accomplish or redefine those goals (Schön, 1987). When an instructor does not use

reflective practice, he or she may not initiate any interventions or change his or her teaching

strategies when students have issues which should be addressed (Sparks-Langer et al., 1990,

Murphy and Ermeling, 2016). When analytics do not support reflection, instructors may

be collecting data which overall does not support their inquiry. Although studies have

been conducted to take into account instructor inquiry and the questions instructors want

answered about their students, this work remains mostly in theory (Dyckhoff et al., 2013).

The first step in reflective practice is to have an instructor consider his or her goals.

When an instructor has course goals, expectations based on those goals serve as a natural

next step and the springboard from which data can be collected. In support of applying

expectations to learning analytics, instructors have already expressed interest in being able

to more quickly identify if expectations are met in TrACE (Elson, 2016). Other researchers

have also made similar attempts at goal-based visualizations in learning analytics. Most

notably, Muslim et al. (Muslim et al., 2016) utilized a workflow of eliciting instructor goals

and questions to create visualizations that apply most to an instructor’s needs. Additionally,

making expectations explicit has been cited as a practice that is beneficial to students as

well (Dennen et al., 2007).

A Learning Analytic that encodes and reifies instructors’ individual expectations will

better support reflective practice for instructors and allow students to more reliably meet

those expectations. Currently, information is provided through analytics without directly

taking into consideration an instructor’s unique practice or what their goals and expecta-

tions may be (Schön, 1987, Van Manen, 1995). Reflective practice is only useful insofar
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as the information the instructor receives can help support or challenge his or her expec-

tations. For instructors to effectively make observations that allow for reflection on their

practice, learning analytics should present data directly related to their course expectations.

As additional support to students, Sadler (1989) provides three conditions where students

can benefit from feedback in academic settings. All of these rely on the transparency of

course expectations and students understanding their own behaviors in relation to those

expectations.

For reflective practice to take place, instructors should be aware of student behaviors

in their class. To develop an analytic that supports this, the first phase of my research

is a formative study with the goal of understanding current practice and the range of

expectations instructors may have (Chapter 3). The results of this exploratory study will

inform the design of my Learning Analytic. RQ1 and RQ2 are questions that I hope to

answer through this initial exploratory study.

• RQ1-How do instructors currently conduct inquiry on student behaviors?

• RQ2-What expectations do instructors see as valuable to model within the context

of learning analytics?

An expectation-centered analytic that translates the instructor’s expectations and re-

quirements for the course will be developed taking into account the results of the first phase

of the research study (Chapter 4). This analytic will aggregate data relevant to instruc-

tors as opposed to instructors independently synthesizing conclusions from multiple sources,

which can be difficult to interpret (Elson, 2016). The expectations specified by instructors

will also be made available to students. By implementing an expectation-centered ana-

lytic, I can evaluate its effectiveness with regards to both supporting reflective practice for

instructors and supporting students to answer several more research questions (Chapter 5):
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Formative Study

•Instructor 
Focus Groups

Design and 
Implementation

•Informal tests 
with 
instructors

Field Study

•Evaluation of 
Prototype in 
Classrooms

Figure 1.1: An overview of the format of the study

• RQ3-How does instructor inquiry change with the presence of this analytic?

• RQ4-How do student behaviors change with the explicit presence of this analytic?

To answer my research questions, I conducted a set of studies within one iteration of

design-based research (Barab and Squire, 2004, Collins et al., 2004). Design-based research

is an iterative methodology that allows for interventions such as learning analytics to be

studied in the learning environment as opposed to a laboratory setting. This allows for

immediate impact on the classroom as well as gaining insight through each iteration that

can inform both theory and practice. My research was done within the context of a single

iteration of the design cycle of TrACE. I added to TrACE by creating design alternatives for

analytics available in the system. Following this, I initiated a field deployment to evaluate

the impact of these alternatives in classrooms. Finally, I conclude with contributions to

both researchers and practitioners, limitations, and direction for future work. An overview

of the methods for this thesis is included in Figure 1.1 and detailed further in Table 1.1.
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Chapter 2

Background and Related Work

To better understand where learning analytics can be improved with regards to promoting

instructor reflection and increasing student activity in the classroom, the theoretical un-

derpinnings for reflective practice and an overview of existing Learning Analytic systems

is presented in this chapter. I also cover previous work conducted in TrACE which also

contributes to the motivation for this thesis.

2.1 Theoretical Background

Learning analytics as a field is a combination of several different disciplines including action

research, education, and educational data mining (Chatti et al., 2012), but in order to

improve the quality of learning analytics, I focus on the theoretical underpinnings behind

the learning analytics process, notably reflective practice and the learning analytics cycle.

2.1.1 Reflective Practice

Reflective practice is the process through which professionals conduct inquiry on and adjust

their own behaviors during practice (Schön, 1987). Although what defines reflection is still
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widely debated (Larrivee, 2008, Luik et al., 2014), I present Schön (1987)’s version of the

reflective process as an active and iterative process consisting of the following stages:

1. Data collection- Observations on the current situation involving spontaneous and rou-

tinized responses.

2. Surprise- The practitioner experiences an unexpected outcome from the data collection

process that challenges their current knowledge.

3. Reflection- The practitioner considers the unexpected event as well as their current

knowledge that led up to it.

4. Question structure- reflection on the thought processes that led up to this unexpected

situation. Restructuring strategies of action, understanding, or framing of the prob-

lem.

5. Experiment- Take new actions and explore the newly observed phenomena. This could

yield the hypothesized results or lead to more unexpected outcomes and thus more

reflection-in-action.

Reflective practice is not attempting to find standard solutions to any given problem,

but uncovering the details of the problem through gradual discovery which eventually leads

to interventions. It is a cyclical process that iterates between theorizing about the current

situation and experimentation, intervention, and observation of the situation.

Traditional experiments involving hypothesis testing are controlled. In contrast, reflec-

tive practice is a combination of exploration, move-testing, and hypothesis testing (Schön,

1987). That is, the practitioner may intervene only to see what happens, may influence the

situation with an intended outcome in mind, or simply observe if the outcome matches a

predefined hypothesis. While the practitioner shapes the situation through interventions,
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s/he remains open to the possibility that these interventions continue to produce unexpected

outcomes. Using TrACE as an example, an instructor On the other hand, a failure in the

reflective process occurs when the practitioner tries to completely control the situation. A

failed reflective process includes set tasks where all input works solely towards that task.

The instructor filters out evidence that could have led to reflection or changes in the class in

favor of reaching predefined goals. Additionally, the practitioner may avoid being “wrong”

and does not share information to other parties (such as students) that may influence the

situation.

Let us consider two examples that might happen in using learning analytics. Two

instructors believe that students who watch a video will learn more and do better on as-

sessments. The first instructor wants students to watch the video and enforces this with

participation points. In spite of students “watching” the content, test scores do not improve.

The instructor continues to believe that students are not watching enough, and requires a

higher percent of the video watched and assigns more participation points. The second

instructor initially had the same requirement and also saw poor assessment results in her

class. She uses the analytics and realizes that many students are watching the content,

but many are fast-forwarding through the video. This causes the instructor to reconsider

watching alone as a goal, and changed her goals to focus on comprehension instead. She

adds automatic pauses and reflection prompts throughout future videos as an experiment

to see if students will slow down and more closely consider the course content as they watch.

The first instructor was not reflective and did not stop to reconsider if watching was the

right expectation to have for students. The second instructor noticed a surprising trend,

reflected, and adjusted practice accordingly.

Two scenarios, one in which the instructor fails to utilize the reflective process and
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one in which the instructor embraces it, are described as single and double-loop learning

by Argyris and Schön (1978). Single loop learning encompasses the behaviors wherein a

practitioner focuses on achieving a set goal in the most efficient way. The goal is perceived

as immutable and no reflection takes place. Either the goal is met or it is not. Conversely,

double-loop learning occurs when the results of an initial action leads to questioning those

initial goals and values and revising the underlying assumptions that started those actions

in the first place. It is within double-loop learning that reflective practice takes place.

Reflective practice has been studied by many scholars in an attempt to characterize

these different levels of reflection and create effective measures of reflective practice (Lar-

rivee, 2008, Jay and Johnson, 2002, Sparks-Langer et al., 1990). Larivee defines four levels

of reflection in practitioners:

1. Pre-reflection - no active reflection and the instructor does not adapt their own teach-

ing based on the students responses and needs.

2. Surface reflection - An instructor’s strategies work towards a predefined goal, the

instructor focuses on “what works” instead of considering instructional value of their

goals.

3. Pedagogical reflection - The instructor reflects on their educational goals, the theories

behind their approaches, and connects between theory and practice.

4. Critical reflection - An instructor considers the moral implications of their practice

and reflects on their own beliefs and how it affects their expectations and teaching.

These levels of reflection are present in other works as well (Jay and Johnson, 2002, Sparks-

Langer et al., 1990) although often titled-differently (surface reflection to descriptive/initial
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understanding and pre-reflection to habitual actions) and have been validated in each re-

searchers’ own educational contexts.

When applied to learning analytics, not only could an instructor use an analytic to reach

his/her initially desired outcome, but through reflective practice, challenge and redefine

those initial goals (Clow, 2012). Although reflective practice occurs personally and in situ,

changes in expectations, actions, and goals could be external indicators of this process.

Poor reflective practice would be observed as an instructor using the analytics for a fixed

purpose that does not change throughout the semester, and not sharing or intervening with

students based on the results discovered in analytics. In the next section, I discuss the

learning analytics cycle which applies the theory and process of reflection-in-action to the

context of learning analytics.

2.1.2 The Learning Analytic Cycle

The learning analytics cycle is an iterative process that is used to engage learners in their

educational environment. Reviewing it once again (Figure 2.1), I discuss the different

elements of the process:

Learners can be students studying in a course or participants in informal education.

Learning analytics both starts with and should affect learners.

Data can be about learners or generated by them. Examples include data traces such

as demographics, posts, test results, and click-level activity data (e.g. interactions

within TrACE or Blackboard). This data needs to be processed and interpreted.

Metrics/Analytics provide insight into the learning process. These can include tradi-

tional dashboards, visualizations, or identifying specific students based on the data.

These metrics inform the next step of the cycle.
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Interventions have some effect on the learners. Interventions can include a dashboard for

the learners to reflect on their own actions, or take place when an instructor directly

addresses high-risk students. It should be noted that intervention does not have to

occur with the same group of students. Data from one semester could lead to an

intervention in a new semester.

The data collected from the Learning Analytic Cycle may not be uniform or may

come from multiple sources. It is imperative to the success of a learning analytic that

the data is pre-processed (cleaned, integrated, transformed, etc.) before being presented

in the metrics phase (Chatti et al., 2012). The goal of the metrics phase is to provide

insight through previously unobservable patterns. In this way, the metrics supports the

data collection phase in reflective practice, and also allows for the practitioner to more easily

notice unexpected outcomes to initiate the reflective process. It is during this intervention

phase of the learning analytics cycle that reflective practitioners (Schön, 1987) reflect on

their practice. Instructors can self-reflect on the effectiveness of their learning or teaching

practice based on the results discovered in the analytics.

While not mentioned in the figure but mentioned in Chatti’s learning analytics process

(Chatti et al., 2012), an additional post-processing phase is involved. This allows for con-

stant improvement of the analytic process. This could involve collecting new data, refining

the data, or looking at new analytics altogether. This ties back to reflective practice, as

ideally an instructor should be able to manipulate the data available to them based on their

new goals.

The Learning Analytic Cycle is a model for learning analytics that draws from educa-

tion theory. The key step is ensuring that information generated from learning analytics

feeds back into learners via interventions. All design and development should be done with
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Learners

Data

Metrics

Interventions

The 
Learning 
Analytics 

Cycle

Figure 2.1: The Learning Analytics Cycle

this model in mind. Clow (2012) claims the Learning Analytic Cycle “instantiates and en-

ables reflective learning” in the intervention step, and understanding reflective practice can

help us determine if these interventions do support instructor reflection. In theory, met-

rics(analytics) should support reflective practice by allowing for quick observations related

to course goals. These metrics should also be presented in a way that can bring attention

to data that challenges those existing goals. This, in turn, should lead to reflection and

changes in practice.

2.2 Implementation of Systems

Instructors and students are both primary stakeholders in learning analytics. However, most

studies involving different stakeholder groups in learning analytics research target intelligent

tutoring systems or researchers (78%) instead of students(12%) and teachers(18%) (Chatti

et al., 2012). This research fills this gap in the literature to address the needs of students
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and teachers for learning analytics. Usually, students generate the traces that become the

data presented in an analytic dashboard, and the teacher (should) analyze this information

to inform his or her practice. Thus, it is important to consider how learning analytics

have been implemented for both instructors and students, and the research that has been

performed for both groups.

2.2.1 Instructor-centered analytics

Guidelines for instructor-centered analytics emphasize that instructors should be considered

in the design of learning analytics (Scheffel et al., 2014). The information most important

for teachers include overall success rate, mastery of concepts, frequent mistakes, and sup-

port for self-awareness and reflection (Scheffel et al., 2011). However, the current tools do

not yet answer all the questions that teachers have in regards to the educational setting in

which they are situated (Dyckhoff et al., 2013). In reality, current analytics are effective at

answering questions about quantitative measures of use (what is the student doing? ), but

do not collect more complex information. More complex information can include qualitative

evaluation(does the student like the system? ), differentiation between groups of students,

differentiation between learning offerings (is the student choosing online offerings instead

of in-class? ), data consolidation/correlation (What percent of the learning modules are stu-

dents using? ), and effects on performance (Dyckhoff et al., 2013). Other analytics that are

not available include information about the instructor’s own actions or information from

multiple data sources (Dyckhoff et al., 2013).

Some studies have looked into the qualities of effective learning analytics (Scheffel et al.,

2014), and others have researched what instructors might want from learning analytics

(Dyckhoff et al., 2013). Often, the target population of these studies have been Learning
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Analytic researchers or instructors who have no prior experience with learning analytics. A

challenge here is that it is difficult for participants to imagine features and tools they would

like without having any prior experience (Gulliksen et al., 1999). Collecting data from these

participants produces results that focus more on data collection, privacy, and acceptance of

a learning analytic system (Scheffel et al., 2014) as opposed to instructor desires to better

understand the learning process of students (Goodyear, 2010). Interviewing instructors

who are already experienced users of learning analytics may yield more fruitful results. By

collecting information from experienced users, we might gain more insight into the challenges

these instructors face in practice that may not have been considered by researchers working

outside of the classroom.

2.2.2 Student-centered analytics

Student-centered analytics allow for students to have self-directed and self-regulated learn-

ing. Students should regulate their own performance in order to meet the goals and expec-

tations of a course. Nicol and Macfarlane-Dick (2006) cite 7 ways that self-regulation can

be supported in students:

• Clarify what good performance is. Students can only achieve goals if they know what

these goals are in the first place.

• Facilitate self-assessment

• Give feedback information in relation to goals. Assist students in taking actions to

bring themselves closer to accomplishing these goals.

• Encourage teacher and peer dialogue

• Encourage positive motivation
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• Provide opportunities to close the gap between their performance and success. Allow

at-risk students to understand their behaviors and correct them as necessary.

• Use feedback to inform teaching, such as with reflective practice

Additionally, for students to benefit from feedback, they need to understand what good

performance is for the course, how their current performance relates to ideal performance,

and how to act to close this gap between their current performance and good performance.

This emphasizes the need for making the expectations of instructors available to students

through learning analytics. Learning analytics are not solely for the instructor or solely for

the student, and making expectations clear can benefit both students and instructors in

improving achievement in courses.

Several existing analytics attempt to provide students with information for self-reflection

of their learning. Signals, a Learning Analytic from Purdue University, (Arnold, 2010,

Arnold and Pistilli, 2012) manually collected student use data from a Learning Manage-

ment System (LMS) and provided feedback on progress using a stoplight system. The goal

of Signals is similar to mine: to provide analytics with actionable feedback. The presence of

this information allowed students to make corrections as they realized they were off-track

within the course, and students with this intervention sought help earlier. Faculty also saw

that students were more proactive. Students expressed a desire for more specific informa-

tion to how on-track they were, and instructors desired more action-oriented and helpful

feedback beyond a good (green)/fair (yellow)/poor (red) metric.

Duval (2011) analyzed various learning analytics for students and emphasized that

visualizations in relation to a goal can be more effective than by being presented as raw

data. However, no explicit Learning Analytic examples were provided, although systems

such as health trackers can be used as guidelines for goal-based analytics. While many
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works focus on either student analytics or instructor interventions, none found talk about

the intersection between the two, and even large scale literature reviews fail to find current

systems that allow this kind of interaction (Dyckhoff et al., 2013). Overall, while students

are provided with self-regulating information on their own actions, instructors are left with

either basic information that does not truly inform their practice, or they are left out

altogether by not being involved in the analytic process.

My contribution to this body of knowledge aims to “bridge the gap” through application

and design guidelines between learners and instructors that use analytics. This motivates

the creation of an analytic that allows for both the instructor to convey what they want to

know from the student, and for the student to understand how their behaviors match with

instructor expectations. Additionally, I aim to create an analytic that is informed by the

learning analytic cycle model, which claims to support instructor reflection when followed

(Clow, 2012). Finally, this research presents a unique opportunity to evaluate analytics

both in the classroom context and with experienced instructors.

2.3 Preliminary Research

Preliminary research in TrACE informs and motivates the work of this thesis. A qualitative

study consisting primarily of a thematic analysis of instructor journals and instructor inter-

views was conducted by Elson (2016) to gain insight into instructor formative assessment

practices. Several themes (Knowledge of Students, Actions, and Limitations/Shortcomings)

and subcategories (Student Behavior Relative to Expectations) related closely to the work

proposed in this thesis. To elaborate further, some of these categories are expanded on with

qualitative examples.
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First, Student Behavior Relative to Expectations was categorized as a subsection of

the Knowledge of Students theme. This section as described by Elson showed the ways

that TrACE enabled awareness of student performance relative to instructor expectations.

Important factors here were the ability to quickly assess if assessments were met and being

able to assess the class as a whole as well as individual students. These expectations covered

the range of actions in TrACE (watching, posting, etc.) but instructors were very interested

in knowing if students are meeting these expectations or falling short.

The Educator Action theme was described as the motivations behind instructional

change or intervention based on the insights/data presented to instructors through TrACE.

Tying back to reflective practice or the learning analytic cycle, this would be the intervention

that takes place as a result of evaluating if an instructor’s goals were being met. Just as in

the other related work, Elson noted that these interventions could be with a single student,

with the whole class, or with the next iteration of a course.

The final theme from Elson’s work that related to this thesis was the Limitations and

Shortcomings presented by instructors with regards to the system. Educators advocated for

system features to be available to students. Two of the six educators interviewed mentioned

a desire for analytics students could view to help them know if they are doing what is

expected of them. Elson proposed that such analytics would directly benefit instructors

by encouraging students to interact with the system in a way that better meets instructor

goals.

From this related work, there is an opportunity to create analytics that support re-

flective practice for instructors. Also, specifying expectations and an expectation-centered

analytic is something that instructors have expressed a desire to have in order to improve

their practice. In the following chapter, I present a formative study that directly informs
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the development of expectation-centered analytics.
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Chapter 3

Formative Study

In order to assert the hypothesis A learning analytic that encodes and reifies instructors’

individual expectations will (1)better support reflective practice for instructors and (2)allow

students to more reliably meet said expectations, a three-phase study was conducted. A

formative/exploratory study is the focus of this chapter, and serves as a form of requirements

gathering in which the results inform the design of an expectation centered analytic around

instructor expectations. Future chapters build upon the study in this chapter by taking

findings and developing an analytic prototype (Chapter 4) and evaluating said prototype

(Chapter 5).

The goal of this formative study was twofold: (i) to offer some insight into some of the

expectations instructors might have for their students and (ii) the extent to which analytics

were meeting their needs in order to establish design guidelines for analytic development.

To do so, I triangulated quantitative activity-log data of instructor use of TrACE from

previous semesters along with data collected from a participatory design session (Kensing

and Blomberg, 1998) involving instructors.

In order to set the context for this study, it is important to go into further detail on
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Figure 3.1: The video playback system in TrACE. Students can create annotations point-
ing to specific video content

how TrACE works and how instructors and students may use it. Instructors upload videos

to this platform for students to watch, and the system allows students to annotate and reply

to annotations in videos (Figure 3.1).

As a part of this system, a collection of learning analytics were developed to allow

for instructors to interpret student viewing behaviors. There are 8 analytics overall within

(a) Media Activity
(b) Session Summaries

(c) Percentage Viewed
(d) Annotation Sum-

mary
(e) Viewing Summary

Figure 3.2: Sample images of the analytics available to instructors in TrACE
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the system: Media Activity, Session Summary, Annotation Summary, Loyalty, Recency,

Percentage Viewed, Viewing Summary, and View Count graph. Most of these analytics

are at the video level for a single course and show activity for all students in that class

unless otherwise specified. To better understand these analytics, I will briefly describe

what questions instructors can answer and the visualization used. Screenshots of a subset

of analytics are also provided (Figure 3.2).

Media Activity (Figure 3.2a)- For a single video it answers how many times, what parts,

and when did students watch a video. It also shows how much time students spent and

what actions they took while watching. These answers are summarized as a complex

presentation of timestamps, view count numbers, and a video playback bar that fills

in what portions of the video were watched in aggregate by students.

Session Summary (Figure 3.2b) (accessed via Media Activity)- For a video it answers

similar questions to Media Activity (how long, how often, what actions did they take)

but focused on a single student. It is presented as a list of sessions (from opening the

video to leaving the video page) where each session contains a timeline with markers

indicating what actions occurred.

Percentage Viewed (Figure 3.2c)- A pie chart showing what % of the video students

watched.

Annotation Summary (Figure 3.2d)- Answers how many posts and replies did students

make presented as a heatmap.

Loyalty - Answers how many times did students open a video also presented as a heatmap

Recency - Answers when was the last time students interacted with the video also pre-

sented as a heatmap.
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Viewing Summary (Figure 3.2e)- A check (yes) or X (no) answering if students opened

the video.

View Count graph - A histogram showing how the number of views differ (between stu-

dents, between videos, over the semester).

In order to understand instructor needs in both assessing students and reflecting on their

own practice, I addressed the following research questions, outlined below:

• RQ1-How do instructors currently conduct inquiry on student behaviors?

• RQ2-What expectations do instructors see as valuable to model within the context

of learning analytics?

Table 3.1: Instructors using TrACE from 2015 to present

# Courses Taught
Instructor Institution Subject Sp15 Fa15 Sp16

1 A Calculus 1 &2 3 2 2

2 B Information Assurance 1 1 1

3 A Calculus 1 2 2

4 B Intro to Computer Science 3 3 3

5 A Education 2 2 2

6 A Scientific Inquiry 3 9*

7 C Business Intelligence 2 3 3

8 A Calculus 1 1

9 B User Interfaces and Design 1 2

10 B Intro to Computer Science 1

11 B Intro to Computer Science 1

12 A Political Science 1

13 B Database Administration 1

14 A Scientific Inquiry 2
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3.1 Methods Overview

The participants for this study included 14 instructors that used TrACE’s analytics from

January 2015 to May 2016 (Spring ’15 to Spring ’16 in North American vernacular). Ex-

cluding one instructor who did not use analytics, Table 3.1 includes basic information about

the instructors, including how many courses they taught in the Spring ’15, Fall ’15, and

Spring ’16 semesters. Instructors were assigned a random ID and course names were gener-

alized for anonymity. The majority of these instructors had used TrACE prior to this study,

so they may have already formed habits in their analytic use. This was a key distinction

from many other studies on system use, which were tested with first-time users of learning

analytics (Arnold and Pistilli, 2012, Muslim et al., 2016, Ali et al., 2012). These classes

were small to medium in size, with the largest class having 59 students. There was a mix

of undergraduate and graduate courses, the majority being in STEM disciplines with a few

education and political science courses as well. On average, instructors taught 1.8 courses

per semester with a maximum of 3 courses in any given semester (one instructor had 9

“courses” in the system, but this was a single class divided into groups). Some instructors

taught multiple sections or taught the same course across multiple semesters with the same

video content. During the study, instructors were given free reign over how the analytics

were used, and they were only provided with an introductory tutorial on the analytics at

the start of each term.

Fine grain data was collected on instructor analytic use within TrACE. This enabled me

to analyze how instructors were using the system at the time, which analytics were preferred,

and some basic patterns of behavior (having switched between many analytic screens or only

looking at one). These methods are elaborated upon in Section 3.2. Although insights into

instructor behavior were difficult to infer from the data alone, combining this with focus
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group data provided a clearer picture of the context in which instructors conducted inquiry

on their students.

The qualitative portion of this formative study included two 2-hour participatory de-

sign (Kensing and Blomberg, 1998) sessions where instructors were invited to discuss their

inquiry process and brainstorm analytic designs that would help support those inquiries.

The first part of the design sessions was a focus group related to their expectations in

courses that used TrACE, and the second consisted of a brainstorming and sketching ses-

sion where instructors produced analytic designs. The methods for the qualitative portion

are elaborated upon in Section 3.3.

3.2 Activity Data in TrACE

To answer my first research question, How do instructors currently conduct inquiry on

student behaviors?, I analyzed the data from 14 instructors to find out:

• How often do instructors visit analytics?

• How long are instructors spending in analytics?

• Do instructors prefer some analytics over others?

• Is interaction consistent across semesters?

Logfile data that informed this study included which analytics were accessed, who accessed

them, timestamps, and other action details (such as applying filters or closing reports).

To answer these first two sub-questions, the frequency and duration of analytic use

were calculated for each instructor. An action was logged every time an instructor entered

an analytic, took an intermediate action (e.g., changing filters, looking at different students,

changing the video targeted for analysis), exited. If a session timed out (i.e. there were no
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consecutive actions for at least 15 minutes) then the duration of that session was calculated

using the timestamp of the last action recorded. Sessions with durations of less than one

second were filtered out, as they were likely misclicks where the instructor would not have

gained any useful information from the analytic. Duration data was not evenly distributed

among instructors, so medians and non-parametric tests were used for my analyses.

To understand instructor changes in behavior, instructor analytic visit frequency was

directly compared across semesters both in a raw form and as a ratio of Frequency/#

Videos in all courses. I used a Visits to Videos ratio because an instructor may not have

been teaching the same courses or using the same videos every semester. Finally, the

frequency of visits was also split between each analytic in the system, and calculated as

the proportion of total visits. For the duration of instructor visits, instructor data was not

normally distributed, so a Kruskal-Wallis test was used to answer the last two sub-questions.

3.2.1 Results

First, I wanted to answer how often instructors visited analytics through an analysis of the

frequency of visits. The instructors used the analytics within TrACE 1268 times overall

with a distribution of 494 sessions in Spring ’15 (39%), 410 sessions in Fall ’15 (32.3%), and

364 sessions in Spring ’16 (28.7%). How often instructors visit the analytics was not evenly

distributed for any of the semesters observed. Table 3.2 presents how often an instructor

visited any analytic normalized by the number of overall videos in their course. Instructors

that visited more than once per video are in bold. 69.3% of instructors did not visit an

analytic at least once per video, so the majority of instructors may be viewing multiple

videos for each visit, or not viewing analytics for those videos at all.
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Table 3.2: Frequency of overall analytic use normalized by number of videos in all courses

Sp15 Fa15 Sp16

Instr 1 0.35 0.67 0.33

Instr 2 10.3 5.3 4.4

Instr 3 0.22 0.22

Instr 5 1.27 2.56 1.03

Instr 6 1.97 1.37 0.61

Instr 7 0.21 0.02

Instr 8 0.26 0.14 0.14

Instr 9 0.74

Instr 10 0.27 0.81

Instr 11 0.29

Instr 12 1.5

Instr 14 0.77

Instr 15 0.09

Table 3.3: Median duration (in seconds) instructors spent in all analytics. Instructors
with a significant difference in duration (p < 0.05) are in bold

Sp15 Fa15 Sp16

Instr 1 6 18.5 42.5

Instr 2 19 17 20

Instr 3 52 24

Instr 5 42.5 61 58

Instr 6 35 28.5 83.5

Instr 7 31 35

Instr 8 8.5 33 38

Instr 9 11

Instr 10 35 44

Instr 11 35.5

Instr 12 70

Instr 14 27

Continuing to the next subquestion, I looked to then answer how much time do instruc-

tors spend in analytics? Table 3.3 shows the median time instructors spent in the analytics

overall. This median was around 30 seconds overall for instructors, but this greatly varied

(6 seconds up to 83.5 seconds). Regardless of the variation, it was apparent that most in-

structors did not spend much time using analytics, and only three instructors had medians

greater than one minute. Comparing frequency to duration, Instructors 4 and 11 stood out

for having spent more time in the analytics and also visiting at least once per video. These



29

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

F
A

1
5

S
P

1
5

S
P

1
6

F
A

1
5

S
P

1
5

S
P

1
6

S
P

1
5

S
P

1
6

F
A

1
5

S
P

1
5

S
P

1
6

F
A

1
5

S
P

1
6

S
P

1
5

S
P

1
6

F
A

1
5

S
P

1
5

S
P

1
6

F
A

1
5

S
P

1
5

1 2 3 5 6 7 8 1 0

Annotation Summary Media Activity Percentage Viewed Loyalty Recency Session Summary Viewing Summary View Count Graph

Figure 3.3: Proportion of analytic use by instructor, compared across semesters. Excludes
instructors who only used TrACE for one semester.

users may have have developed a consistent procedure to analyze student behaviors in every

video.

I next looked at whether instructors demonstrated a preference for some analytics over

others. Five instructors in Spring ’15 (55.6%), one instructor in Fall ’15 (12.5%), and four

instructors in Spring ’16 (44.4%) had the majority of their sessions in a single analytic.

Combined, a third of all instructors had a majority analytic. Media Activity, Percentage

Viewed, and Annotation Summary were the most popular analytics (Figure 3.3).

Preference can also be broken down by duration to determine if instructors also spend

more time with some analytics over others. When performing a Kruskal-Wallis test to

compare differences in duration between analytics within a semester, most instructors did
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not have a significant difference in duration between analytics. This could be either because

there were not many visits to the analytics individually in the first place, or there was no

preference at all. Excluding two instructors that only use a single analytic, only 4/11

instructors showed a significant preference for an analytic in at least one semester. These 4

instructors were instructor 2 (X2(7) = 41.1, p < 0.001) in Spring ’15, instructor 3 (X2(2) =

9.681, p = 0.008) in Spring ’15, instructor 4 in Fall ’15 (X2(7) = 34.3, p < 0.001) and

Spring ’16 (X2(7) = 14.67, p = 0.04), and instructor 11 (X2(6) = 15.7, p = 0.015) in

Spring ’16. To determine popular analytics (by duration, instead of frequency) I ranked the

analytics by the mean usage (as duration) and calculated how many instructors spent the

most time in that analytic. The results show that Media Activity (5), Percentage Viewed

(3), Recency (2), Annotation Summary (2), and View Count Graph were used the longest.

Media Activity and Percentage Viewed were also the most frequent, so some instructors

were both dedicating more time and visits to these analytics.

To answer the final sub-question and understand if there were any differences between

semesters, I compared frequency of analytic visits (visits per video) as well as duration

(Kruskal-Wallis test). Instructors who visited often (at least once per video) continued to

do so. Only one instructor who visited often decreased to less than one visit per video in a

future semester. Instructors who did not view analytics often also maintained their trends;

no instructor that viewed less than once per video ever changed their habits to visit more

often than once per video. Another notable trend among all instructors who used analytics

for multiple semesters was that from the Fall ’15 to Spring ’15 term, every instructor had

visited the analytics either the same amount or less per video. This could be an indicator

that instructors have plateaued in their use of analytics.

When comparing an instructor’s duration across multiple semesters, half showed a
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significant (p < 0.05) difference in access (Instructors 1, 4, 5, 7). For instructors who spent

more time in the analytics but visited less often, this could mean these instructors were

analyzing more courses and videos in one sitting as opposed to shorter more surface level

bursts. On the other hand, it could indicate that the analytics were complex and difficult to

parse so more time was needed to understand them. These possibilities were kept in mind

when interviewing instructors about their analytic use (Section 3.3).

It was becoming more clear that Percentage Viewed and Media Activity were commonly

used by many instructors. In looking more closely at these specific analytics, I propose some

possibilities as to why these analytics were so popular. Initially, the Viewing Summary and

Percentage Viewed analytic seem to answer the same question (Did my students watch the

video?). When directly comparing the two, Viewing Summary can be misinterpreted as

a false positive, as just opening a video counts as a “watch” whereas Percentage Viewed

is much more detailed and allows for the instructor to see how much content was viewed

at a glance. Media Activity is a much more detailed analytic that can answer a variety

of questions for instructors (i.e. When are my students watching?, How often are they

watching?, What parts have they watched?). Two of these questions: when (Recency) and

how often (Loyalty) are covered in other analytics that were not used as often by instructors.

Media Activity allows instructors to find both pieces of information in one location.

Annotation Summary was another common analytic, and it is the only analytic de-

signed to report on student posting behaviors. This makes it the only option available for

instructors who want to know if students were participating without opening videos and

reading individual posts from students. Which analytics were most used could also tie into

expectations. If learning analytics support instructor intervention as related to their goals,
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Table 3.4: Participatory Design participants

Instructor Institution Number of Courses # Semesters Experience
Inst A1 A 1 1
Inst A2 A 3 2+
Inst A3 A 1 2+

Inst B4 B 1 1
Inst B5 B 2 2+
Inst B6 B 1 2+

certain analytics may be tied to specific expectations of students (watching, posting, or oth-

erwise). While most instructors did not have a clear preference for an analytic, these more

commonly used analytics could hint at the questions that instructors were most interested

in answering about their students and the types of expectations that instructors had. The

following qualitative study explored these questions and instructor needs more in-depth.

3.3 Qualitative Study

In Spring 2016, two 2-hour participatory design sessions were conducted with three in-

structors each at Institution A (A metropolitan doctoral university in the Midwest) and

Institution B (a medium-sized residential private university in New England)(Table 3.4).

All instructors who had used TrACE over the past calendar year were invited via email

to participate and were compensated for their time with Amazon gift cards. Of these 13

instructors, 6 total instructors had accepted the invitation. Four of the six instructors had

also taught the courses from the Fall 2015 student surveys reported on earlier. A descrip-

tion of the methodology for this participatory design session will be split between the focus

group and the rest of the design session.

3.3.1 Focus Groups

The focus group was 25 minutes and consisted of 4 questions related to their expectations:
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Instructor Expectations-What expectations do you have for your students, and how do

these expectations relate to your overall goals for the course?

Evaluation of Expectations-To what extent are you aware that students are meeting the

expectations? How confident are you that your students are meeting this expectation?

Clarity of Expectations-To what extent do you enforce these expectations of students?

How do students know what the expectations are?

Changes in Expectations-How have your expectations changed since you’ve started using

TrACE?

The focus group was transcribed and analyzed to extract examples of expectations,

goals motivating these expectations, and how these expectations were situated within the

classroom context. Results of these focus groups were transcribed and analyzed to expose

the range of expectations that instructors may have for their students. Affinity diagramming

(Beyer and Holtzblatt, 1999) is a form of contextual inquiry through which work activity

notes, or details on the instructor’s current workflow were extracted and grouped. These

groupings were then labeled and used to better understand the general needs, problems,

functional requirements and nonfunctional requirements that the system needs to fulfill for

these users.

3.3.2 Participatory Design Session

Following the focus group, instructors were shown aggregate data represented as graphs

of the Spring 2015 data. The two graphs included data on frequency over the course of a

semester, and the duration in the various analytics of TrACE. They were asked about their

initial interpretations of the data as well as how this reported data relates to or contrasts

their current use of TrACE. Transcripts from this portion of the session were analyzed to
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extract instructor descriptions of their current use of the system, hypotheses for past system

use, and rationale for their current system use. Comments such as “We’re getting tired at

the end of the semester. There’s a lot of stuff going on” and “There are a little bit complex

metrics and sometimes I don’t have the time to process what you’re telling me. So I tend

to use them very infrequently” were examples of what statements were extracted.

Next, instructors were asked to report on questions that they have about student

behavior. The questions asked to prompt instructors are included below:

• What are some questions you have thought about students in the class you’re teaching

that uses TrACE?

• As a teacher using TrACE, how does the answer to this question help you?

To answer the first prompt, each of the instructors came up with a list of questions individ-

ually. Then, they collaborated and reduced the list to 6 questions which they thought were

of top priority and that encapsulated most of their areas of concerns. The second prompt

was then shown to instructors. Individual responses were placed next to the corresponding

question. Instructors selected their top priority questions and, in groups, they were asked

to sketch out what an analytic or visual aid would look like that would help answer a given

question. The instructors worked with the researchers/developers in sketching out their

ideas on paper. There were three smaller sketching sessions that lasted 15 minutes, for a

total of 45 minutes. After the sketching session was complete, instructors explained their

sketches to the other participants and researchers/developers for another 20 minutes.

Artifacts from the participatory design session included the exhaustive list of questions

and rationales generated by instructors and the sketches created as a result of the design

session. Partial transcripts from audio recordings documented the experience. During
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sketching sessions and when conversations overlapped, transcripts were supplemented by

field notes from the three researchers present.

3.3.3 Results

Table 3.5 is the exhaustive list of the questions that instructors asked along with how it

would be useful for them. One question was excluded due to the fact that it was not posted

as a question, instructors could not provide reasons for how it would be useful to them, and

it was not selected for sketching.

In the first participatory design session, instructors sketched either alone or in a pair,

with pairs rotating for each sketch. This produced 5 designs in total covering 5 questions.

One group had reworked an existing sketch a second time, so there was one fewer sketch

than the intended six. In the second design session, only a single SMART board was

available for sketching. The SMART board could accommodate two participants at once,

so all three participants worked together to design analytics from three questions. Although

all of the designs were analyzed, a sample of the designs are presented here. These samples

were chosen because they embodied many of the common responses and needs instructors

had throughout this study. There were several questions posed that related to improving

the quality of their course and supporting their goals (such as developing a community of

learners), but did not easily translate to an analytic that an instructor could use.

Some of the analytics sketched by instructors focused on the student view and new

functionality within TrACE as opposed to a visualization the instructor could use in an

analytic. One example of this was a design answering the question “What would get the

students more engaged to the content and community?”(Figure 3.4). The rationale behind

this was that there was a need for students to know their status on videos in order to get
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Questions How it can be helpful
Is this lecture useful/engaging? Feedback over time and semesters on video content

Let's me know if the lecture should be  changed to increase 

comprehension

Allow me to rework lectures or portions of lectures to 

better serve students

Are students engaged when watching the 

video?

Students need to pay attention to do well

Know if students are exhibiting passive vs. active learning

See that students are committed to what I'm trying to 

teach

Where I need to change vs. where the student needs to 

change

Are my students confident in the subject 

matter?

Feedback on student performance

Help identify students that may need additional help with 

material

Allow me to guage proficiency but also how solidly they 

believe in their knowledge

What would get the students more 

engaged to the content and community?

ID barriers to community participation

ID barriers to understanding video content

Help alter delivery of content such that it is more 

meaningful and interesting to students

Tailor in-class activities or online interactions

What are barriers to them asking questions 

and how to address them

Be able to encourage student interaction

Does a reply really answer the question 

that was posted?

Do I need to answer the question again or clarify further

Are students asking good questions and/or helping each 

other?

What are student misconceptions? Tailor my intervention in the flipped lab

What information needs to be added to lectures

Where do students have confusion [while 

watching a video]

Tells you what you are going to teach in class based on 

where students are confused

Where I should clarify more for next iteration

How much time do students spend on the 

material?

Commitment and effort in independent learning

Tells me how valuable mat'l is to them.

Attitude of students throughout the course

Did the material do what I thought it would do (in terms of 

commitment)

Are students revisiting or reflecting on the 

material at some point?

Know what information is valuable to them

Indicators of higher level thinking and deeper reflection

Gauge critical thinking

Are students watching videos with enough 

time to reflect and integrate before class?

Use to talk to students about their study habits

Table 3.5: Instructor questions and why it was important to them.
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Figure 3.4: An analytic to answer “What would get the students more engaged to the
content and community?”

them more engaged. The sketch was a textual representation of students’ status on the video

list page. Students could get an idea for the number of comments they posted, number of

questions left to answer, and class averages in comments and questions. Although useful

and important to an instructor, there was a lack of design for what the instructor could

observe about the student.

(a) A reorganization of the
analytics focused on a single

student overview

(b) Report quiz results from students in aggregate

Figure 3.5: An analytic to answer “What are student misconceptions?”

Figure 3.5 represents the need for instructors to have varying levels of detail in the

analytics, and that the current analytics available in TrACE attempt to address this, but

do not fully do so. In answering “What are student misconceptions”, the rationale for an
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(a) “Is this lecture useful and engaging?”

(b) “Where do students have confusion?”

Figure 3.6: Two analytics seeking to identify student confusion

aggregate quiz was that the instructor wanted to be able to get a quick overview of student

understanding for the whole class. This bar graph closely resembles what would appear in

a clicker-style quiz where student answers remain anonymous.

When asking the instructor about what it would be like to view an individual student’s

quiz, the instructor decided to design a single page that aggregates all of the analytics

for one student. Instructors frequently reported that the way they observed students for

participation grades was on a single student basis. Often, they have to switch between

analytics and remember information in order to have a comprehensive understanding of

student activities. Putting all of the analytics in one place allows for the instructor to have

a comprehensive view of a single student without being lost among data presented about

other students in the class as well. In presenting this information, all of the instructors

expressed that allowing for a single comprehensive view would be useful to them.

Although both sessions were conducted at different institutions with instructors that

did not overlap in the subject areas they taught, both groups developed a mockup to address

student confusion in some way. One group tried to answer the question The question

“Is this lecture useful and engaging?” (Figure 3.6a). While the other group was more
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direct in asking “Where do students have confusion [while watching videos]?”(Figure 3.6b).

Instructors felt the need for student to notify them whether they were confused in any part

of the video and to provide feedback in a quick and unobtrusive way. Even though students

could post questions within TrACE, instructors were concerned that students were not

posting questions whenever they had them and wanted a way to provide input with a lower

barrier for entry. Both groups had independent ways that they wanted to better understand

confusion. One group wanted to know where they can improve on the video content if they

notice a cluster of confusion points in a certain part of a video. This manifests itself as

question marks along a timeline that may cluster together if many students are confused.

The other instructor group wanted to be able to click on a confusion marker and get detailed

student activity data (like linking to the session summaries page, Figure 3.2b). The reason

for this was that instructors wanted to be able to view what actions students were taking

to better understand the material. This information could be used to scaffold students in

order to resolve their issues. This follows the previously observed format of having high-

level aggregate data but with the ability for more in-depth data if the individual instructor

wishes to delve deeper.

3.3.4 Affinity Diagram Results

Work activity notes, which are the elements of the affinity diagram, were created from

transcripts, videos, and researcher notes for each participatory design session. A work

activity note summarizes a description or complete idea that emerged from the participatory

design session. Overall, 84 work activity notes were created from paraphrased mentions of

instructor goals, expectations, and use of the system, and features in TrACE. The order

of the notes was randomized to reduce bias and organized into categories. The process
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took a bottom-up approach and grouped similar notes together, only naming the resulting

categories after all of the notes had been clustered. A work activity note (phrased from the

instructor’s perspective) is included with each category. The first major category of notes

formed around instructor actions. The subcategories here all dealt with how instructors

were using the information they had gathered from TrACE.

Reviewing TrACE data before class- Instructors often refer to the analytics or read

student posts in order to gauge what material or questions should be addressed-in

class. Instructors usually read through student questions or responses to instructor-

crated prompts to determine where extra time should be spent reviewing.

“I scan through the video before class to see what students have questions

on so I can address those issues in-class”

Sharing analytics with the class- Some instructors take either an analytic page or an

aggregate of various pieces of data and shows it to the class directly. This was done to

make students more self-aware of their behaviors as well as reinforce that participating

in the system was beneficial to their learning (if correlating behaviors to exam scores)

“I share the Percentage Viewed page with students and explain what it means

to me in order to give students responsibility for their own learning.”

Other sharing- Instructor actions that did not fit into either group included discussing

analytic and post results with Teaching Assistants prior to class so they could more

effectively assist students with common questions or printing out data from TrACE

(like posts) to give to students as notes in order to encourage more posting.

“I use post results to talk to student teachers about what they should focus

on during class.”
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Instructors also commented a lot on their existing pedagogy such as course goals and student

activity within TrACE.

Student Collaboration- This category contains activity notes related to how students

should interact with each other and the quality of posts that they create. Instructors

often commented on having a “wait and see” approach by not immediately responding

to every question so that students had the opportunity to interact with one another.

In general, they desired quality posts from students which could help them better

prepare for the class.

“I want students to interact with each other in TrACE instead of only ask-

ing me direct questions and features that would help motivate students to

interact with each other.”

Student reminders and self-awareness- How instructors are currently reminding stu-

dents of what to do as well as their desire to make students aware of what they are

doing as well as be more aware of what needs to be done. Instructors discussed sending

email reminders to students but wanting student-focused analytics that would help

them be more aware of their own actions in the system.

“Even good students are forgetful of completing assignments and I waould

like a better way to remind them of what to do close to deadlines”

Goals for analytic use- What goals to instructors have for using analytics. This

could include wanting to check student participation, understand student behaviors,

or conduct action-based research. Instructors discussed analytics in general instead

of specifying any one visualization.
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“I use the analytics to know who’s prepared, who’s not prepared, and ad-

dressing students when they are not prepared.”

Pedagogy behind videos in TrACE- Examples of the ways TrACE videos are formatted

or used (style, frequency of using videos, where they are watched). Some instructors

used lecture-style videos to be watched outside of class while others had case studies

that were viewed in class. Some instructors had videos for every lecture, while others

only used them during brief periods during the semester (such as for lab activities).

“I use TrACE to demo videos to students so we can engage in problem

solving together.”

There were several categories related to instructor’s expectations of students. This could

include explicit expectations instructors had for their students (or having none at all) and

the challenges that instructors had with ensuring that students were actually meeting the

expectations that instructors had set.

Watching Expectations- Expectations related to viewing a video or watching a certain

% of the video. Also includes notes that mention analytics specific to viewership.

Measuring the percentage of a video viewed (Percentage Viewed visualization) was

mentioned the most, with the Viewing Summary analytic being the next most refer-

enced.

“I use Percentage Viewed to see if they newed all of the videos and work

backwards to determine the final score”

Posting Expectations- The other group of expectations were related to posting behav-

iors in TrACE. This could include responding to specific types of annotations like
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instructor-made comprehension checks or other student questions, asking questions in

the video, or using analytics related to counting student posts.

“I expect my students to fully watch videos and answer my comprehension

checks by the next week.”

Changes to Expectations- How analytic use has changed or how expectations of stu-

dents have changed either within a course or through multiple iterations of the same

course.

“The biggest change I made was moving from only having video watching

to requiring comments as a way to formatively assess my class.”

When expectations are not met- Some of the challenges that instructors have either

in feeling confident whether or not analytics are being met or quality issues. Some

instructors report not being sure if the analytics are creating false-positives for stu-

dent behaviors especially for watching behaviors. Instructors also had problems with

the quality of student posts. For both posting and watching, instructors struggle

with getting students to meet expectations but still have meaningful interactions and

learning gains from the course content.

“I’m not 100% sure that students are doing what I want or actually watching

the content.”

No Expectations- Instructors sometimes said that they did not have any explicit ex-

pectations at all. In these cases, the analytics were just used as a quick gauge of

participation.

“I do not use TrACE to alter my course content. I just want a gauge of

participation.”
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Instructors also reported a number of challenges with using the analytics in TrACE.

Particularly, instructors reported a lack of actionable output. They often could not figure

out how to aggregate the data from the different analytics to create actionable data in

the first place or if they could, it was time consuming and took a great deal of effort.

Work activity notes that went into this challenge category included “When information is

available to me, I find it hard to aggregate to figure out in general what I should do.”

Request for features that reorganize or display analytics in a meaningful way were

proposed by instructors to counter some of those challenges. This feature request category

relates very closely my development goals, so each of the notes are written here in their

entirety:

• I want to be able to isolate or specify videos so I can do more, different kinds of

analyses.

• I want to be able to group videos in the analytics (by section, lecture, or exam) to see

why students may have low performance over a time period.

• My current workflow is to jump between different analytics and adding date filters. I

need a way to integrate these views.

• A feature like “View this much(%) by this day” and a checkmark would be useful to

me.

• I want the analytics to be able to combine info and give me more complex views so I

have less manual calculation.

Some other features were also suggested, but they were unrelated to making the an-

alytics easier to understand. This category covered features like posting or adding quiz
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questions to videos. Many of these other features are those drawn by instructors in the

participatory design session.

3.4 Discussion and Design Requirements

The findings from this section are summarized below in the form of design requirements. I

continue this section with the chain of reasoning behind these design requirements. In the

next chapter, I detail how these requirements were applied to development of the prototype.

1. Viewing videos and posting are important to instructors. Instructors also use analytics

related to percentage viewed and post counts the most, so aggregated analytics should

at a minimum be able to aggregate metrics related to both.

Several instructors did have a preference for some analytics over others. One

hypothesis was that some instructors are using analytics in search of specific informa-

tion instead of exploring the data. The watching and posting expectation categories

support this, as some instructor looked specifically to watching or posting analytics

that tied to their expectations.

2. Instructors want additional ways for students to interact with videos, so analytics

should be able to accommodate those new interaction methods. (As an example, a

quiz feature was added to the system, so metrics related to quiz responses should be

accounted for)

In double-looped learning (Argyris and Schön, 1978), initial goals and overall

practice evolve as reflection occurs. This not only affects how instructors interact

with students, but the design of systems as well. Many design sketches proposed new

ways for students to interact with TrACE. Instructors have new questions they want
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to ask which may require new interventions. Iterating through the learning analytics

cycle (Clow, 2012), a changing interventions would alter what data about learners is

collected and thus how analytics present that new information.

3. Some instructors rely heavily on video due dates, so information should be filterable

by those deadlines.

Reflective practice involves gradual discovery which informs and changes practice.

Without the presence of due dates, there may be no student data present when it

comes time for the instructor to look to metrics to inform the next class period. Due

dates also allow instructors to have enough time to review questions students may

have posted or make other insights necessary for reflection.

4. To ensure accuracy, data provided to students and instructors should be synchronized

and provide the same meaning.

This emerged in the Student reminders and self-awareness category, but this also

is supported by Nicol and Macfarlane-Dick (2006). In particular, allowing students to

understand their behaviors (and correct them), encouraging teacher and peer dialogue,

and facilitating self-assessment are some of the reasons why similar analytics should

be available to students and instructors.

5. To support a wide range of time instructors can afford to spend with the analytics,

they should be effective at a glance with the ability to delve deeper.

I observed that instructors are most likely limited in the time they can spend with

analytics due to the fact that analytic use was done in short bursts that may cover

multiple videos. Often, the analytics with the richest data were used for the shortest

amount of time or not at all (Session Details). Instructors were given access to the

data to perform in-depth inquiry by utilizing the analytics, but this was not usually
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done. Instructors were split between some spending more time in some analytics over

others while others have no analytics that they significantly use over others.

The process of taking an initial glance followed by a deeper exploration can

also be supported by reflective practice. A key part of reflective practice is surprise

(expectation failure). The impetus for surprise happens when the instructor has

existing pedagogical expectations, but an observation is made that challenges those

expectations. A surprising observation gets the attention of a practitioner, which then

leads to further inquiry. An analytic that allows for an instructor to take notice of

unexpected student behaviors but also supports further exploration would, in theory,

allow for reflective practice.

6. We cannot assume that an instructor will use analytics in the same way each semester,

and frequently changing factors such as available courses, student needs, and course

content could affect system use. Analytics should be flexible for these different con-

texts.

Usage between instructors varies widely depending on their class load and per-

sonal analytic preferences. Between semesters, some instructors are not completely

consistent in their use of the system. Frequency of analytic use decreases over time for

many instructors, which was especially true from Fall ’15 to Spring ’16. This could be

due to the fact that instructors may not be using videos-based media to inform their

teaching as much, or they are pressed for time, with less time to dedicate to using

the analytics. This dropoff in use also seems to be true within a semester, as there

were work activity notes by several instructors who have mentioned that they do not

utilize videos at the end of the course and that the end of the semester was busy for

them. Instructors may need both real-time data about their students in busy parts
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of the semester and easily digestible summaries for when the gaps between sessions

increases.

7. To support a variety of information needs, analytics should aggregate data from dif-

ferent metrics/traces based on those information needs.

8. To reduce manual calculation from instructors, analytics should be able to combine

data into more complex views

These two design requirements are informed by existing design considerations

for learning analytics(Scheffel et al., 2014), and empirical evidence within this study

which both point to making analytics quickly accessible. Although the opportunities

exist for instructors to do in-depth or exploratory analysis of student behaviors, often

times instructors are not taking this time.

“And then I was using it initially – just the very initial analytics to say

to myself, okay, so who’s viewing what? I wasn’t looking at the amount of

time they were viewing it. It was the Xs and the green checkmarks. That

was my focus.”

“There are a little bit complex metrics and sometimes I don’t have the

time to process what you’re telling me. So I tend to use them very in-

frequently. Number of annotations[Annotation Summary] and Percentage

Viewed is what my grading is based on. So I do tend to get a quick glance

at that in order to make an annotation or not and if they each watched the

video or not. So it’s very nice, easy metrics.”

As observed with TrACE, instructors almost always use an analytic for under

two minutes with a median of around 30 seconds. Even so, this was not true for all
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instructors, as it can be shown that even though all of these instructors volunteered to

use TrACE, system use varied widely enough that designs should address both ends

of the spectrum. Many of the analytic drawings that emerged from the participatory

design session were organized in such a way that the instructor could glance at and

gain information about the course quickly, or could be customized to their needs.

“If the viewing summary was like a combination between things like Per-

centage Viewed and Recency, this would be the only thing that I really would

need. If I could set a date, like have they watched it by this date, or at least

watched part of it by this date, which Recency gives, and I could also set a

percentage threshold. Like 95% if they watch, 95% of it, part of it has been

by this date then give them the checkmark.”

9. Instructors often consider their course in units or by milestones and many may be

viewing multiple videos per analytic visit, so analytics should be able to analyze

videos as groups instead of one at a time.

This design requirement came from both the qualitative and quantitative portions

of this study. Two of the questions posed by instructors (Are my students confident in

the subject matter? and Are students revisiting or reflecting on the material at some

point?) resulted in designs that revolved around important milestones or units in

the course. From the Sharing Analytics category, one instructor reported reanalyzing

groups of videos related to an exam and manually aggregating data from those videos

to see if there were any trends that had an impact on student academic performance.
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Chapter 4

Analytic Development

The next step for this study was to utilize the information gathered from previous versions

of TrACE and the results of the formative study to inform the design of a new analytic

that allowed for both students and instructors to better understand the expectations for

the course. This prototype was developed with two goals in mind: (i) a dashboard that

affords and supports reflective practice and (ii) visibility of expectations for student use.

Creating analytics centered around an instructor’s pedagogical expectations set for

students in the class supports many of the design requirements presented in the previous

chapter. First, expectations are unique to each instructor. If analytics are designed around

unique expectations, these analytics by extension would also be customizable. Results of

the qualitative study showed that expectations can be complex and related to multiple be-

haviors (i.e. watching and posting). Presenting analytics based on expectations aggregates

data from multiple sources. Instead of looking at Percentage Viewed followed by Annota-

tion Activity and Recency, a single analytic could combine watching expectations, posting

expectations, and deadlines into one location. Analytics should also support a high level

overview as well as in-depth analysis. Expectations can be binary; either an expectation
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is met, or it is not. Knowing whether or not students are meeting expectations serves as

the high-level overview, and could bring attention to students who are not meeting an in-

structor’s goals much more easily. Finally, expectation-centered analytics supports student

use as well. Transparency and synchronized analytics between instructors and students was

a design requirement. Normally, expectations are specified outside of the system such as

through a syllabus, reminder notifications, or in-class discussions. Expectations specified

by an instructor could be made available to students within the system and would support

student self-awareness.

The prototypes were developed using an iterative design cycle common in user-centered

design. Taking the initial findings from the previous formative study and quantitative

data on use of TrACE, paper prototypes were developed and informally evaluated by local

instructors that use TrACE and the new analytic was deployed in Fall 2016.

The expectation analytic had three major components:

1. A way for instructors to specify their requirements and connect them to course content

(videos).

2. A way for students to view what was expected of them for the videos that do have

specified requirements.

3. An analytic for instructors that presents the extent to which students have met the

expectations defined in #1.

This chapter continues by summarizing which findings from the previous chapter informed

the design of each of these components, changes that may have been made as a result of

informal evaluations, and examples of the final prototype that was deployed in the field

study.
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4.1 Specifying Expectations

In order to specify expectations, it was necessary to understand what instructor expec-

tations were within TrACE. From the formative study, some of the expectations that

emerged include watching the videos in full, watching videos prior to the set due date,

posting comments and questions using TrACE’s annotation feature, and responding to any

instructor-prompted questions scattered throughout a video. Instructors wanted to ensure

that students were prepared for class and instructors also wanted to be able to respond to

questions that students had. Below was a summary of the design guidelines informed by

the formative study in Chapter 3:

• Viewing videos and posting are important to instructors. Instructors also use analytics

related to percentage viewed and post counts the most, so aggregated analytics should

at a minimum be able to aggregate metrics related to both.

• Instructors want additional ways for students to interact with videos, so analytics

should be able to accommodate those new interaction methods. (As an example, a

quiz feature was added to the system, so metrics related to quiz responses should be

accounted for)

• Some instructors rely heavily on video due dates, so information should be filterable

by those deadlines

The components of an expectation, from this feedback, include the type of expectation,

how much the instructor wants students to do (watch %, post count), and a due date. One

design idea was to formulate expectations in the same language that instructors were using

to describe them in the focus groups. To evaluate this design idea for specifying require-

ments, instructors were shown a fill-in-the-blank form detailing expectations for watching,
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posting, and question-answering behaviors (Appendix A). While the multiple-choice ques-

tion feature had not been used by instructors yet, all other expectations in this form were

ones that instructors would have exposure to in the analytics. Instructors were asked to fill

out the form based on their expectations of students in one of their existing (or previously

taught) classes. Instructors were allowed write anything they wanted in the blanks, so they

were not limited by preset input types. After educators filled out this form, they were asked

two informal Likert scale questions about the ease of use in filling out the form and the

extent to which this form would cover the expectations they currently have for their course.

Instructors were also asked why they gave those scores.

They expressed that the fill-in-the-blank style of presentation for the analytics was

easy to understand. In observing how instructors were entering their expectations, many

instructors also had “fuzzy” expectations. That was, it was easier for instructors to say

“watch between 80 and 100 percent of the video” instead of stating a single hard number.

This was also expressed in ways such as “respond to all of these posts” or “watch before

the video due date” where the video due date was automatically calculated instead of a

manually entered value. Some instructors had difficulties thinking of their expectations in

the context of a single video and had a desire to specify expectations for groups of videos

instead of a single one. These could be described as macro expectations (tied to the overall

course) and micro expectations (a single video). Instructors justified this through wanting

to make sure that students did not post low quality content in an attempt to meet the

expectation.

Following the fill-in-the-blank format in the prototype, instructors could add expecta-

tions from a dropdown menu. Their options reflect the range of expectations mentioned

earlier: Watching, Posting (Posting new threads, replying to existing posts, or both), and
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answering Multiple Choice Questions. The options the instructor could fill in would change

depending on their selected expectation type, but the text reflects the type of expectation

(Figure 4.1).

(a) Adding Reply Expectations

(b) Adding Multiple Choice Expectations

Figure 4.1: Examples of how expectations could be specified

There were several optional elements that instructors could add to an expectation.

First, every expectation had the option to have a unique deadline. This could be used in

cases such as the video due date being at midnight, but instructors wanting students to fulfill

expectations at the start of class or before a big exam. Otherwise, it would default to the
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video deadline. If the instructor set no deadline for the video, it defaults to the end of the

year (a time when any semester would most likely have ended). Both in the formative study

and in the informal evaluation, instructors described various types of posting expectations.

Thus, instructors could also set what kind of posts they want students to make based on

annotation types which were unique to each class. An instructor could ask students to post

questions, or have a specific scaffolded annotation type that they want students to use.

When replying, instructors could ask students to reply to certain types of posts or users.

All of the following were possible expectations an instructor could create with my tool:

• Watch at least 95% of the video before Fri, Oct 21 at 10:00AM

• Post at least 1 annotation of type(s) Comment or Question before Fri, Oct 21 at

10:00AM

• Post a reply to all Comprehension Check and Reflection posts before Fri, Oct 21 at

10:00AM

• Post at least 2 replies in response to other students before Fri, Oct 21 at 10:00AM

• Answer every multiple choice question in the video before Mon, Aug 29 at 12:00AM

I also added features to remove expectations as well as import expectations from other

videos. To support changing expectations as a result of reflection, instructors could disable

expectations that no longer align with their course goal. Importing expectations was a useful

feature for instructors who had limited time to create expectations. However, importing

expectations could lead to instructors duplicating expectations without considering how

their goals or expectations had changed. This would be evidence of single-loop learning,

where practitioners are not engaging in reflective practice. To mitigate this, importing must

be done for each video (an extra step) and presented each expectation to the instructor prior
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Figure 4.2: Feedback to students on their video viewing was visualized above the play-
head.

to importing. This made importing expectations less convenient, but encouraged more

reflective practice than copying a single expectation to every video in a semester in one

step. With expectations specified by instructors, analytics for students that mirror these

expectations were then made available.

4.2 Student Analytics

The second goal was to allow for students to see where they were in relation to the class goals

set by the instructor, and to have a clearer understanding of expectations. Early iterations

of TrACE had few indicators for whether or not a student was meeting expectations such

as watching a video at all or how much of the video was already viewed. Through focus

groups and feedback, the most recent iteration had implemented a way to show students

the percentage of video viewed (Figure 4.2) and an email reminder informing students if

they have watched a video before the due date, but this was the only feedback available to

students.

To summarize, only one design guideline initially emerged from the formative study

that informed these student analytics.

• To ensure accuracy, data provided to students and instructors should be synchronized

and provide the same meaning.
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Lecture 1

Open Questions: 0 Comments: 2

Lecture 2  (New Activity!)
Total Questions: 2 Answered Questions: 1
Open Questions: 1 Comments: 2

Video 
Thumbnail

Video 
Thumbnail

Figure 4.3: An analytic designed by instructors to answer “What would get the students
more engaged to the content and community?” Redrawn for clarity.

The initial mockups for the student view stemmed from one of the designs in the

participatory design session. The design group wanted to engage students with the content

and community by showing students their own status on videos. Figure 4.3 is a redrawn

version from that initial sketch. This was then re-imagined as visual badge icons to represent

expectations. It was also moved from the course page into the video page to allow for

students to see their own progress in real-time. Instructors were shown mockups in the

form of overlays on the existing TrACE web pages (Figure 4.4).

(a) Initial badge designs

(b) Mockup of badge placement on the video page

Figure 4.4: Initial mockups of the student-facing analytics

A pitch was provided to instructors detailing how the expectation analytic would work,

how it would be accessed by instructors and how it would be accessed by students. Instruc-

tors were free to ask questions about the design during this time. Instructors were asked

what aspects of the design were useful, what they liked about the design, and any changes
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they thought would make it more usable for their course contexts. Once again, the designs

were favorable with instructors. Some suggestions included letting students know before

entering the videos which ones still had not been completed, so students would know which

videos to re/visit in the first place. Also, instructors noted that students might not come

back to a video, so letting them know before they leave if they have or have not met all

the expectations would be useful. These suggestions became two additional design require-

ments:

• Students should be reminded of what to do close to deadlines.

• Students do not frequently revisit videos, so the analytic should inform students of

their current progress within the video page.

In the prototype, the video list page was modified to show students which videos have

met/unmet expectations. This simple view presents a check or exclamation mark based on

whether or not the student had met all of the expectations in that video yet (Figure 4.5).

Figure 4.5: Student can see indicators of videos with met or unmet expectations on the
course page
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Figure 4.6: A To-Do list detail-
ing what the expectations are at the

start of every video

Figure 4.7: Students see several
badges related to the expectations

they should meet

When opening a video, students were presented with a To-Do popup, which lists every

expectation the instructor had set for the video in the same language the instructor used

to make the expectation (Figure 4.6). A set of badges was located above the video (Figure

4.7). These badges were indicators based on those expectations, and they change from

grey and translucent to opaque and colored when all of the expectations in the category

(watching, posting, replying, or multiple-choice answering) were complete. Students could

hover over each of the badges to see the same expectations that were listed in the initial

popup and whether or not they have met that specific expectation. These badges update

whenever the student pauses the video, creates a post, or answers a multiple-choice question;

students receive live feedback for their actions. Additionally, any changes the instructor

makes to expectations were reflected in the badges. If an instructor removed or added more

expectations while a student was watching a video, the badges the student could see would

update as well, so a student would always have their progress to the current expectations

visible to them.
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4.3 Instructor Analytics

Instructors specified expectations which are then made visible to students. The final part

of this cycle returns to instructors by allowing them to see how well students have met

their expectations. Before, instructors needed to access different tabs/pages in order to

understand student behavior in the system. Instructors expressed they had challenges with

workflow consistency because of the frequent context switching. My goal for this portion

of the analytic was to aggregate data from multiple pages in one location instead of the

previous setup where multiple pages on the dashboard provided different information that

must be gathered and cross-referenced by the instructor. Results from the formative study

also informed this portion of the analytics:

• To support a wide range of time instructors could afford to spend with the analytics,

they should be effective at a glance with the ability to delve deeper.

• We cannot assume that an instructor would use analytics in the same way each

semester, and frequently changing factors such as available courses, student needs,

and course content could affect system use. Analytics should be flexible for these

different contexts.

• To support a variety of information needs, analytics should aggregate data from dif-

ferent metrics/traces based on those information needs.

• To reduce manual calculation from instructors, analytics should be able to combine

data into more complex views

• Instructors often consider their course in units or by milestones and many may be

viewing multiple videos per analytic visit, so analytics should be able to analyze

videos as groups instead of one at a time.
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Feedback was gathered from instructors on paper prototypes of this portion of the

analytics at the same time as the student-based analytics. First, when looking at a single

student in the analytics, instructors requested that we make it easier to cycle between

students and videos (possibly with previous/next buttons). Also, instructors thought it

was important to give clear feedback about whether or not an expectation had been met

in this same detailed report. This way, instructors instructors would not be burdened with

mental calculations to determine whether a not a student met an expectation.

In the prototype, the instructor expectation analytics were divided into two new ana-

lytics to support instructors who desire that high-level overview with the option for more

detailed information. The first, the Expectation Progress Report (Figure 4.8), represents

the high-level information an instructor would like to know about students and the class

overall. The Student Report stems directly from the participatory design session and offers

a way for instructors to combine all of the analytics on a single student in one page. Both

of these analytics were described in more detail below.

4.3.1 Expectation Progress Report

(a) How did my entire class meet my expecta-
tions?

(b) Did individual students meet my expecta-
tions?

Figure 4.8: The Expectation Progress Report
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When the instructor selected a video within their course, they first saw a high level

overview of how all students in aggregate were doing regarding watching, replying, posting,

and multiple choice expectation categories (Figure 4.8a). Instructors first saw a pie chart

for each category (80% of my class met my watching expectations) and below could see

a breakdown of how well the whole class did for each individual expectation. Instructors

were reminded what their expectations were by using the same language they used to define

those expectations in the first place. From there, instructors could scroll down to see an

overview of each student in their course (Figure 4.8b). This was similar to the Viewing

Summary report, by also using checks and X’s, but instead of being based on a metric that

instructors cannot modify, the checks and X’s relate directly to what the instructor had

specified as their expectation.

A link was available here to the Student Report, where instructors could get even more

detailed information about individual students, if this overview was not detailed enough for

the instructor.

4.3.2 Student Report

The Student Report analytic was developed separately from this study as a direct influence

from one of the designs that emerged from the participatory design session. This arose

as instructors expressed a desire to see student details all in one place without jumping

between analytics. The Student Report had several features. First, it contains analytic

panels, which could be minmized and reorganized based on what the instructor prioritizes

in viewing analytics. Each panel was a student-centric version of the existing analytics. For

example, an instructor could see the percentage viewed, media activity, or post counts for a

single student. Additional panels available to instructors include seeing a student’s multiple
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Figure 4.9: The Student Report Analytic with the Expectation Report panel open

choice responses, posts, and reply content for a single video. This allows for the instructor

to get quick insights into the quality of a student’s posting activity without having to open

the video and manually search for that student’s contributions.

My contribution to this analytic was the Expectation Report panel (Figure 4.9), which

was displayed at the top of the Student Report. For every expectation the instructor had,

this panel informs instructors to what extent the student met the expectation. From this,

instructors would know how close the student was to meeting the expectation, or how far

beyond expectations the student performed. If this panel sparks any inquiries, the instructor

could easily view another analytic panel for more detailed information.
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Chapter 5

Field Study

With the implementation of the prototype developed from the previous iteration, the final

phase of the study was to evaluate it with both students and instructors. Although the

majority of learning analytics evaluation work focused on improving design of tools (Dy-

ckhoff et al., 2013), the goal of this field study instead looked at evaluating the behavioral

impact on teachers and students. The remaining research questions were answered by this

evaluation.

• RQ3-How do instructors instructor behaviors change with the explicit presence of

this analytic?

• RQ4-How do student behaviors change with the explicit presence of this analytic?

This field study was conducted during the Fall 2016 semester and included all 10

instructors teaching 20 courses that use TrACE. 70% of classes have video content imported

from previous iterations of the course.

To measure the potential impact of expectation-centered analytics, a within-subjects

study design was applied to both instructors and students. The rationale behind using a
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within-subjects approach was that each instructor taught a course (or multiple courses) with

unique contexts that does not afford comparisons between instructors. Additionally, the

population of instructors using TrACE was fairly small, so a between-subjects comparison

would lack statistical power. Although there were a large number of student users, the

individual class sizes were much more modest (around 30 students per class, not considering

consent rates) so a between-subjects approach would be insufficient in this context. By using

a within-subjects approach, individual differences in students’ overall levels of performance

would be controlled. Also, students may not complete the course, so comparison of a student

to their own behaviors ensures that there would not be complications if other students drop

the course. A possible confound in analysis was that technical changes to the system were

not limited to the addition this new analytic. Other analytics have been developed and were

deployed in parallel to the expectation-centered analytic. It may be difficult to attribute

improvements explicitly to one analytic, but the use of a within-subjects approach should

control for this effect, as between periods only the expectation analytic was introduced.

A limitation to using a within-subject methodology was the possibility of carryover effects

which could bias the treatment period, but informing instructors and students of system

changes could mitigate this.

The first phase took place from the first day of class and lasted approximately 4 weeks

(this varies slightly by course start date) The second phase was also 4 weeks. During the

entirety of the study, instructors were asked to use the system to log their expectations

of students. In the control, neither instructors nor students received feedback through

expectation-centered analytics, and the courses ran the same way as in previous semesters.

In the treatment period, the analytics were enabled and introduced to all users. Table 5.1

was an overview of the format of the field study.
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Table 5.1: Overview of the phases in the field study

 

Group 
 Control 

(Start-9/19) 

Treatment  

 (9/19-10/21) 

Analysis 

Instructors 

 Specify Expectations for videos - Details on 

expectations 

- 

- 

Student Report  

(No Expectation  

Panel) 

No Expectation  

Report 

- Expectation 
Panel in Student  

Report 

- Expectation 

Report 

- Within-subjects 

comparison of 

analytic use 

Students 

- 

- 

- 

No notifications 
of expectations 
No badges in 
video 

No To-Do List 

- Expectation 
Notifications 

- Badges visible in 
video 

- To-Do List in 

video 

- Within-subjects 

comparison of 

performance  

 

The number and type of expectations created and the changes/updates to these ex-

pectations that occurred over the course of the study were logged through TrACE and

analyzed. Data collected on creating expectations included the type of expectation and de-

tails, when the expectation was made, if it was imported from another video, and if it had

been disabled/deleted by the instructor. From this information, we could determine what

kind of trends instructors have. For courses that already have videos imported from other

semesters, do instructors set expectations once for an entire course and leave expectations

alone for a semester? Or would instructors periodically revisit their course expectations

and modify them as the semester progresses?

Overall, 7 of 10 instructors had created expectations during both phases of the study

and 238 expectations in total. Of these 7 instructors, the majority of expectations were post-

ing expectations (59%), followed by watching expectations (31%) and finally quiz-answering

expectations (10%). 76% of these expectations were imported. Importing expectations

is a behavior that does not show evidence of reflective practice. When importing large
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amounts of expectations, instructors may not be considering how those their practice and

thus their expectations, change over the course of the semester. In general, instructors had

between one and two expectations per video (µ = 1.36, std = 0.52), and for the most part

these expectations remained unchanged throughout the study period. This indicates that

if reflective practice took place, it did not manifest itself through evolving expectations.

Instructors would either do mass-uploads of expectations at the beginning of the semester,

or they would gradually add expectations as each video was released to students. Although

instructors had the ability to change the deadline of expectations, most chose to use the

default, which was the same as the video due date.

5.1 Instructor Analytic Use

The evaluation of RQ3 was done in two ways. First, instructor activity data in the analytics

was collected from the 9 instructors who had set any expectations at all throughout study.

The method of collection was the same as the methods detailed in chapter 3. Summarized

again, click-level actions were logged when an analytic was opened in TrACE. Data collected

included which analytic was accessed, the course, timestamps, and other action details (such

as applying filters). The actions generated by instructors were grouped into “sessions” that

were cut off after 15 minutes of inactivity. Sessions shorter than one second were filtered

out. Within a session, an instructor could look at multiple courses (if teaching more than

one), videos, and students.

To understand the extent to which instructors used the tools provided and in what ways

these behaviors have changed, two main metrics were used. Frequency of analytic access

and duration of analytic use. Duration was not normally distributed, so a Wilcoxon signed-

rank test was used to compare the differences in time spent overall between phases, and time
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Table 5.2: A contingency table comparing analytic use (frequency) for instructors 1, 3,
and 9 between phases

Instructor Phase Annotation
Summary

Media
Activity

Percentage
Viewed

Quiz
Analytic

Student
Report

Loyalty Recency Expectation
Report

Viewing
Sum-
mary

View
Count
Graph

1*
1 15 1 13 1 11 1 1 0 8 1
2 8 1 9 0 2 0 0 17 3 1

3
1 2 2 1 6 3 0 1 0 1 1
2 0 0 0 1 4 0 0 2 0 1

9
1 1 0 1 2 8 0 1 0 0 0
2 0 0 2 0 3 0 0 1 0 0

spent with each analytic to see if there were any differences. For frequency comparisons,

a Fisher’s exact-test was used, as the expected frequency for any given analytic in the

contingency table was expected to be less than five.

Figure 5.1a shows the frequency of visits before and after for instructors. Using a

Fisher’s exact test comparing the ratio of analytic between phases for a given instructor,

only one instructor had a significant difference (p < .001) in the analytics accessed (Table

5.2). When the treatment period began, 41% of Instructor 1’s analytic visits were in the new

expectation report. Figure 5.1b shows the differences in duration. Wilcoxon signed rank

tests did not show any significant differences in duration (Z = −.652, p > .05) between the

phases for instructors. Only three instructors used analytics at least 5 times in each phase,

so the small sample of visits could be a reason for a lack of statistical significance. The

median time that instructors spent with the analytics was still not incredibly high, with

most instructors still spending less than a minute in the analytics. However, there were

cases, such as when using the student report, where instructors who did use this report

spent a significant amount of time looking into each student’s behavior.

The presence of this analytic did not encourage all instructors to spend more time with

analytics in a significantly different way. Although, one instructor, who was already a heavy

user of analytics, quickly adopted the use of the Expectation Report analytic when it was

introduced.
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5.2 Student Performance

To evaluate RQ4, a quasi-experimental design was applied. Students were compared be-

tween the control and treatment periods using a Wilcoxon signed rank test for system

activity. Performance was defined here as the extent to which students met an instruc-

tor’s expectation for a video. This was simply calculated as (student completion amount

/ required amount) Student completion was calculated from the amount that a student

watched, posted, or answered quiz questions before the deadline specified in the expecta-

tion. The required amount was provided by the instructor when creating the expectation.

Click-level log data built into TrACE allowed for these student behaviors to be calculated.

Courses of instructors who did not specify expectations in both phases were excluded,

as well as students who were reported as having dropped the course. 188 consenting students

among nine courses remained. Average compliance to all expectations in each period was

calculated and a Wilcoxon signed rank test was used as a pairwise comparison of student

performance. Another question that rises from this analysis was “do students meet some

types of expectations better than others?” To answer this, the extent to which students in

a course met question, watching, posting, and quiz-answering expectations was compared
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Figure 5.2: Average completion of expectations (up to 100%) compared between phases
separated by expectation type. Classes with significant differences in performance between

the control and treatment(p < 0.05) are marked by *.

to other expectation types in each period.

Only two courses had a statistically significant difference between one phase and the

other (Figure 5.2). Course 1 met significantly fewer expectations from the control to the

treatment (Z = −2.38, p < 0.05) going from a median of 85% to 48.4%, and Course 3 had a

significant increase in performance from the control to the treatment (Z = 3.75, p < 0.01).

Looking more closely at Course 1, it was the watching expectations that had significantly

lower completion (Z = −2.8, p < 0.01), with no difference in posting expectations (Z =

−0.284, p = 0.78). The latter half of the semester was student-created content which was

not as strongly incorporated with the class as with instructor-created content. The large

number of videos required to be watched at the same time could have lowered the completion

rate of these expectations. With Course 3, there was a significant increase in completion of

posting requirements, rising from a median 50% of expectations met to over 83% met.

With only one course seeing any improvement, I can conclude that students did not

complete more expectations overall with the introduction of expectation-centered analytics.
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Figure 5.3: Average completion of expectations (up to 100%) in the first phase, separated
by expectation type.

However, in observing differences between expectation types, I did start to see an interesting

trend (Figure 5.3). From the Wilcoxon sign-rank results comparing expectations types to

each other, when expectations were not visible to students (control), the posting expectation

was always significantly lower than other expectations (p < 0.05) in any given course.

There was no difference between completion of watching and quiz expectations for any

classes. It could be that of the three, posting was the most difficult expectation to meet

for students, or students would watch a video without actively collaborating, even if that

was the expectation of the instructor. Quiz questions paused the video as the student was

watching, so if a student was faithfully watching all of the video, they would encounter all of

the quiz questions along the way. The same could not be said for posting, where a student

may need to seek to a point in a video or find a post to reply to.

In the second phase, there was no longer a significant difference between posting and

watching/quizzes (Figure 5.4) except for Course 9, where students still were worse at post-

ing (median 40%) than answering quiz questions (median 100%) (Z = −1.9, p = .047).
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Figure 5.4: Average completion of expectations (up to 100%) in the second phase, sepa-
rated by expectation type.

Although there was not a significant difference, there was an upward trend in student post-

ing behaviors for the majority (6) of classes in the treatment period. There may be an

improvement here, but there may not be enough participants to make it statistically signifi-

cant. Future studies on courses with larger class sizes may provide more insight on whether

or not expectation analytics have a positive impact on student posting behaviors.
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Chapter 6

Conclusion

In this thesis, I conducted a three-phase study consisting of (i) a formative study of instruc-

tor analytic use in TrACE, (ii) development of an expectation-centered analytic, and (iii)

a field study on the impact of this expectation-centered analytic on instructor and student

behaviors. My hypothesis was that a learning analytic that encodes and reifies instructors’

individual expectations would better support reflective practice for instructors and allow

students to more reliably meet set expectations. The research questions that motivated and

informed development and evaluation of this learning analytic were:

• RQ1:How do instructors currently conduct inquiry on student behaviors?

• RQ2:What expectations do instructors see as valuable to model within the context

of learning analytics?

• RQ3:How does instructor inquiry change with the presence of this analytic?

• RQ4:How do student behaviors change with the explicit presence of this analytic?

To summarize the findings of the formative study, results showed that instructors had

very different behaviors, needs and expectations. Analytic use in general occurred in brief
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sessions less than a minute long. Some instructors prioritized using analytics related to

their goals, however some goals were beyond quantitative measurement. Some instructors

looked to the quality of student understanding, and in this case numerical analytics would

not be useful. When asked about these behaviors, instructors reported not having time for

in-depth analysis. Also, instructors reported that although there was data available in the

analytics, they did not know how to make that data actionable. Instructors often thought

of their expectations and inquiry by course unit, as opposed to the current organization of

TrACE which is by video.

Instructors had expressed a desire to model their expectations and to allow for stu-

dents to see analytics. These needs motivated the development of the expectation-centered

learning analytic. The learning analytic in TrACE was built as multiple parts. Instructors

specified expectations, students could see those expectations both on the course page and

within a video, and instructors could see the results of student activity in the Expectation

Report and the Student Report analytics.

The results of the field study did not support the hypothesis. An essential part of

reflective practice involves gradually exploring data to come to an understanding of the

situation. If this process is taking place, it would be expected that instructors would use the

analytics to follow-up on surprising observations discovered through the analytic. However,

instructors for the most part did not change their behaviors with the introduction of these

analytics. One did, but this instructor had been a consistently heavy user of analytics.

It was proposed that considering the Learning Analytic Cycle in development, especially

by building metrics with intervention in mind, would support instructor reflection in turn

(Clow, 2012). Once again, evidence is not in support of reflective practice taking place.

One expected outcome, should the metrics have influenced instructor interventions would
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be a change in expectations. Expectations arise from instructor goals, which would change

with reflective practice. I did not find evidence of changed expectations, so if reflection

did take place, it may not be perceptible from expectations alone. High import rates for

expectations also fails to support the hypothesis. Imported expectations reflect what the

instructor’s goals were at the time of initial creation (which may even be from the first video

at the start of the term) as opposed to an instructor’s current goals. Instructors also did not

always set expectations for videos, which means that goals were not explicitly considered

in the first place. There may be other variables at play which limit the extent to which

instructors can reflect on their practice. Areas for further exploration are elaborated upon

in the Future Work section.

Students did not meet expectations more reliably with the explicit presence of these

analytics. Only one course saw a significant improvement in performance. It is interesting

to note that without explicit expectations, students were significantly worse at meeting

posting expectations than anything else. However, with explicit expectations, posting was

no longer worse than watching or answering multiple-choice questions

6.1 Limitations

There are several limitations and confounds which could have possibly affected these results.

First, small sample sizes for both instructors and students(in a course) limited the statistical

power of all analyses. This is a fundamental challenge and trade-off of using a small research-

based system such as TrACE. Introducing the system to larger class-sizes could improve

support of RQ4, specifically. I tried to mediate the effect of sample size by using a within-

subjects methodology. A possible confound introduced here is a natural loss of motivation

(and thus not meeting expectations) as the course progresses.
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Finally, some changes to study design may have improved the quality of results. First,

while the mixed-approach formative study gathered many points of data, a Participatory

Design session, especially a remote one, was difficult to execute and interpret. I attempted

to compensate by having field notes, a scribe, and video recordings, but because of excessive

cross-talk, the focus groups only partially had verbatim transcripts to work from. Even a

small change such as moving participants to opposite sides of the rooms during individual

work would have greatly improved the quality of transcripts. Second, all coding of data is

improved when there are multiple coders. I created the work activity notes and affinity dia-

gram independently, which could have introduced some of my own biases into the resulting

themes.

There were some limitations to analytic design, and some features in the analytic did

not match up to the design guidelines mentioned in Chapter 4. My analytic was designed so

that instructors specified their expectations for each video individually instead of a group

of videos. This design choice seems counter to how instructors organized their courses on a

per-unit basis instead of on a per-video basis. This was an attempt to encourage instructors

to consider and change their expectations more often. Additionally, the underlying analytic

systems in TrACE were organized on a per-video basis, so major changes to how the system

and its dashboards function were outside the scope of this study. Future iterations of this

prototype, should it be useful for instructors, could be modified to allow instructors to

organize expectations or analytics by unit instead of by video.

While conducting the field study, there were several system-wide changes in the Fall

2016 semester that were not introduced in previous semesters. First, the Student Report

(without the Expectation Report panel) was made available to instructors alongside a new

Quiz analytic. Quiz questions was also a new feature introduced, so instructors may not
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have fully integrated it into their classes. There were also some bugs which could have im-

pacted a student’s ability to meet expectations. TrACE is deployed at multiple institutions

across two different time zones. Time-related issues briefly caused expectations and quiz

deadlines to be shifted one hour earlier. If students in the affected timezone attempted to

interact with TrACE within this one hour period, they would not have been able to success-

fully answer quiz questions. Additionally, expectations do not consider activity beyond the

deadline, so the analytics would report to both instructors and students that expectations

were unmet. This bug was corrected for expectations, so student activity during that time

period was not excluded from analysis. From anecdotal evidence and bug reports, having

customizable expectation deadlines did create some challenges for instructors. An instruc-

tor could set video, expectation, and quiz deadlines independently from each other, and

sometimes these were unintentionally misaligned. Repeating this study in another semester

when instructors are more comfortable with features and without system instability could

address this limitation.

6.2 Impact and Future Work

Although the hypothesis was not supported, this work does contribute to both education

research and practitioners. Although the system was designed with education theory in

mind, some limiting factors could have reduced the effectiveness of the system. Primarily,

the formative study demonstrated the extent to which instructor time plays a role on an-

alytic use. Instructors are very limited in the time that they spend in analytics, so even

minor inconveniences such as context switching, mental calculation, or even unexpected

course changes become a huge barrier to analytic use.
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This work makes the case for more user-centered practice in learning analytics. This

is a look at developing learning analytics not only for primary stakeholders (instructors

and students) but with them using support from both formative evaluations and education

theory. This study is a useful thought piece on what incorporating instructors looks like

in research and especially for working with experienced learning analytic users instead of

new users. Designing for instructors was identified as a need by Dyckhoff et al. (2013)

and prioritizing instructor involvement was also a need (Nelson et al., 2008). This study,

especially in the formative evaluation phase, can offer valuable insights to future researchers

and developers on how to continue to involve instructors in learning analytic development.

Second, this work evaluates the impact of learning analytics not only for student per-

formance, but for instructor use as well. Understanding the behavioral changes a learning

analytic has on instructors is a necessary step in integrating learning analytics within course

contexts. Even when incorporating instructors early on in the design process, the devel-

oped result may not be successful. While many studies evaluated analytics through usability

questionnaires or instructor/student opinions, I was able to confirm that this learning ana-

lytic did not have a drastic improvement instead of retaining the implicit assumption that

it did.

Third, the designs and features instructors came up with revealed a fundamental dif-

ference between how the system organized analytics and how courses were organized. In-

structors conceptualized their courses as multi-video units instead of as single videos. This

emerged from the formative study and applied to both how instructors wanted analytics

organized and how they expressed their expectations in the course. This finding was not

one that was expected and was not apparent in the reviewed literature on learning analytic

design. Further literature review will be needed, and developers of learning analytics and
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other education-support systems should take this into account early in design in order to

better support instructor inquiry.

Although instructors did not conceptualize their courses on a per-video basis, directing

instructors to specify expectations on a per-video basis allows for researchers to understand

these expectations at a very fine level of detail. I made this design choice to allow for

a fine level of analysis throughout each of the courses in the study. In previous studies

on student viewing behaviors, some of the only ways to know if there were expectations

that could explain student behaviors was to either read instructor journals (of which there

may not be any consistent reporting of expectations) or ask the instructor. This study

implemented expectations to be explicitly used in the system and thus we had full knowledge

of expectations and were able to collect data on the completion of the expectations. Another

benefit of making expectations explicit is that we were able to better understand changing

student behavior as it was either related to changes in expectations or with unchanged

expectations allowed to find interesting changes in student behavior that warranted more

investigation.

For practitioners, those with a focus on collaboration and posting may have more chal-

lenges with students meeting those expectations than instructors that only have watching

expectations. Instructors that value posting may have to take additional steps to support

students in meeting expectations. Also, although practitioners thought it would be useful

to have analytics available to students, we did not find that making this information avail-

able to students changed how well they met an instructor’s expectations. Overall, students

may have needed more support than what expectation-centered analytics provided. There

are some cases where students greatly improved expectation compliance, so knowing what

influenced success in those classes could also be used to support other classes as well.
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6.2.1 Future Work

One possible avenue of future work is understanding affect on instructors, and especially

looking into the limitations on time. Asking instructors how they felt about expectations

and the analytics could identify an impact that was not evident from expectations or pat-

terns in behavior alone. In this thesis, analytic use was treated as an indicator for instructor

reflection. Using tools to measure reflection or interviewing instructors before and after use

of this learning analytic would more directly measure reflection. For understanding student

behaviors, an analysis of meeting expectations vs. performance (grades) could be done.

Do students who meet these expectations perform better in the class? This could also

help instructors better reflect on whether or not an expectation is necessary or is positively

influencing student performance.
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Appendix A

Expectation specification form

Please fill out the form as if you were presenting your expectations for a video or group of videos 

Not all fields are required, leave blank if it does not apply to you 

Watching Expectation 

I want my students to watch 
                                                           

[𝑎𝑚𝑜𝑢𝑛𝑡]
 of a video before 

                                                      

[𝑑𝑒𝑎𝑑𝑙𝑖𝑛𝑒]
. 

Posting Expectations 

I want my students to post [1. Top-level posts only, 2. Replies only, 3. (anything/blank)]… 

1. I want my students to post 
                      

[ℎ𝑜𝑤 𝑚𝑎𝑛𝑦?]
 top-level posts of type(s) 

                                                                

[𝑎𝑛𝑛𝑜𝑡𝑎𝑡𝑖𝑜𝑛 𝑡𝑦𝑝𝑒𝑠]
 before  

                                                      

[𝑑𝑒𝑎𝑑𝑙𝑖𝑛𝑒]
 

2. I want my students to post 
                      

[ℎ𝑜𝑤 𝑚𝑎𝑛𝑦?]
 replies to  

                                                                

[𝑊ℎ𝑜? 𝑜𝑟 𝑤ℎ𝑎𝑡 𝑎𝑛𝑛𝑜𝑡𝑎𝑡𝑖𝑜𝑛 𝑡𝑦𝑝𝑒𝑠?]
  

before  
                                                      

[𝑑𝑒𝑎𝑑𝑙𝑖𝑛𝑒]
. 

3. I want my students to post 
                      

[ℎ𝑜𝑤 𝑚𝑎𝑛𝑦?]
  

                                                                

[𝑎𝑛𝑛𝑜𝑡𝑎𝑡𝑖𝑜𝑛 𝑡𝑦𝑝𝑒𝑠]
  

 before  
                                                      

[𝑑𝑒𝑎𝑑𝑙𝑖𝑛𝑒]
. 

Quiz expectations 

I want my students to answer all of the quiz questions in this video before  
                                                      

[𝑑𝑒𝑎𝑑𝑙𝑖𝑛𝑒]
. 

On a scale from 1 to 7 (1 is strongly disagree, 7 is strongly agree) 

This form was easy to fill out 

 

1 2 3 4 5 6 7 

  

Why did you give it that score?: 

 

This would cover the expectations I have for my classes that use TrACE  

 

1 2 3 4 5 6 7 

 

Why did you give it that score?: 
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Please fill out the form as if you were presenting your expectations for a video or group of videos 

Not all fields are required, leave blank if it does not apply to you 

Watching Expectation 

I want my students to watch 
                                                           

[𝑎𝑚𝑜𝑢𝑛𝑡]
 of a video before 

                                                      

[𝑑𝑒𝑎𝑑𝑙𝑖𝑛𝑒]
. 

Posting Expectations 

I want my students to post [1. Top-level posts only, 2. Replies only, 3. (anything/blank)]… 

1. I want my students to post 
                      

[ℎ𝑜𝑤 𝑚𝑎𝑛𝑦?]
 top-level posts of type(s) 

                                                                

[𝑎𝑛𝑛𝑜𝑡𝑎𝑡𝑖𝑜𝑛 𝑡𝑦𝑝𝑒𝑠]
 before  

                                                      

[𝑑𝑒𝑎𝑑𝑙𝑖𝑛𝑒]
 

2. I want my students to post 
                      

[ℎ𝑜𝑤 𝑚𝑎𝑛𝑦?]
 replies to  

                                                                

[𝑊ℎ𝑜? 𝑜𝑟 𝑤ℎ𝑎𝑡 𝑎𝑛𝑛𝑜𝑡𝑎𝑡𝑖𝑜𝑛 𝑡𝑦𝑝𝑒𝑠?]
  

before  
                                                      

[𝑑𝑒𝑎𝑑𝑙𝑖𝑛𝑒]
. 

3. I want my students to post 
                      

[ℎ𝑜𝑤 𝑚𝑎𝑛𝑦?]
  

                                                                

[𝑎𝑛𝑛𝑜𝑡𝑎𝑡𝑖𝑜𝑛 𝑡𝑦𝑝𝑒𝑠]
  

 before  
                                                      

[𝑑𝑒𝑎𝑑𝑙𝑖𝑛𝑒]
. 

Quiz expectations 

I want my students to answer all of the quiz questions in this video before  
                                                      

[𝑑𝑒𝑎𝑑𝑙𝑖𝑛𝑒]
. 

On a scale from 1 to 7 (1 is strongly disagree, 7 is strongly agree) 

This form was easy to fill out 

 

1 2 3 4 5 6 7 

  

Why did you give it that score?: 

 

This would cover the expectations I have for my classes that use TrACE  

 

1 2 3 4 5 6 7 

 

Why did you give it that score?: 

 

 

A.1 Instructor Responses

• I want my students to watch 100% of a video before posted deadline.

• I want my students to watch between 75 and 100% of a video before the start of lab.

• I want my students to post between 1 and 3 top-level posts of type(s) anything before

the start of lab.

• I want my students to post 1 top-level posts of type(s) Comment/Question before an

hour before class.

• I want my students to post 1 replies to Comprehension Check before an hour before

class.

• I want my students to answer all quiz questions in this video before an hour before

class.

• I want my students to answer all quiz questions in this video before midnight before

class.

Instructors reported that the form covered their expectations, reporting that “It’s

basically what I already do” and “Ensuring vids watched and questions answered by due
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time are my main concerns”. There were some expectations where instructors wanted to

reply to ”all” posts of a certain type. For example, replying to all instructor posts or

replying to all all Comprehension Check posts in a video. Although this was challenging to

write into this form, the prompt was modified and it was successfully implemented in the

prototype.

Expectations that could not be coded using this form and were not included in the final

prototype involve student groups or expectations that span multiple videos. For example:

• I want students in the posting group to create at least 1 post of type question before

the start of class.

• I want students in the reply group to reply to at least 3 posts made by students in the

question-asking group before the start of class.

• I want discussion leader students to reply to all questions posted by other students.

• I want all students to post at least 2 times between these 4 videos before the deadline.

To consider student groups, a quick way to create groups would need to be created, and

it would need to allow for instructors to dynamically create groups. Dividing a class into

groups can be an impromptu activity, and doing so within the system should not be cum-

bersome.
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