
University of Nebraska at Omaha University of Nebraska at Omaha 

DigitalCommons@UNO DigitalCommons@UNO 

Student Work 

5-2017 

Improving Software Quality by Synergizing Effective Code Improving Software Quality by Synergizing Effective Code 

Inspection and Regression Testing Inspection and Regression Testing 

Bo Guo 
University of Nebraska at Omaha 

Follow this and additional works at: https://digitalcommons.unomaha.edu/studentwork 

 Part of the Computer Sciences Commons 

Please take our feedback survey at: https://unomaha.az1.qualtrics.com/jfe/form/

SV_8cchtFmpDyGfBLE 

Recommended Citation Recommended Citation 
Guo, Bo, "Improving Software Quality by Synergizing Effective Code Inspection and Regression Testing" 
(2017). Student Work. 2915. 
https://digitalcommons.unomaha.edu/studentwork/2915 

This Dissertation is brought to you for free and open 
access by DigitalCommons@UNO. It has been accepted 
for inclusion in Student Work by an authorized 
administrator of DigitalCommons@UNO. For more 
information, please contact 
unodigitalcommons@unomaha.edu. 

http://www.unomaha.edu/
http://www.unomaha.edu/
https://digitalcommons.unomaha.edu/
https://digitalcommons.unomaha.edu/studentwork
https://digitalcommons.unomaha.edu/studentwork?utm_source=digitalcommons.unomaha.edu%2Fstudentwork%2F2915&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.unomaha.edu%2Fstudentwork%2F2915&utm_medium=PDF&utm_campaign=PDFCoverPages
https://unomaha.az1.qualtrics.com/jfe/form/SV_8cchtFmpDyGfBLE
https://unomaha.az1.qualtrics.com/jfe/form/SV_8cchtFmpDyGfBLE
https://digitalcommons.unomaha.edu/studentwork/2915?utm_source=digitalcommons.unomaha.edu%2Fstudentwork%2F2915&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:unodigitalcommons@unomaha.edu
http://library.unomaha.edu/
http://library.unomaha.edu/


Improving Software Quality by Synergizing Effective Code
Inspection and Regression Testing

By

Bo Guo

A DISSERTATION

Presented to the Faculty of

The Graduate College at the University of Nebraska

In Partial Fulfillment of Requirements

For the Degree of Doctor of Philosophy

Major: Information Technology

Omaha, Nebraska

May 2017

Supervisory Committee :

Dr. Myoungkyu Song

Dr. Mahadevan Subramaniam

Dr. Parvathi Chundi

Dr. Young-Woo Kwon



ProQuest Number:

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that  the author did not send a complete manuscript
and  there  are missing pages, these will be noted. Also, if material had  to be removed,

a note will indicate the deletion.

ProQuest

Published  by ProQuest LLC (  ). Copyright of the Dissertation is held  by the Author.

All rights reserved.
This work is protected against unauthorized copying under  Title 17, United  States Code

Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor,  MI 48106 - 1346

10601793

10601793

2017



Abstract of the Dissertation

Improving Software Quality by Synergizing Effective Code
Inspection and Regression Testing

Bo Guo, Ph.D in IT

University of Nebraska, 2017

Advisors: Drs. Myoungkyu Song and Mahadevan Subramaniam

Software quality assurance is an essential practice in software development and mainte-

nance. Evolving software systems consistently and safely is challenging. All changes to

a system must be comprehensively tested and inspected to gain confidence that the mod-

ified system behaves as intended. To detect software defects, developers often conduct

quality assurance activities, such as regression testing and code review, after implement-

ing or changing required functionalities. They commonly evaluate a program based on

two complementary techniques: dynamic program analysis and static program analysis.

Using an automated testing framework, developers typically discover program faults by

observing program execution with test cases that encode required program behavior as

well as represent defects. Unlike dynamic analysis, developers make sure of the program

correctness without executing a program by static analysis. They understand source code

through manual inspection or identify potential program faults with an automated tool for

statically analyzing a program. By removing the boundaries between static and dynamic

analysis, complementary strengths and weaknesses of both techniques can create unified



analyses. For example, dynamic analysis is efficient and precise but it requires selection

of test cases without guarantee that the test cases cover all possible program executions,

and static analysis is conservative and sound but it produces less precise results due to its

approximation of all possible behaviors that may perform at run time.

Many dynamic and static techniques have been proposed, but testing a program involves

substantial cost and risks and inspecting code change is tedious and error-prone. Our

research addresses two fundamental problems in dynamic and static techniques. (1) To

evaluate a program, developers are typically required to implement test cases and reuse

them. As they develop more test cases for verifying new implementations, the execution

cost of test cases increases accordingly. After every modification, they periodically conduct

regression test to see whether the program executes without introducing new faults in

the presence of program evolution. To reduce the time required to perform regression

testing, developers should select an appropriate subset of the test suite with a guarantee of

revealing faults as running entire test cases. Such regression testing selection techniques

are still challenging as these methods also have substantial costs and risks and discard test

cases that could detect faults. (2) As a less formal and more lightweight method than

running a test suite, developers often conduct code reviews based on tool support; however,

understanding context and changes is the key challenge of code reviews. While reviewing

code changes—addressing one single issue—might not be difficult, it is extremely difficult

to understand complex changes—including multiple issues such as bug fixes, refactorings,

and new feature additions. Developers need to understand intermingled changes addressing

multiple development issues, findingwhich region of the code changes dealswith a particular



issue. Although such changes do not cause trouble in implementation, investigating these

changes becomes time-consuming and error-prone since the intertwined changes are loosely

related, leading to difficulty in code reviews.

To address the limitations outlined above, our research makes the following contribu-

tions. First, we present a model-based approach to efficiently build a regression test suite

that facilitates Extended Finite State Machines (EFSMs). Changes to the system are per-

formed at transition level by adding, deleting or replacing transition. Tests are a sequence of

input and expected output messages with concrete parameter values over the supported data

types. Fully-observable tests are introduced whose descriptions contain all the information

about the transitions executed by the tests. An invariant characterizing fully observable

tests is formulated such that a test is fully-observable whenever the invariant is a satisfiable

formula. Incremental procedures are developed to efficiently evaluate the invariant and to

select tests from a test suite that are guaranteed to exercise a given change when the tests run

on a modified EFSM. Tests rendered unusable due to a change are also identified. Overlaps

among the test descriptions are exploited to extend the approach to simultaneously select

and discard multiple tests to alleviate the test selection costs. Although test regression se-

lection problem is NP-hard [78], the experimental results show the cost of our test selection

procedure is still acceptable and economical. Second, to support code review and regres-

sion testing, we present a technique, called ChgCutter. It helps developers understand

and validate composite changes as follows. It interactively decomposes these complex,

composite changes into atomic changes, builds related change subsets using program de-

pendence relationships without syntactic violation, and safely selects only related test cases



from the test suite to reduce the time to conduct regression testing. When a code reviewer

selects a change region from both original and changed versions of a program, ChgCutter

automatically identifies similar change regions based on the dependence analysis and the

tree-based code search technique. By automatically applying a change to the identified

regions in an original program version, ChgCutter generates a program version which is a

syntactically correct version of program. Given a generated program version, it leverages a

testing selection technique to select and run a subset of the test suite affected by a change au-

tomatically separated from mixed changes. Based on the iterative change selection process,

there can be each different program version that include its separated change. Therefore,

ChgCutter helps code reviewers inspect large, complex changes by effectively focusing

on decomposed change subsets. In addition to assisting understanding a substantial change,

the regression testing selection technique effectively discovers defects by validating each

program version that contains a separated change subset. In the evaluation, ChgCutter

analyzes 28 composite changes in four open source projects. It identifies related change

subsets with 95.7% accuracy, and it selects test cases affected by these changes with 89.0%

accuracy. Our results show that ChgCutter should help developers effectively inspect

changes and validate modified applications during development.

Keywords: regression testing, extended finite state machines, code review, program

differencing, change impact analysis.



i

© Copyright by

Bo Guo

2017



ii

Acknowledgments

I would like to express my gratitude to all those who gave me the possibility to finish my

Doctorial Degree. First and foremost, I wish to thank my advisors, Professor Myoungkyu

Song and Professor Mahadevan Subramaniam for their prolonged, patient and generous

supports. It is hard to imagine accomplishing my PhD dissertation without their inspiration

and confirmation. Dr. Song and Dr. Subramaniam were always there to listen and to

provide critical suggestions. They coached me on how to ask questions and enlightened me

to express my ideas precisely. I appreciate them very much for being there at various stages

of my research career.

Special thanks go to the rest of my Committee members, Professor Parvathi Chundi

and Professor Young-Woo Kwon, for their encouragements, intuitive questions, insightful

comments and perceptive suggestions.

I would like to express my sincere appreciation to my Manager, Shalini Rajkumar, at

PayPal. Even in cases where I doubted myself, she has always encouraged me and offered

me flexible work time, which allowed me to balance work and research time wisely. I would

like to appreciate my Directors, Geoffrey Halliwell and Brenda Amber, who provided me

an opportunity to work at PayPal. They taught me, by precept and example, how to improve

myself and become a resourceful employee. When I faced difficulties within the company,

they always provided timely assistance. I also want to thank the PayPal Omaha Scrum team.

All of you have been there to support me and make my career smooth and successful.

Finally I would like to express my gratitude to my parents, my wife and my son for their

understanding, unconditional support and encouragement to pursue my education. They



iii

have given up many things for me to become who I am today. I want to thank them for

being there with me every day of my life.



iv

Table of Contents

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Model-Based Regression Test Selection . . . . . . . . . . . . . . . . . . . 3

1.2 Code Review for Composite Changes . . . . . . . . . . . . . . . . . . . . 6

1.3 Research Agenda . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.4 Major Research Contribution . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.4.1 Test Selection for Changes (RQ1) . . . . . . . . . . . . . . . . . . 11

1.4.2 Time Saving for Test Selection (RQ2) . . . . . . . . . . . . . . . . 12

1.4.3 Partitioning Composite Code Changes (RQ3) . . . . . . . . . . . . 13

1.4.4 Validating Intermediate Version (RQ4) . . . . . . . . . . . . . . . 13

1.5 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2 BACKGROUND and RELATEDWORK . . . . . . . . . . . . . . . . . . . 15

2.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2 Regression Test Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2.1 Code-based Regression Test Selection . . . . . . . . . . . . . . . . 19

2.2.2 Model-based Regression Test Selection . . . . . . . . . . . . . . . 20

2.3 Theorem Provers and Regression Testing . . . . . . . . . . . . . . . . . . . 23

2.4 Composite Code Change Decomposition . . . . . . . . . . . . . . . . . . . 23

2.5 Code Search for Code Comprehension and Inspection . . . . . . . . . . . . 25



v

2.6 Intermediate Version Construction . . . . . . . . . . . . . . . . . . . . . . 27

2.7 Interactive Code Reviews for Inspecting Relevant Changes . . . . . . . . . 28

3 SELECTING TESTS with PROVABLE GUARANTEES . . . . . . . . . . . 30

3.1 Motivating Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.3 EFSM Changes and Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.3.1 EFSM Change Model . . . . . . . . . . . . . . . . . . . . . . . . 37

3.3.2 EFSM Test Descriptions . . . . . . . . . . . . . . . . . . . . . . . 38

3.4 Fully-Observable Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.4.1 Matching Transitions and Sequences . . . . . . . . . . . . . . . . . 41

3.4.2 Test Extended Most General Images . . . . . . . . . . . . . . . . . 43

3.4.3 Identifying Fully-Observable Tests . . . . . . . . . . . . . . . . . . 49

3.5 Selecting Fully-Observable Tests . . . . . . . . . . . . . . . . . . . . . . . 57

3.5.1 Selecting for Addition Changes . . . . . . . . . . . . . . . . . . . 58

3.5.2 Selecting for Deletion Changes . . . . . . . . . . . . . . . . . . . . 61

3.5.3 Selecting for Replacement Changes . . . . . . . . . . . . . . . . . 62

3.5.4 Pruning Unusable Tests . . . . . . . . . . . . . . . . . . . . . . . . 63

3.6 Selecting Multiple Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.7 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.7.1 Experimental Design . . . . . . . . . . . . . . . . . . . . . . . . . 69



vi

3.7.2 Case Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3.7.3 Study Results and Discussion . . . . . . . . . . . . . . . . . . . . 74

3.7.4 SPG and Code-based Approaches . . . . . . . . . . . . . . . . . . 82

3.7.5 Threats to Validity . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4 DECOMPOSING COMPOSITE CHANGES to SUPPORT CODE REVIEW 87

4.1 Motivating Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.2 ChgCutter: Decomposing Composite Changes for Code Review and Re-

gression Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

4.2.1 Decomposing Composite Changes . . . . . . . . . . . . . . . . . . 94

4.2.2 Constructing Intermediate Versions . . . . . . . . . . . . . . . . . 97

4.2.3 Validating Intermediate Versions . . . . . . . . . . . . . . . . . . . 99

4.3 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

4.3.1 Experimental Design . . . . . . . . . . . . . . . . . . . . . . . . . 102

4.3.2 Study Results and Discussion . . . . . . . . . . . . . . . . . . . . 105

4.3.3 Threats to Validity . . . . . . . . . . . . . . . . . . . . . . . . . . 109

5 CONCLUSIONS and FUTURE RESEARCH . . . . . . . . . . . . . . . . . 111

5.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

5.2 Future Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115



vii

Appendix A ChgCutter: An Intermediate Version Generation Tool . . . . . 121



viii

List of Figures

3.1 Bank Web Service EFSM and Tests . . . . . . . . . . . . . . . . . . . . . 32

3.2 Bank Web Service Transitions . . . . . . . . . . . . . . . . . . . . . . . . 32

3.3 Full-Observability Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.4 TCG for Test λ2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.5 Test Suite Tree for Bank Example . . . . . . . . . . . . . . . . . . . . . . . . 54

3.6 Time Savings across multiple changes . . . . . . . . . . . . . . . . . . . . 81

3.7 Tests Selected across multiple changes . . . . . . . . . . . . . . . . . . . . 81

3.8 Analysis Costs of SYM, DEP and SPG . . . . . . . . . . . . . . . . . . . . 81

3.9 Selected Tests of DEP and SPG . . . . . . . . . . . . . . . . . . . . . . . . 81

3.10 SPG vs. CFG (1) (a)code, (b)CFG, (c)new CFG (d) EFSM (e)new EFSM . 83

3.11 SPG vs. CFG (2) (a)code, (b)CFG, (c)new CFG (d) EFSM (e)new EFSM . 84

3.12 SPG vs. PDG (1) (a)code, (b)PDG, (c)new PDG (d) EFSM (e)new EFSM . 85

4.1 A composite code change example, including refactorings and bug-fixes.

Added code is marked with ‘+’, and deleted code marked with ‘-’. . . . . . 90

4.2 An intermediate version ChgCutter generates by applying the bug-fix

(left) and refactoring (right) edits separated from a composite change in

Figure 4.1. The highlighted portions are edited by ChgCutter. . . . . . . . 92

4.3 Overview of ChgCutter’s workflow. . . . . . . . . . . . . . . . . . . . . 93



ix

4.4 Applying required edit operations to generate an intermediate version for

Figure 4.2 by using either refactoring edits or bug-fixing edits separated

from a composite change in Figure 4.1. . . . . . . . . . . . . . . . . . . . . 98

A.1 A screen snapshot of Eclipse Compare With Each Other for two projects . . 122

A.2 A screen snapshot of ChgCutter to find matching locations for refactoring

changes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

A.3 A screen snapshot of Select Diff Region . . . . . . . . . . . . . . . . . . . 125

A.4 A screen snapshot of Summarize Changes . . . . . . . . . . . . . . . . . . 125

A.5 A screen snapshot of Create Intermediate Version . . . . . . . . . . . . . . 126

A.6 A screen snapshot of ChgCutter to create an intermediate version for

refactoring changes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

A.7 A screen snapshot of ChgCutter to find matching locations for Bug-fix

changes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

A.8 A screen snapshot of ChgCutter to create an intermediate version for

Bug-fix changes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129



x

List of Tables

3.1 SPG Regression Test Selection Costs Table . . . . . . . . . . . . . . . . . 75

3.2 Fault Detection for TCAS . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.1 The default ChgCutter’s results before generalization. %P1 and %R1

shows the precision and recall for the intermediate version generation, in-

dicating the percentage of correctly identified change locations compared

to all found location and the percentage of correct change locations out

of all expected locations, respectively. %P2 and %R2 show the precision

and recall for the test case selection, indicating the percentage of correctly

identified test cases compared to all found test cases and the percentage of

correct test cases out of all expected test cases, respectively. . . . . . . . . . 104

4.2 The ChgCuttergen’s results with generalization. TYPE denotes a type of

identifier parameterizations: V (variable), M (method name), T (type), and

E (statement exclusion). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104



1

CHAPTER 1

INTRODUCTION

Software quality assurance techniques are important as high confidence in software system

is typically required in software development and maintenance. Although developers spend

a significant amount of time and efforts to evaluate a program—testing, it is often hard to

prevent defects from thriving to system failure and security vulnerabilities [40, 106]. As

software bugs are reported, developers spend costly efforts to investigate defective code

changes causing bugs—code review, while comprehending all associated modifications [6,

92].

Testing and code review compliment each other in development and maintenance to

ensure the program correctness, avoiding unpredictable issues in software products. De-

velopers commonly evaluate a program based on complementary techniques: dynamic

program and static program analysis. Using an automated testing framework, developers

typically discover program faults by observing program execution with test cases that en-

code required program behavior as well as represent defects. Unlike dynamic analysis,

developers ensure the program correctness without executing a program by static analysis.

They understand source code throughmanual inspection or identify potential program faults

with an automated tool for statically analyzing a program. To combine static and dynamic



2

analysis, complementary strengths and weaknesses of both techniques can create synergistic

analysis. For example, dynamic analysis is efficient and precise but it requires selection

of test cases without guarantee that the test cases cover all possible program executions,

and static analysis is conservative and sound but it produces less precise results due to its

approximation of all possible behaviors but might perform at run time.

Many dynamic and static techniques have been introduced yet testing a program is

expensive and inspecting code change is an error-prone process. This research address

two fundamental problems in dynamic and static techniques. (1) To evaluate a program,

developers are typically required to implement test cases and reuse them. As they create

more test cases for new features, the execution cost of test cases increases accordingly. After

every modification, they periodically run the existing test cases—regression test to ensure

the program executes without introducing new faults in the presence of program evolution.

To reduce the time required to perform regression testing, developers should select a safe

subset of the test suite with a guarantee of revealing faults as running entire test cases.

Such regression testing selection techniques are still challenging as these method also have

substantial costs and discard test cases that could detect faults. (2) As a less formal andmore

lightweight method than running a test suite, developers more often conduct code reviews

based on tool support; however, understanding context and change is the key challenge of

code reviews. While reviewing code changes—addressing one single issue—might not be

difficult, it is extremely difficult to understand complex changes including multiple issues

such as bug fixes, refactoring, and new feature additions. For example, a developer, who

maintains software versions in the source code management system (SCM), commits her



3

changes grouping multiple bug fixes, feature additions, refactorings, etc. Although such

changes do not cause trouble in implementation, investigating these changes becomes time-

consuming and error-prone since the intertwined changes are loosely related, leading to

difficulty in code reviews. According to studies, the problem above could be mitigated by

decomposing tangled changes into related change subsets [9, 46, 92].

To address the limitations outlined above, this research makes the following contribu-

tions.

1.1 Model-Based Regression Test Selection

We introduce a model-based regression test selection approach to efficiently building a

regression test suite that facilitates extended finite state machines (EFSMs). We consider

EFSMs supporting a rich set of commonly used data types including booleans, numbers,

arrays, data queues, and record data types. Tests for an EFSM are a sequence of input and

expected output messages with concrete parameter values over the data types supported by

the EFSM. Changes to the EFSMs are specified at the transition level and add/delete/replace

one or more EFSM transitions. Given a change, and a test suite, our approach automatically

analyzes each test description in the given test suite to provably predict whether or not the

test will exercise the change when it is run on the modified EFSM. It constructs a regression

test suite entirely by selecting the tests that will exercise the change. Tests are not actually

run on the EFSMs for selection.

We introduce a class of fully-observable tests. Informally, a test is fully-observable if all

the transitions that will be executed when the test is run on the EFSM can be determined a



4

priori by analyzing the test description. We formulate an invariant for each test such that the

invariant is a satisfiable formula if and only if the test is fully-observable. The invariant for

a test is automatically built using the transitions (and their post-images) matching the test

description. Informally, a transition is a match for a test description if it can process some

test input in the description. A theorem prover is used in a push-button way to determine if

the invariant is satisfiable and identify fully-observable tests.

Essentially, the invariant for a test describes all the plausible EFSM execution paths that

the test can potentially take when it is run on the EFSM1. In general, the invariant for a test

can be large since it encodes several EFSM execution paths including several impossible

ones. To enable efficient checking of the satisfiability of the invariant by a theorem prover,

a compatibility relation over transitions is introduced. The compatibility relation captures

the transitions that can immediately follow another transition in all EFSM execution paths.

Compatibility information among transitions is automatically pre-computed using a theorem

prover. An acyclic, directed graph represents the compatibility information about the

transitions matching a test description. An efficient procedure to determine whether or not

a test is fully-observable is developed using the compatibility graph. The procedure traverses

the graph level by level to incrementally evaluate the invariant to determine whether or not

the test is fully-observable.

We also describe incremental procedures [75,90] that select fully-observable tests exer-

cising added, deleted, and replaced transitions in the EFSM changes. In fact, to accurately

predict if a test will exercise a change, it is enough if the test is fully-observable up to

1All the EFSMs and their tests in the dissertation are assumed to be deterministic. So, at most one path can
be feasible in the invariant of any test. More details on feasible paths are in section 3.4.



5

positions in the test description where the transitions appearing in the change match the

description. These procedures identify all the positions in the test description matched by

the transition appearing in the change and check if the test is fully-observable up to any of

these positions. If so, then we have complete information about the transitions executed

up to these positions and use this information to accurately determine if the change will be

exercised and select the test. Then, the procedures incrementally update the compatibility

graph for future changes2.

Certain tests in a given test suite (including those exercising a change) may become

unusable because their executions on the modified EFSMs fail. Such failures may happen

either because the interface of the modified EFSM is different, some test inputs cannot be

processed by the modified EFSM, and/or the output generated by the modified EFSM and

that of the test do not match relative to the given test purpose. Tests becoming unusable due

to interface changes are easy to identify and can be removed regardless of whether or not the

tests exercise changes. However, a test execution that exercises a change and subsequently

fails on the modified EFSM may still be useful because the failure highlights an adverse

impact of the change. In general, automatically determining whether or not such failing

tests are useful is a difficult problem since it requires determining the cause of failure. To

address this problem, our basic idea is that a test is executed to exercises a change, and

subsequently a failed test is unusable only if the failure can be removed by using the EFSM

transitions. Unusable tests are discarded; however, if the failure of a test cannot be removed,

the test is selected for regression to highlight the potential adverse impacts of the change.

2The approach can also be generalized to select tests that are not fully-observable. Some preliminary work in
this direction can be found in [89].



6

Wedescribe a simple procedure to identify and remove unusable tests exercising changes;

however, tests in the given test suite often comprise overlapping descriptions. For instance,

it is typical for tests to use the same inputs to bring an EFSM to a common state and then

exercise other specific behaviors. Such tests as well as others can be selected (and discarded)

simultaneously whenever a given change matches these tests at the overlapping portions

of their descriptions. To analyze a test suite organized into a test forest with overlapping

descriptions, we describe a procedure to simultaneously select and discard groups of tests.

Such a procedure alleviates regression test selection costs in many cases.

Our approach has been implemented and applied to EFSM models representing pro-

tocols, web services, and other applications with encouraging results. Our experimental

results based on a well-known regression cost model [78] show that our approach is eco-

nomical for regression test selection in all these examples.

1.2 Code Review for Composite Changes

In this research, we also present a technique to support code review and regression testing,

called ChgCutter. As it is designed for interactiveness, a developer uses ChgCutter to

select a sub region of composite changes. ChgCutter, then, automatically (1) decom-

poses changes of interest using data and control dependence relationships, (2) summarizes

related changes by matching decomposed changes against the rest of a program, and (3)

automatically applies identified related changes to the original program version to produce

an intermediate source program version guaranteed to compile and run with test cases.3

3We use the terms intermediate program version and intermediate version interchangeably.



7

An atomic change—code changes that tackle one single issue—might not be too dif-

ficult to inspect; however, developers using Version Control Systems (VCS) often commit

composite changes—code changes that intersperse other kinds of multiple development

issues—in a single transaction [47, 92, 93]. Although developers often commit composite

changes alongwith explicit commit logs toVCS, for a reviewerwho is interested in particular

development issues such as inspecting bug-fixes or analyzing the impact of feature addition

or refactoring, it is hard to understand which change regions are related to individual issues.

Tao and Kim [93] empirically studied on the occurrence of composite code changes in

four open source projects and found that 17% and up to 29% of the revisions are composite

changes addressing more than one issue. Herzig and Zeller [47] manually investigated six

open source projects and found that composite changes occur frequently (up to 15%) and

appear unrelated as one atomic change. Barnett et al.’s study on the software (Bing and

Office) at Microsoft [9] also found that over 40% of changes submitted for code reviews can

be potentially decomposed into multiple atomic change sets.

Although developers can investigate changes using software versioning and revision

control systems (e.g., SVN and Git), it is not easy to use these tools to search for related

changes or revisions that interfere with or depend on one’s own changes according to a var-

ious notion of relevance. Previous research efforts have focused on untangling composite

changes. Herzig and Zeller [47] presented an untangling change algorithm and provided

evidence that composite changes can affect research in mining software repositories. Bar-

nett et al. [9] introduced a technique for untangling composite changes and identifying

independent parts of changes. However, developers are still burdened with the task of



8

understanding and applying partitioned change sets to the original version. Moreover, they

very often need to build a syntactically valid version separated from the latest version that

combines composite changes to determine the location of a change that has caused a failure

during regression testing.4

The major goal of this research is to partition composite changes into related change

sets and to generate an intermediate program version. Also, we cost-effectively validate

software changes applied in the intermediate versions by utilizing a test selection technique.

1.3 Research Agenda

In this research, we address the following research questions in light of the challenges of

testing and code review in the process of validating and comprehending an extensively

modified program.

• RQ1: Can we aid testers build regression test suites all of whose tests are provably

guaranteed to exercise a change to a system?

To maintain an updated software system, all changes to a system must be comprehen-

sively tested for users to gain confidence that the modified system behaves as intended.

Generally developers periodically regression test by re-running the existing tests to

provide confidence that its changes does not impact the existing functionalities. Re-

running all tests in the test suite for a complex system may require an unacceptable

amount of time and efforts [39]. To reduce the regression time, Regression test selec-

4In the rest of the dissertation, we will consider “regression test” as unit tests for the process of validating
changed programs.



9

tion techniques are used to select a subset of the existing test suite and run the selected

test cases to validate the changed parts of the system. To safely and effectively reduce

the size of the test suite, our test selection approach should verify both original and

modified parts of a program without dropping test cases that possibly reveals errors.

• RQ2: Is our approach is economical?

To reduce a substantial amount of time to rerun the test suite, an alternative ap-

proach—the regression test selection technique is presented but it is not perfect due

to the test selection costs. For the cost-effectiveness of regression testing, we should

develop an economical approach for the regression test selection, making the cost of

the test selection procedure less than the cost for executing and checking the extra

previous tests required to retest the test suite. To determine whether our test selection

technique is cost-effective relative to existing testing techniques described in [68], we

exploit a cost measurement model and have achieved acceptable results.

• RQ3: Can our approach accurately construct syntactically valid intermediate versions

by decomposing a composite change?

As code change fragments are randomly selected from composite changes by a code

reviewer, they are difficult and almost impossible to decompose automatically, even

with the most advanced change partitioning techniques [9, 46], which mostly focus

on artificially mixed changes or only small sample sets. To make things worse, unlike

sampled changes, user-selected changes during code reviews are usually syntactically

incomplete. A clear decomposition analysis of a mixed, complex change set should

be performed to help code reviewers understand changes easier and detect defects



10

quickly. To make an intermediate program version only including separated, depen-

dent changes be executable under a test suite without runtime error or termination,

our approach should analyze each change region and its surrounding context based

on static program analysis and program transformation techniques.

• RQ4: Can we validate program changes by accurately selecting a subset of the

regression tests to validate each intermediate version?

To the best of our knowledge, no tool has ever been proposed to automatically validate

the correctness of program changes by combining the two approaches—testing and

code review. The developers attention on changes during code reviews has usually

different properties from validation of execution in testing. They are required to

know the failure reasons, being eager to understand all related context causing higher

critical issues, in addition to failure detection. Our hybrid analysis techniques should

be applied to a single problem in tandem to complement and support one another,

leveraging complementary strength of testing and code review. In other words, a

code review tool integrated with a testing tool will build a decomposed intermediate

version, whichwill later be fed to a regression testing tool that should analyze coverage

to guide test selection. The result for this question can be evaluated by inspecting

accuracy how closely selected test cases affected by changes match with the expected

result—the number of correctly selected test cases to test an intermediate version



11

1.4 Major Research Contribution

In this research, we address and provide solutions for the following research questions in light

of the challenges of testing and code review in the process of validating and comprehending

an extensively modified program.

1.4.1 Test Selection for Changes (RQ1)

In the research, we focus on the regression test selection problem on Extended Finite

State Machines (EFSMs). Changes add/delete/replace EFSM transactions. Tests are a

sequence of input and expected output messages. Given a change and a test suite, our

approach automatically analyzes each test description in the given test suite to provably

predict whether or not the test will exercise the change during the execution on the modified

EFSMs. We introduce a class of fully-observable tests. A test is fully-observable if its

descriptions contain all the information about the transitions executed by the tests. We

formulate an invariant for each test such that the invariant is a satisfiable formula if and

only if the test is fully-observable. The invariant for a test is automatically built using the

transitions (and their post-images) matching the test description. Informally, a transition is

a match for a test description if it can process some test input in the description. Incremental

procedures are developed to efficiently evaluate the invariant and to select tests from a test

suite that are guaranteed to exercise a given change when the tests run on a modified EFSM.

A theorem prover is used in a push-button way to determine if the invariant is satisfiable

and identify fully-observable tests [89].



12

1.4.2 Time Saving for Test Selection (RQ2)

Several tests in the given test suite have overlapping descriptions. For instance, it is typical

for tests to use the same inputs to bring an EFSM to a common state and then exercise

other specific behaviors. Such tests as well as others can be selected (and discarded)

simultaneously whenever a given change matches these tests at the overlapping portions of

their descriptions. To enable analysis of a group of tests, a test suite is organized into a

test forest whose each tree represents a group of tests with overlapping descriptions. We

describe a procedure to simultaneously select and discard groups of tests. A test suite tree

(TST) is built and comprised of a group of tests all starting with a same input. By left-right

traversing TST, a group of tests will be selected if their shared node exercises the change.

To reduce test selection costs, our approach reduces the test suit size by automatically

analyzing EFSM and test descriptions. We guarantee that test suite size reduction do not

harm error detection capability. During the test selection analysis, our approach automat-

ically translates the EFSM expressions into the language of the prover. It then invokes a

theorem prover, called Simplify, in a push-button manner to check satisfiability of the gener-

ated formulas [29]. To estimate the effectiveness of our approach, we apply our technique to

practical EFSM models, including representative protocols, web services and other subject

applications. The evaluation result shows that our approach is economical, demonstrating

our approach is able to select test cases and build a smaller size of test suite, compared to

the dependency-based technique.



13

1.4.3 Partitioning Composite Code Changes (RQ3)

To improve developer productivity in code reviews, we present a novel approach to automat-

ically separate related changes from composite changes and interactively compose relevant

atomic changes to generate compilable and executable intermediate versions based on the

original program. Our approach is demonstrated by implementing a proof-of-concept pro-

totype and integrating it with Integrated Development Environment (IDEs) as plug-in. Our

approach allows a code reviewer to select an example program edit in differences between

original and changed versions of a program. It automatically decomposes a composite

change into atomic changes, groups related changes locations, and generates an compilable

and executable intermediate version that only includes relevant changes. As a result, it

can help code reviewers (i) easily understand all changes related to selected regions, (ii)

detect defects by automatically testing an intermediate version including relevant changes,

and (iii) focus developer attention on failure-inducing changes by analyzing and classifying

identified related changes if testing failures are reported.

1.4.4 Validating Intermediate Version (RQ4)

To evaluate changes with a regression test suite interactively during code reviews, we

present an approach to validating intermediate versions (outputs from our contribution in

section 1.4.3) by combining static (i.e., code review) and dynamic (i.e., testing) techniques.

Our hybrid method helps developers easily understand and effectively validate changed

code fragments, which are only shown locally, leaving developers to guess closely related

functionality distributed throughout the system. Our approach applied a testing technique



14

to validate intermediate versions reduces the time needed for testing each intermediate

version even after a large amount of program changes, without missing any test that may be

affected by related changes. To systematically analyze and validate most critical issues, our

approach applies change impact analysis for determining the effects of code modifications.

Our approach improves programmers productivity by reducing the amount of time and effort

in debugging, because it determines a safe approximation of the code changes responsible

for test failures as failure-inducing changes during regression testing.

1.5 Outline

The rest of this research is organized as follows. Chapter 2 surveys related work. This can

be divided into three main categories: (1) a survey of regression testing, (2) techniques that

selecting test cases based on code or model approaches, and (3) techniques that search code

changes, decompose an intermingled change set, and build intermediate program versions.

Chapter 3 describes test regression selection including (1) a brief overview of EFSMmodel

and the Simplify prover, (2) definitions of EFSM changes, tests and change exercising tests,

(3) definition of fully-observable tests and a procedure to identify full-observable tests, (4)

the approach to handle multiple tests, and (5) experiment results. Chapter 4 describes our

change decomposition, change reconsruction, and regression test selection approaches. The

evaluation of the intermediate version generation and test selection techniques with case

study applications is also discussed. Chapter 5 concludes with the future work.



15

CHAPTER 2

BACKGROUND and RELATEDWORK

Software testing is themost commonway to improve high software quality. Testing activities

support quality assurance by executing a program with test cases designed to complete

requirements and examining the resulting outputs produced by these test cases. Developers

conduct testing for a small piece of code (i.e., unit testing) and for customer validation

of a large information system (i.e, acceptance testing). To increase confidence in the

correctness and reliability in evolving software, developers frequently perform regression

testing—the process for validating a changed program to detect whether the changed code

region executes as the required specification. A recent study reports that developers consume

more than 50% of their efforts and time on testing since they more often implement critical

functions in software, which becomes more complex. Many approaches, studying more

efficient methods to perform testing, has been introduced for reducing the percentage of

development and maintenance costs devoted to testing in practice [13, 53]. Next we will

outline the background of testing techniques of evolving software for reduction in cost and

improvement in quality.



16

2.1 Background

Regression Testing. Although developers tested a program at some point, program mod-

ification periodically requires them to retest parts of the changed program. The purpose

of regression testing is to perform retesting, after changes are made to a previously tested

program, to ensure that changes have not adversely affected features, maintaining the same

testing coverage as completely retesting the program [42, 73, 102]. In practice, regression

testing has been studied with critical issues such as test case revalidation, failure identifica-

tion, fault identification, modification dependency and test case dependency. In particular,

applying a selective approach to regression testing helps developers identify and retest only

those parts affected by modifications [78, 79].

Regression Test Selection. Approaches towards regression testing have been broadly clas-

sified as being code-based or model-based. Yoo and Harman [105] is a survey on regression

test selection and related problems. Rothermal and Harrold [78] and Harrold and Orso [44]

are two other surveys emphasizing code-based approaches. Most of these approaches

perform control and data flow analysis to determine the difference between original and

modified programs and use available test traces to determine if the test should be selected

for regression. A framework is proposed in [78] and used to evaluate various code-based

approaches in terms of their inclusiveness, precision, efficiency and generality. Inclusive-

ness measures the number of modification-traversing tests. Model-based approaches use

executable models and model-programs instead of actual code to select regression tests.

Model-based regression testing has not received much attention in comparison to the code-

based approaches. There has been a lot of interest in this area due to the advent of embedded



17

systems such as automobiles [16] and complex component based systems [19]. Regression

test selection for EFSMs have been considered earlier in [20, 61, 62]. In [62] Korel et.

al, proposed an approach to automatically reduce a given regression test suite by EFSM

model dependency analysis based on dataflow techniques. In [20], Chen el. al refined

EFSM dataflow analysis of [62] and handle certain types of transition replacements.The

work in [61] develops heuristics for test prioritization in regression testing of EFSMs.

Challenges in Testing. As a common way of verification of a program behavior, testing has

been widely used in practice presenting a number of advanced techniques that we describe

above. It supports developers to achieve the ultimate goal of helping them construct a

program with high quality; however, it also has several limitations. For example, although

testing demonstrates the presence of software defects, it cannot show the absence of their

anomalies without a guarantee of complete test suites. If developers fail to obtain a well-

selected test suite, they cannot observe the program execution context required to analyze

errors or failures. To seek alternative or complimentary solutions, developers use static

analysis techniques to inspect program source code—code review. Developers conduct

code reviews based on either manual code change inspection or automated approaches that

provides static analysis tools for defect detection. We will describe background of static

program analysis (e.g., code review) as complementary solution used for proofs of program

correctness.

CodeReview. Code review iswidely used in practice as an importantmechanism to improve

quality in practice [3,32,34,100]. By using code inspection results, developer achieve initial

error reduction. The cost of rework as a fraction of development and maintenance becomes



18

high, when code reviews are not conducted and faults are discovered during testing. As

source code in an object-oriented program is especially distributed [67,101], to comprehend

a piece of code fragments, the subsequence of method calls across different classes must

be examined followed by understanding inheritance hierarchies. In long-lived, large-scale

software systems, quality and productivity improvements due to code inspections have been

validated in a study [12, 83]. Code inspections are an effective means of removing defects

since developers are commonly required to figure out how code changes happened. So, the

code inspection practice has been widely disseminated in various industries. Compared

with finding defects by testing later in the development process, defects can be quickly

discovered and fixed during code reviews [33, 81].

Challenges inCodeReview. It reportedly takes up to 60%of the software engineering effort

[24,93] to investigate past and present program modifications made by other developers. It

enables developers to find nuanced differences, to remove bugs, and to understand changes

in one part of the software having unexpected impact on other parts. To understand changes,

developers typically compare two versions of a program and inspect line-level differences,

such as diff output (i.e., textual differences between two versions of a program). Developer

spend a significant amount of time and effort in understanding the change correctness.

Instead of reviewing the entire program, developer often review only the incremental codes

changes. But it still time consuming and error-prone since developer need to identify

related changes, as they often address multiple development issues to make composite code

changes, as opposed to atomic changes that address one single issue. Developers often

combine numerous unrelated changes such as multiple bug fixes, a lot of feature additions,



19

and refactorings. In an manual investigation of four open source projects, Yida Tao and

Sunghun Kim found that up to 20% and on average 17% are composite changes mixed with

other types of code modifications [93].

2.2 Regression Test Selection

This section discusses several kinds of regression testing techniques focusing on regression

test selection. We classify the characteristics into two areas: (1) code-based regression

testing approaches and (2) model-based regression testing approaches.

2.2.1 Code-based Regression Test Selection

Code-based approaches work on programs and have been extensively studied earlier. Yoo

and Harman [105] conduct a survey on regression test selection and related problems. The

above survey discusses many of these approaches in detail. Most of these approaches

perform control and data flow analysis to determine the difference between original and

modified programs and use available test traces to determine if the test should be selected

for regression. While our research focussed on models it is conceivable that some of these

techniques can be adapted to work on Extended Finite State Machine (EFSM) models as

well. However, these methods do not target precise selection of tests and instead rely on

over-approximations such as the lexicographic comparison used in [79] to perform selection.

On the other hand, precisely selecting tests is one of the main goals of the approach, which

is crucial to build high-confidence test suites.

Rothermel and Rothermel [78] introduce a framework to evaluate various code-based



20

approaches in terms of their inclusiveness, precision, efficiency and generality. Inclusive-

ness measures the number of modification-traversing tests1 in T actually included in T ′;

precision assesses the accuracy of selection bymeasuring howmany tests that do not traverse

or reveal modifications are excluded from T ′; efficiency measures the cost of computing T ′

and running the selected tests versus re-testing all of the tests in T ; and, generality measures

the overall applicability of an approach. Inspired by this prior work and the empirical evi-

dences on evaluation and comparison of existing techniques, we choose appropriate criteria

and measures for applications of our approach by determining correspondences between

the model and the code changes. For example, we analytically apply our approach with a

guide that if a test exercises changes in a model, it also exercises the corresponding changes

in the program.

2.2.2 Model-based Regression Test Selection

Model-based approaches use executable models and model-programs instead of actual code

to select regression tests. Although these approaches has not received much attention rather

than the code-based approaches, There has been a lot of interest in this area due to the advent

of embedded systems such as automobiles [16] and complex component based systems [19],

where early testing ofmodels can alleviate the validation costs of actual systems. Themodel-

based approaches commonly associate the original and modified program versions P and

P′ with executable models M and M′, respectively. Tests in the original test suite T are

generated using the model M or are hand-crafted and can be executed on original executable

1Note that these measures are defined for modification-revealing tests in [78]. We use them for modification-
traversing tests.



21

model M or program P. Additional test scripts may need to be used to execute the tests on

program P. Model level changes corresponding to the program changes are identified and

used to build the test suite T ′.

Previous works on model-based regression testing are presented. Briand et. al [14, 15]

employ UML models to extract changes by comparing two versions of a class, use case

or sequence diagrams in a UML design. These changes are then used to classify a test

as a obsolete, retestable, and re-usable test case by mapping a test to a complete message

sequence in a sequence diagram. Korel et. al [60–63, 95] make effective use of EFSM

models. These techniques have focussed on regression test selection, test minimization, and

test prioritization problems. They analyze each change—elementary modifications (e.g.,

addition and deletion)—and its control and data dependences on EFSMs to identify parts of

the EFSM affected by changes. These techniques then execute tests selected for regression

testing to exercise these parts. To reduce the regression test suite size, the interaction

between a test and the impacted parts of an EFSM is often used to capture by using existing

tests causing several types of same patterns. Based on those approaches, Chen and Ural [20]

present an extended approach to deal with replacement changes, in addition to addition and

deletion. They encode tests to a sequence of transitions by disregarding the actual test input

values, they then analyze these transitions to select related regression test cases. Due to

ignored test cases and conservative data-flow techniques, they often produce false positives

and negatives so that selected tests do not exercise changes to be evaluated.

Similar to the aforementioned approaches, we present a model-based approach for

executable EFSM models to represent stateful programs and protocols. We analyze the



22

transition level changes such as additions, deletions, modifications, and replacements used

in previous approaches [20, 61, 62, 95].

In contrast to previous approaches that are often efficient but nonsafe to perform re-

gression testing in the EFSM, there are four major differences in our approach. First, our

approach does not miss fully-observable tests that exercise a change in the EFSM. Second,

it handles a rich set of data types including booleans, numbers, and aggregates like arrays,

data queues, and record data types. Our models for tests allow test cases to have constant

values involving all these data types including aggregate data types. Supporting EFSM

and test models having such expressive data types allows for better traceability between

code, its tests, and their models, one of the important criteria for successful model-based

testing. We analyze EFSMs and tests involving such data types because we use a powerful

theorem prover like Simplify [29] that supports several decision procedures to reason about

these data types and we have further extended the prover to support both message and data

queues [41, 88] and integrated with a rewrite engine based on the prover [55]. Third, our

approach automatically identifies unusable tests [44, 78] which comprises both obsolete

tests due to interface modifications and incomplete tests resulting in output mismatches.

Several previous works fail to identify such unusable tests because they ignore the test

input values [20, 61, 62]. Lastly, our approach exploits the overlap in test descriptions to

simultaneously select or discard tests for building a regression test suite.



23

2.3 Theorem Provers and Regression Testing

SMT solvers have been used to perform code-based test augmentation techniques in [82,

103]. In [103] the solver Yices [1] is used to generate test input values satisfying the

differences between original and modified test traces. The use of prover in [82] is similar

in that it generates assignments satisfying new paths and satisfy the negation of the original

paths. To the best of our knowledge, the approach is perhaps the first attempt at a formal

approach using a theoremprover to perform regression test selection problem for the EFSMs.

This work builds on our earlier work on formal change impact analysis for EFSMs [41,88].

There, we developed an approach to identify EFSM transitions impacted by a change

by performing selective state exploration starting with the change instead of forward or

backward explorations.

Our research uses a well-known, powerful theorem prover called Simplify [29] extended

with rewrite rules [55]. The prover includes decision procedures for several commonly used

data types including booleans, numbers, arrays, data queues, and record data types, which

also enables our approach to automatically analyze data rich EFSM and test descriptions.

Building high confidence regression test suites by using a prover can also potentially help

in other problems such as test suite minimization and test suite augmentation [44].

2.4 Composite Code Change Decomposition

Tao et al. [92] conduct empirical studies and find that developers often create composite

changes by combining multiple changes (e.g., bug-fixes and refactorings) in a single commit



24

transaction. They point out that developers mix multiple bug fixes or other kinds of code

changes in one check-in. They also observe that developers spend a large amount of time

to review others’ composite changes. However, separating related change subsets from

composite changes is difficult and error-prone. To help developer understand changes

during maintenance and development tasks, they claim that better support is needed for

decomposing composite changes and determining the risk of these large, complex changes.

Our approach was motivated by their findings and observations to help code reviewers

understand and test complex code changes efficiently and systematically. Herzig and Zeller

manually investigated 7000 change sets, with up to 15% being tangled. At least 16.5%

of all source files are incorrectly associated with bug report. They also developed a

change decomposition method to separate tangled changes [46]. Their technique uses

heuristics such as file distance, change coupling, data dependencies and call-graph. The

untangling algorithm uses a set of change operations, added or deleted method calls or

method definitions, as input and return a set of change set partitions. Each partition includes

changes to resolve one issue, such as bug-fix. However, they use artificially tangled changes

that only contains issue fixing change sets. We instead uses real change data set that mines

diverse changes from open source projects.

Tao and Kim [93] study four open-source projects and find that up to 29% changes are

composite changes. Based on these empirical findings, they present a static analysis tool to

partition composite code changes into change subsets as change slices for supporting peer

code reviews. They extract a set of changes such as deletion, modification, and addition to

identify related changes and produce partitions as output that consist of only changed lines



25

that are related. First, they isolate formatting-only changes by using diff tools. Second,

they find data and control dependences by using program dependence graphs. Lastly, they

identify similar patterns by using a clone detection technique. Barnett et al. present a

technique, called ClusterChanges, to separate regions of change from a change set [9].

ClusterChanges uses def-use chain analysis and analyzes differences between different

types of change partitions. Our approach differs from these techniques because of two

reasons. First, our approach partitions change subsets, while building an intermediate

program version that is compilable based on analysis of the dependencies of modification.

Second, our approach can automatically test changed contexts with the regression test suite

by regenerating an executable, partitioned program.

2.5 Code Search for Code Comprehension and Inspection

As a common practice in software reuse, developers often copy and paste code fragments,

while modifying them or deploying copied code without minor adaptation so that software

systems entail similar regions of code, called code clone [8, 80]. To better analyze and

understand such applications, developers often use tools to find similar code fragments

syntactically or semantically. To detect duplicate code, clone detection techniques are

actively introduced [49,54,66,70,72,97,98]. Johnson pioneered text-based clone detection

techniques analyze raw source code by hashing strings per line [50–52]. By using a

sliding window technique combining with an incremental hash function, his approach

finds sequences of lines containing the equivalent hash value as clone. Token-based clone

detection techniques use a lexical analyzer to divide source code into a token sequence [7,



26

8,54]. Tokens are analyzed with a hashing functor and a position index for their occurrence

in the line. The prefixes of a sequence of symbols are then formed into a suffix tree. In

a suffix tree, there can be a common prefix when suffixes share the same set of edges. If

two suffixes share a same prefix, which appears repetitively, they are regarded as a clone.

Tree-based clone detection techniques parse a program to a parse tree or abstract syntax

tree (AST) representation of the source code [35, 96, 104]. Jiang et al. [49] used vectors

to approximate ASTs in a Euclidean space. By computing the Euclidean distance metric,

their technique clusters related vectors and finds clones. Lee et al. [66] developed a code

search technique that focuses on an approximate clone detection, which is scalable yet often

produces false positives. Their technique extracts characteristic vectors from source code

and generates a multi-dimensional indexing tree structure. It then filters and ranks the index

to evaluate clones in order. Lin et al. proposed a tool, called MCIDiff, to identify similar

parts from multiple code clone instances [70]. MCIDiff analyzes differential ranges across

clone instances by using a longest common subsequence algorithm and finds similar tokens

in differential ranges. Chang et al. presented an approach to finding implicit rules from

dependence graphs using graph mining [18]. Wang et al. present a code search technique

by capturing control and data dependence relationships [98]. They improved their approach

by applying semantic topic modeling [97]. Nguyen et al. proposed a graph-based model

for representing object usage [72]. All pairs of code elements (e.g., method, field and

class) are identified if there are similar object interactions. Candidates are detected using

several heuristics to find similarities in implementation code or naming scheme or the same

ancestor method/class or the same interface.



27

Our research well complements the previous approaches because, compared to only

code search/comprehension, an unified approach with code change verification leads to

much more precise results, directly reducing development efforts to detect similar mistakes

or errors. None of these approaches is capable of automatically identifying and separating

intermingled source code changes, in order to build an executable program with separated

change subsets for runtime verification. As the similar changes or repeated repairs typically

produces similar code in practice, ourwork can be used alongwith the approach above to find

clones as well as validate a group of similar changes automatically to reduce programmers’

manual effort.

2.6 Intermediate Version Construction

Chesley et al. present an approach to updating the original program with a change as

well as all of its dependent program elements [21]. Based on the affecting changes of a

failed affected test case, they incrementally updated the original program to produce an

intermediate program version. As opposed to their approach that relies on programmer

selections, we automatically identify related, affecting change set using an AST-based code

search technique, and apply the identified change set to the original version of a program

to obtain an intermediate version. Previous approaches [4, 23, 30, 94] presented recompi-

lation techniques that generates a program by applying minimal syntactically valid edit.

Tichy [94] specified dependent relationships to represent how compilation units are related.

Syntactic dependence identification is empirically evaluated, reporting 50% reduction of the

recompilation effort [4]. Burke et al. developed an optimization technique during program



28

compilation [23]. Their approach analyzes semantic dependencies between procedures us-

ing inter-procedural data flow information such as alias and reference. Dmitriev introduced

an approach called smart dependency checking to calculate syntactic dependencies for Java

class files. If a class changes, its referenced classes are required for recompilation [30].

Similar to the previous approaches, we automatically generate an intermediate version of

a program by computing dependencies between change subsets and other related contexts.

However, we further optimize an intermediate version, making it possible to be executable

without any runtime issue. We then efficiently apply a regression test selection technique

to an intermediate version to validate related change sets.

2.7 Interactive Code Reviews for Inspecting Relevant Changes

Zhang et al. [108] present an interactive code review approach, which is called Critics,

for inspecting similar, related changes to multiple code locations. Critics summarizes

similar changes and detects potential inconsistent or missing changes. We decided to reuse

the user interface of Critics, because the user studies with both student and professional

developers show that the interactive feature of Critics can improve developer productivity

when reviewing system-wide code changes. For example, Critics allows a developer, who

wonders if there are other methods that are changed similarly to method foo, to select the

changed code in the diff patch. Given the selected change, Critics identifies another method

bar that matches the change of method foo. If further investigating may be required for

locating other suspicious locations using different identifiers, the user interface of Critics

allows her to generalize a matching edit script. Based on the script, Critics can identify



29

method baz using different identifiers that matches the change of method foo. We leverage

the similar, related changes identified by Critics in methods bar and baz to automatically

decompose composite code changes and generate an intermediate version with related

atomic change sets. The intermediate version generated by our approach only contains

the related changes in methods foo, bar, and baz separated from other changes. During

the code generation, our approach produces syntactically valid code by analyzing data and

control dependencies.



30

CHAPTER 3

SELECTING TESTS with PROVABLE GUARANTEES

3.1 Motivating Example

Consider a bank web service EFSM depicted in Figure 3.1(a) consisting of 12 transitions

t1-t12 depicted in Figure 3.2. Users start by opening an account with a cash amount greater

than or equal to a minimum balance amount (min), and are given a unique number as

account id id. The current balance in each account is represented by an array B[] mapping

the account id to a non-negative number. Users operate the account by performing deposits

and withdrawals. Withdrawals exceeding the current balance are ignored. Those leading

to a balance lesser than the min value result in a state where withdrawals are ignored and a

deposit that brings the balance above themin value is only allowed. Accounts accrue a bonus

that doubles the current balance provided a specified maximum max number of withdrawals

(that are not ignored) and deposits succeed in maintaining a balance greater than or equal

to the min value. The bonus amount is transferred incrementally to the account and no

operations are processed during this period. The solid arcs in Figure 3.1(a) are external

transitions that can be observed by their messages. Others (dashed arcs in Figure 3.1(a))

are internal transitions.



31

A test suite used to validate the EFSM is given in Figure 3.1(b). Each test starts the

EFSM in the state with variables, id = 0; min = 50; max = 2; (Timer) T 1 = max; bonus = 0.

It can be verified that each test will run successfully with the EFSM producing the expected

outputs.

Now, suppose that we modify this EFSM by deleting the transition t12 and adding a

transition t ′12 to allow withdrawals even when the balance falls below min as long as a

non-negative balance is maintained1. Our requirement is to build a regression test suite

by selecting tests from the original test suite to validate this change. Usually, tests in the

original test suite that execute the newly added transition t ′12 in the modified EFSM (and/or

those that execute t12 in the original EFSM) are said to exercise the change and are selected

for regression. Test λ1 is not selected since it can be easily checked that this test executes

neither t ′12 in the modified EFSMnor t12 in the original EFSM. The remaining tests λ2-λ5 are

all selected since we can check that each of them executes the transition t ′12 in the modified

EFSM (and also t12 in the original one). However, the test λ4 is unusable because all its

inputs cannot be processed when it is run on the modified EFSM. Similarly, the test λ5 is

unusable because it causes an (unintended) output mismatch when it is run on the modified

EFSM. Therefore, the tests λ2 and λ3 form the regression test suite for this change.

In all these cases, the descriptions of the tests in the original test suite contain enough

information that can be analyzed to accurately predict whether or not a test will exercise

the change when it is run. So, these tests can be selected and/or discarded without running

them. The approach characterizes tests whose descriptions have enough information and

1Note that unspecified inputs in a state cannot be processed and will lead to an implicit dead state.



32

develops procedures to select and discard such tests based on analysis of their descriptions2.

l1 Open(100)/ack(1), deposit(1, 50)/ack(B[1]), wdraw(1, 160)/ack(B[1]), 

wdraw(1, 10)/ack(B[1]), close(1)/ack(B[1])

l2 Open(100)/ack(1), deposit(1, 50)/ack(B[1]), wdraw(1, 110)/ack(B[1]), 

wdraw(1, 10)/ack(B[1]), close(1)/ack(B[1])

l3 Open(100)/ack(1), deposit(1, 50)/ack(B[1]), wdraw(1, 110)/ack(B[1]), 

wdraw(1, 10)/ack(B[1]), deposit(1, 20)/ack(B[1]), close(1)/ack(B[1])

l4 Open(100)/ack(1), deposit(1, 50)/ack(B[1]), wdraw(1, 110)/ack(B[1]), 

wdraw(1, 10)/ack(B[1]), wdraw(1, 50)/ack(B[1]), close(1)/ack(B[1])

l5 Open(100)/ack(1), deposit(1, 50)/ack(B[1]), wdraw(1, 110)/ack(B[1]), 

wdraw(1, 20)/ack(B[1]), wdraw(1, 20)/ack(B[1]), close(1)/ack(40)

(a) (b)

Figure 3.1: Bank Web Service EFSM and Tests

t1   open(v), (v >= min), s0  s1, {id += 1; B[id] = v; ack(id)}

t2   deposit(i, v), (i == id  v > 0  T1 > 0), s1  s1, { B[id] += v; 

T1 -= 1; ack(B[id])}

t3   wdraw(i, v), (i == id  v > 0  (B[i] – v) >= min  T1 > 0 ), s1  s1, 

{B[id] -= v; T1 -= 1; ack(B[id])}

t4   wdraw(i, v), (i == id  v > 0  (B[i] –v) < 0  T1 > 0), s1  s1, {ack(B[id])}

t5   wdraw(i, v), (i == id  v > 0  (0 <= (B[i] –v) < min)  T1 > 0), s1  s2, 

{B[id] -= v; ack(B[id])}

t6   deposit(i, v), (i == id  v > 0  (B[i] + v) >= min), s2  s1, 

{B[id] += v; T1 = max; ack(B[id])}

t7   close(i), (i == id), s2  s0, {ack(B[id])}

t8   close(i), (i == id), s1  s0, {ack(B[id])}

t9   (T1 == 0 ), s1  s3, {bonus = B[id];}

t10 (bonus > 0), s3  s3, {B[id] += 1; bonus -= 1;}

t11  (bonus == 0), s3  s1, {T1 = max;}

t12  wdraw(i, v), (i == id  v > 0), s2  s2, {ack(B[id])}

t12’  wdraw(i, v), (i == id  v > 0  (B[i] –v) >= 0), s2  s2, {B[id] -= v; ack(B[id])}

Figure 3.2: Bank Web Service Transitions

2Tests executing internal transitions cannot be selected or discarded using their descriptions. For more details,
see Section 3.4.



33

3.2 Preliminaries

This section is mostly derived from earlier works [26, 29, 65, 88], where more details can

be found.

Extended Finite StateMachines: An extended finite state machine (EFSM) is a finite state

machine extended with variables and communicates with the environment by exchanging

parameterized messages over (possibly infinite) FIFO queues. An EFSM E = (I, O, S, V ,

T ) [65], is a 5-tuple where I, O, S, V , and T are finite sets of parameterized input and

output messages, states, variables, and transitions respectively. Each message in I and O is

parameterized and the parameter types are one of – booleans, numbers, arrays, data queues,

or record data types. The finite set of variables, V = X ∪ {IQ, OQ}, is the union of the set

of data variables X and two message queue variables IQ and OQ denoting the input and

output queues from and to the environment respectively. An EFSM transition, t: im(−→p ),

Pt , st 7→ qt , om(−→e ), At , where −→p = p1, · · · , pn are distinct, typed parameter variables of

the input message im, the guard Pt is a conjunction of atomic predicates, the action list At

is an ordered sequence of assignments, and the output message parameters −→e = e1, · · · ,

ew is a list of expressions over variables from V and the input parameters −→p . An atomic

predicate is formed by applying relational operators (and, or, not, ==, 6=, <, ≤, >, ≥) to

expressions of the different data types given above. The input (output) messages im (om)

are optional in a transition. Transitions having an input and an output message are called

external transitions; others are internal transitions.

Semantics of EFSMs: The semantics of EFSMs are defined operationally using labeled

transition systems. An EFSM global state, g = (xs == s) ∧ pred, is a formula whose first



34

conjunct sets the data variable xs ∈ V , denoting the EFSM local state, to the state value s ∈

S and the second conjunct pred is a conjunction of atomic predicates over other variables

from V . The predicate pred represents all the possible values that the message queue and

the data variables can take in the global state g3. An initial global state is a global state g =

(xs == s1) ∧ pred whose first conjunct sets xs to an initial state value s1 ∈ S and the second

conjunct pred is an initial predicate that assigns initial values to the variables of V . In the

initial global state, in pred, the queue variable OQ has the value initq denoting an empty

queue; IQ is some input message of I; variables from X have application dependent values.

A substitution [5], σi = {x1← e1, · · · , xn← en} is a finite mapping from variables xi’s

to the expressions ei’s. Substitutions can be applied to messages, transitions, predicates,

and global states to obtain their instantiated versions. Application of the substitution σi to

one of these objectsW , σi(W ), replaces every occurrence of the variables xi’s inW by their

corresponding expressions ei’s.

Transition t: im(−→p ), Pt , st 7→ qt , om(−→e ), At , is enabled in a global state, g = (xs == s)

∧ pred if (s == st) ∧ (σ (im(−→p )) == IQ.head) ∧ (σ (Pt) ∧ pred) is a satisfiable formula. The

first conjunct in the formula ensures that the input EFSM state of the transition is identical to

that in g. The second conjunct ensures that the message at the head of the input queue in g is

an instance of the input message of the transition t. The last one ensures that the instantiated

guard of the transition t is satisfied in g4. The instances of the input message and the guard

are obtained by applying a substitution σ = {p1 ← c1, · · · , pn ← cn}. The substitution σ

3Note that parameters,−→p , do not appear in a global state because conditions on these parameters are expressed
as conditions over the corresponding queue variables. Further, since parameters in queues need not be bound
to global variables the conditions on the parameters cannot be eliminated by flattening an EFSM.
4Note that to execute a transition it must be able to enqueue its output messages also. For brevity, we ignore
this condition throughout this dissertation. We will assume output queues to be unbounded, henceforth.



35

is built by point-wise matching of the input message parameters of the transition with the

message arguments at the head of the input queue in the global state. The input parameters

for which no corresponding argument is found are left unmapped. Substitution σ is the

identity mapping if the input queue is empty.

An execution step, g→t g′, transitions from global state g to g′ using t enabled in g. A

run r = g0t0g1· · · tn−1g0 is a sequence of consecutive steps starting and ending in an initial

global state.

A global state g = (xs == s) ∧ pred is a concrete global state if all the variables in V

are fully-instantiated (with constant values) in pred. Concrete global states are used later

to define test applications and runs.

General and Concrete and Post Images: Informally, the post-images of a transition

describe global states produced as a result of executing that transition. More precisely, the

most general post-image of a transition, t: im(−→p ), Pt , st 7→ qt , om(−→e ), At , Mgpos(t) =

(xs0 == st) ∧ (xs1 == qt) ∧ (nPt ∧ IQ1 == dequeue(IQ0) ∧ IQ0.head == im(−→p ) ∧ OQ1

== enqueue(OQ0, om(−→ne)) ∧ nAt), is a global state representing all the concrete global

states that can result after executing the transition t. In Mgpos(t), nPt is obtained from the

guard Pt by renaming variables to refer to their latest instances [25, 88]; xs0, xs1 denote the

states, IQ0(OQ0) and IQ1(OQ1) denote the queues before and after executing t respectively;

−→ne denotes the parameter expressions in the output message using the latest instances of

variables; nAt is a set of equalities obtained from the single static assignment [25, 88]

representing At .

Example : The most general post-image of t5 in Figure 3.2 is: Mgpos(t5) = (xs0 == s1) ∧



36

(xs1 == s2) ∧ (i == id ∧ v > 0 ∧ 0 <= (B0[i] − v) ∧ (B0[i] − v) < min0 ∧ T 10 > 0 ∧

IQ1 == dequeue(IQ0) ∧ IQ0.head == wdraw(i, v) ∧ OQ1 == enqueue(OQ0, ack(B1[id])) ∧

B1[id] == B0[id] − v). �

Below, we define concrete post-images to deal with the dynamic behavior of tests and

relate the static and the dynamic behavior of a transition by relating their most-general and

concrete post-images with respect to a concrete a global state. In the next section, we will

extend the concrete post-image of a transition to process a test input. Global states enabling

a transition called most general pre-images are described later.

Let g = (xs == st) ∧ pred be a concrete global state. The concrete post-image of

transition t from g, Cpos(t, g) = (xs0 == st) ∧ (xs1 == qt) ∧ (pred ∧ nPt ∧ IQ1 ==

dequeue(IQ0) ∧ IQ0.head == im(−→p ) ∧ OQ1 == enqueue(OQ0, om(−→ne)) ∧ nAt), is the

concrete global state produced by executing transition t in the global state g. If t is not

enabled in g then Cpos(t, g) has the value f alse.

Proposition 1 The concrete post-image of t fromaglobal state g,Cpos(t, g) = g∧Mgpos(t).

Proof: Follows from the definitions of most general post-image and concrete post-image.

�

Simplify Prover: In this dissertation, the theorem prover Simplify [29] extended with

rewrite rules and queues [88] is used to analyze tests in a push-button manner. The Simplify

prover has been extensively used to perform extended static analysis and model checking of

software programs [29, 45]. Usually, quantified formulas called verification conditions are



37

generated from the program and input to the prover. The prover automatically determines

the validity of an input formula and returns valid if the formula evaluates to true under all

the assignments to variables in formula and returns invalid otherwise. To check if a formula

F is satisfiable, its negation not(F) is input to prover. F is unsatisfiable if the prover returns

valid; F is satisfiable if the prover returns invalid. Simplify contains decision procedures

for numbers, booleans, equality, partial-orders, and the theory of maps. The theory of maps

is used to reason about data types such as arrays and record data types in a push-button

manner [29]. We automatically translate the data types (and the operations) of the message

parameters and data variables in the EFSM into the language of the prover involving the

data types supported by the prover. Arrays (fields of a record data type) are translated into

maps from array index data types (field ids) to array (field) element types. We also model

queues by maps. More details can be found in [88].

3.3 EFSM Changes and Tests

In this section, our model for changes to EFSMs is described, followed by the model for

EFSM tests.

3.3.1 EFSM Change Model

Changes to the EFSM are specified at the transition level. An addition change, δ = 〈+, ta〉,

adds a new external transition ta to an EFSM. A deletion change, δ = 〈−, td〉, deletes an

existing external transition td from an EFSM. A replacement change, δ = 〈−/+, (td , ta)〉,

replaces an existing external transition td in an EFSMby a new external transition ta. Certain



38

transition changes may have larger impacts and can modify the EFSM interface itself. For

instance, an addition change can introduce new EFSM messages and states. Similarly, a

deletion change can result in the removal of existing messages and states. However, in

this dissertation, all the EFSM changes are assumed to produce a new EFSM that is both

deterministic and consistent. The preservation of these EFSM properties by a given set of

changes can be automatically checked using a theorem prover as described in our earlier

work in [87].

3.3.2 EFSM Test Descriptions

An EFSM test, λ = 〈g0, [i1/o1, · · · , in/on]〉, is a pair whose first component is a concrete

global state g0 and the second component is a finite sequence of test elements of the form:

test input/expected test output. Each input (and output) is a sequence of assignments to the

message queue and/or data variables. Only constants appear in an input. Both constants

and data variables can appear in an output.

Example : The EFSM tests for the bank example are depicted in Figure 3.1(b). Test

inputs of all these tests assign a single message having constant parameter values to the

input message queue and expected outputs assign constant values and variables to the output

message queue. �

Note that for brevity, our test inputs and outputs only refer to the message queues and

not to the data variables. In fact, we only specify the messages and the queues are implicit.

However, our approach is equally applicable to tests having more general inputs and outputs

with assignments to data variables. Now, we extend EFSM execution steps and runs to



39

handle test inputs.

Consider test input i: [m(c1, · · · , cn)], adding message m with constant parameters c1,

· · · , cn to the head of queue IQ. Let g = (xs == st) ∧ IQ.head = m(d1, · · · , dn) ∧ pred′ be a

concrete global state.

The concrete global state g extended by a test input i is the concrete global state gi

= (xs == st) ∧ IQ.head == m(c1, · · · , cn) ∧ pred′. The concrete global state gi is called

the extended concrete global state. Essentially, in the extended concrete global state, the

message parameters are bound to the constant values ci’s specified by the test input and not

the original values d j’s.

Transition t processes the test input i in the concrete global state g if the transition t is

enabled in the extended concrete global state gi. Test λ is applied to EFSM E by starting

E in concrete global state g0. Transition t0 enabled in g0 is executed to generate concrete

global state, say, g1, and the process repeated until no more transitions are enabled in the last

generated concrete global state, say, gm. Extend gm with the first test input i1 and execute

the enabled transition tm to generate the state gm+1. Transition enabled in gm+1 is executed

to produce the next state and the process is repeated. The process terminates on either

reaching the initial concrete global state after processing all test inputs or if no progress can

be made.

Note that the test inputs are consumed by external transitions, and an execution of the

EFSM is comprised of executing an external transition (by consuming a test input), running

internal transitions as long as possible, and continuing with the next enabled external

transition. Note also that a test application may terminate in a non-initial global state either



40

because some test input cannot be processed or because there are no more inputs to be

processed.

Test λ is complete on an EFSM E if applying λ to E processes all test inputs of λ and

ends in an initial global concrete global state of E. The test run of a complete test λ on E,

rλ = g0t0· · ·gmtm· · ·g0, is a run of E produced by applying λ to E. Note that a test run differs

from a regular EFSM run in that the concrete global states in a test run where transitions

process the test inputs are extended concrete global states. However, each complete test λ

has a unique test run rλ on E since E is deterministic. Further, a transition tw of rλ can

process a test input iw of λ only if all the test inputs i1, · · · , iw−1 are processed by some of

the transitions appearing before tw in the run rλ .

Here we assume that all tests in the test suite of the original EFSM are complete tests.

The notion of complete tests is used primarily to automatically identify unusable tests as

described in Section 6. In addition, it simplifies our proofs. The approach can be easily

adapted to handle EFSMs and tests whose executions terminate in some final (or other

stable) states. Our notion of complete tests can be realized in practice by incorporating

an implicit reset action after each non-complete test execution that brings an EFSM to an

initial state.

3.4 Fully-Observable Tests

In this section, fully-observable tests are introduced and an invariant formula characterizing

these tests is developed. Then, a compatibility relation over transitions is defined and used

to develop a procedure to efficiently identify fully-observable tests using a theorem prover.



41

Definition 1 Test λ is fully-observable on E if test run rλ on E contains only external

transitions.

Example : The tests λ1-λ5 in Figure 3.1(b) are fully-observable on the bank EFSM. �

It is clear that every fully-observable test on E is also a complete test on E since the

application of the test on E must produce a test run for the test to be fully-observable.

However, a complete test on E may not be fully-observable on E since its test run can

involve internal transitions of E. Note that if λ is fully-observable on E then the transitions

t1, · · · , tn in its test run rλ = g0t1g1· · · tngn must process the test inputs i1, · · · , in respectively

since no other transitions appear rλ .

A straightforward way to determine if a test is fully-observable on an EFSM is to

instrument all the EFSM transitions, apply the test on the EFSM, and analyze the resulting

test run. We can view full-observability in terms of the dynamic behavior of a test. Below,

we describe how we can determine whether or not a test is fully-observable by statically

analyzing its description and the EFSM transitions. The notions of a transition matching

a test input and test extended most general pre- and post- images are introduced. We then

describe how for each test we can automatically generate an invariant formula involving the

matching transitions and their extended post-images. We prove that a test is fully-observable

if and only if the associated invariant is a satisfiable formula.

3.4.1 Matching Transitions and Sequences

Definition 2 Transition, t: im(−→p ), Pt , st 7→ qt , om(−→e ), At , matches a test input i = m(c1,

· · · , cn) using substitution σ = {p1← c1, · · · , pn← cn} if (1). σ (im(−→p ))=m(c1, · · · , cn) and



42

(2). σ (Pt) is a satisfiable formula. The substitution σ is called the matching substitution.

The first condition of Definition 2 states that the test input is an instance of the transition

input message. The second condition states that uniformly replacing the parameters by the

corresponding constant values given in the test input in the guard Pt produces a satisfiable

formula.

The matching substitution σ is built by setting the input message parameters of the

transition to the corresponding values in the test input.

Example : In Figure 3.2, t5 matches the input wdraw(1, 110) of test λ2 using the

substitutionσ = {i← 1, v← 110} sinceσ (wdraw(i, v)) =wdraw(1, 100) and the instantiated

guard of t5 is: (1 == id) ∧ (110 > 0) ∧ 0 <= (B0[1] - 110) ∧ (B0[1] - 110) < min ∧ (T 10

> 0), a satisfiable formula. �

The static match operation in Definition 2 only checks the input message and the guard

but ignores the input state of the transition. Hence the operation is conservative i.e., a

transition may match a test input but may not able to process that input when the test is

actually applied. However, as shown below, the operation will include all the transitions

that can process the test input.

Proposition 2 If a transition t of an EFSM E processes a test input i in a concrete global

state g of E then the transition t matches the test input i.

Proof: Let t: im(−→p ), Pt , st 7→ qt , om(−→e ), At , be the transition of E. Let test input i =

[m(c1, · · · , cn)] and the concrete global state g = (xs == s) ∧ IQ.head = m(d1, · · · , dn) ∧

pred′. The corresponding extended concrete global state using the test input i is gi = (xs ==



43

st) ∧ IQ.head = m(c1, · · · , cn) ∧ pred′. Transition t must be enabled in gi if t can process

test input i in g when the test is actually applied. This means that there is a substitution

σ = {p1 ← c1, · · · , pn ← cn} such that σ (im(−→p )) = m(c1, · · · , cn) and the formula σ (Pt)

∧ pred′ is satisfiable, implying that σ (Pt) is satisfiable. The conditions of Definition 2 are

met. Therefore, t matches the test input i. �

Several EFSM transitions can match a test input. Let T (ik) be the (possibly empty)

set of all transitions matching the test input ik. A matching sequence, φ (λ ) = [T (i1), · · · ,

T (in)], of a test λ is a sequence of sets of transitions constructed by point-wise matching of

the inputs of the test λ . A transition sequence, ρ = [t1, · · · , tn] ∈ φ (λ ) if each tk ∈ T (ik), k

= 1 to n.

Example : Matching sequence φ (λ2) = [{t1}, {t2,t6}, {t3,t4,t5,t12}, {t3,t4,t5,t12}, {t7,t8}] for

the test λ2 in Figure 3.1(b). A transition sequence of φ (λ2) is ρ = [t1, t2, t3, t3, t7]. �

3.4.2 Test Extended Most General Images

Recall from Section 3.2 that the most general post-image of a transition t is a global state

representing all the concrete global states that can result after executing the transition t.

Below, most general pre-image is introduced first. Then, we extend these images to process

test inputs.

Themost general pre-image of transition, t: im(−→p ), Pt , st 7→ qt , om(−→e ), At , Mgpre(t)

= (xs == st) ∧ nPt ∧ IQ.head == im(−→p ), is a global state representing all the concrete global

states in which the transition t is enabled.



44

The test extendedmost general post-image, Emgpos(tw), of transition tw matching test

input iw using the matching substitution σw is Emgpos(tw) = Mgpos(σw(tw))5. It denotes all

global states that can be produced by executing the transition σw(tw) i.e., an instance of tw

matching the test input iw. The test extended most general post-image, Emgpos(tw) = f alse

(empty set of global states) if tw does not match iw.

Note that a global state, g = (xs == s) ∧ pred, belongs to Mgpre(t) (above) if s ==

st and the predicate pred ∧ Pt ∧ IQ.head == im(−→p ) is a satisfiable formula. Further,

for transition t to be enabled in the global state g, g must belong to Mgpre(t). The test

extended most general pre-image, Emgpre(tw), of transition tw matching test input iw

using the substitution σw is Emgpre(tw) = Mgpre(σw(tw)). It denotes all global states where

the transition σw(tw) is enabled; Emgpre(tw) = f alse if tw does not match iw.

Note that given a test and an EFSM, the test extended post-images and pre-images for

the transitions can be automatically obtained by generating the matching substitution for

each transition and test input pair, which can then be used to produce the corresponding

formulas, as described above.

A Structural Invariant: A structural invariant for a test λ = 〈g0, [i1/o1, · · · , in/on]〉,

given below, can be formulated solely based on test descriptions and the test extended

post-images of the matching transitions. The post-images are automatically generated from

the test description as explained above. Below, predicate Init checks if its argument is an

5Note that we define extended post-images for matching transitions only. In all other cases, the matching
substitution σ = {} and the test extended post-image is unsatisfiable.



45

initial global state and ρ = [t1, · · · , tn].

ψ(λ ) =
∨

ρ∈φ(λ )

Init(g0∧
n∧

k=1

Emgpos(tk)),

Each disjunct of ψ(λ ) corresponds to a transition sequence ρ from the matching sequence

φ (λ ) and is made of n + 1 conjunctions. First conjunct is the concrete global state g0 in

which the test λ starts and the remaining n conjuncts are the test extended post-images of

the n transitions in ρ .

Invariant ψ(λ ) statically obtained using a test description and the EFSM transitions can

be related to the behavior of the test application on the EFSM as described below.

Recall from Section 3.2 that the concrete post-image,Cpos(tw, g), of a transition tw from

a concrete global state g, is the concrete global state obtained by executing the transition

tw in the concrete global state g. The test extended concrete post-image, Ecpos(tw, g),

of a transition tw matching test input iw using the matching substitution σw is Ecpos(tw, g)

= Cpos(σw(tw), gw), where gw is the concrete global state obtained by extending g using

the input iw. We generalize extended concrete post-image of a transition to a sequence of

transitions ρ = [t1, · · · , tn] point-wise matching a sequence of test inputs [i1, · · · , in] using a

sequence of substitutions [σ1, · · · , σn] respectively as follows.

Definition 3 The test extended concrete post-image Ecpos(ρ , g0) of a transition sequence

ρ ∈ φ (λ ) from the concrete global state g0 over EFSM E is

Ecpos([t1], g0) = Cpos(σ1(t1), g0),

Ecpos([t1, · · · , tn], g0) = Ecpos([t2, · · · , tn], Ecpos([t1], g0)), n > 1.



46

Expressions σw(tw)’s in the Definition 3 above denote transitions obtained by instantiating

the transitions tw’s using the matching substitutions σw’s.

Recall that the constant values in the substitutions σw’s are obtained using the corre-

sponding test input iw. Hence in Definition 3, for a transition tw matching a test input iw

using the substitutionσw,Cpos(σw(tw), g) =Cpos(tw, gw), where gw is the extended concrete

global state obtained from the concrete global state g using the test input iw. Therefore, the

extended post-image of the transition sequence ρ , Ecpos(ρ , g0), represents the concrete

post-image obtained from the state g0 with each transition in the sequence processing the

corresponding test input in the concrete global state produced by the prefix of the sequence

up to (but not including) that transition. If some transition tw in the sequence is not enabled

in the concrete global state Ecpos([t1, · · · , tw−1], g0) produced by its prefix then Ecpos([t1,

· · · , tw], g0) = · · · = Ecpos([t1, · · · , tn], g0), n ≥ w are all unsatisfiable.

We say that the transition sequence ρ is a feasible path (run) over an EFSM E for the

test λ , if Ecpos([t1, · · · , tn], g0) is a satisfiable concrete global state over E. For ρ to be a

feasible run, the extended concrete post-image should be a satisfiable concrete initial global

state i.e., Init(Ecpos([t1, · · · , tn], g0)) must have the value true. Therefore, if a sequence

of transitions ρ forms a feasible run from the concrete global state g0 of a test λ then

the application of λ will produce a test run in which each transition in ρ will process the

corresponding test input of λ .

The information obtained statically from a test λ and a transition sequence ρ belonging

to matching sequence φ (λ ) can be related to the application of the test λ as follows.



47

Lemma 1 Given test λ = 〈g0, [i1/o1, · · · , in/on]〉 and ρ = [t1, · · · , tn] ∈ φ (λ ),

Ecpos([t1, · · · , tn],g0) = (g0∧
n∧

k=1

Emgpos(tk)).

Proof: By complete induction on length of ρ . For the base case, let n = 1. Since ρ = [t1] ∈

φ (λ ) t1 matches the test input i1 using the matching substitution σ1. So, by Definition 3 and

Proposition 1 it follows that Ecpos([t1], g0) =Cpos(σ1(t1), g0) = g0 ∧Mgpos(σ1(t1)), which

is the same as g0 ∧ Emgpos(t1) by the definition of extended most general post-images. For

the step case, assume that the claim holds for sequences ρ = [t1, · · · , tk] of length less than

or equal to k, i.e, Ecpos([t1, · · · , tw], g0) = g0 ∧ Emgpos(t1) ∧ ·· · ∧ Emgpos(tw), w ≤ k.

Consider the sequence ρ = [t1, · · · , tk+1] of length k + 1. By Definition 3, Ecpos([t1, · · · ,

tk+1], g0) = Ecpos([t2, · · · , tk+1], Ecpos([t1], g0)), which simplifies to Ecpos([t1], g0) ∧

Emgpos(t2)∧ ·· · ∧ Emgpos(tk+1) = g0 ∧ Emgpos(t1)∧ Emgpos(t2)∧ ·· · ∧ Emgpos(tk+1),

by two applications of the induction hypothesis involving a sequence of length k - 1 and a

singleton sequence. �

Therefore, the invariant ψ(λ ) simply checks that the matching sequence φ (λ ) contains

at least one feasible run from the concrete global state g0 in which the test λ is applied.

Each disjunct in ψ(λ ) considers a transition sequence from the matching sequence and

incrementally checks its feasibility. The transition sequence is a feasible run if the disjunct

is satisfiable. Note that since EFSMs are deterministic, each test has at most one test run

and therefore, at most one of the disjuncts is satisfiable.

Theorem 3 A test λ is fully-observable on an EFSM E if and only if ψ(λ ) is a satisfiable



48

formula.

Proof:Let λ = 〈g0, [i1/o1, · · · , in/on]〉 andψ(λ ), given above, be the corresponding invariant.

(⇒:) Suppose that the test λ is fully-observable on E but the invariant ψ(λ ) is unsatisfiable.

Since λ is fully-observable, it follows by Definition 1 that its test run on E, say, rλ =

g0t1g1· · · tngn, contains only external transitions of E. So, the transitions t1, · · · , tn must

process the respective test inputs i1, · · · , in. Then, by Proposition 2, a sequence consisting

of these transitions ρ = [t1, · · · , tn] must belong to the matching sequence φ (λ ). Now, since

ρ is built by projecting out all transitions in the test run rλ starting at g0, the sequence ρ

forms a feasible run from g0. So, Init(Ecpos(ρ , g0)) is satisfiable formula. Hence Init(g0

∧ Emgpos(t1) ∧ ·· · ∧ Emgpos(tn)) must be satisfiable, by Lemma 1. And, this is possible

only if ψ(λ ) is satisfiable. A contradiction.

(⇐:) Now, suppose that the invariant ψ(λ ) is satisfiable but λ is not a fully-observable

test. Since the invariant is satisfiable, exactly one of its disjuncts corresponding to some

transition sequence, say, ρ = [t1, · · · , tn], must evaluate to true i.e., Init(g0 ∧ Emgpos(t1)

∧ ·· · ∧ Emgpos(tn)) is satisfiable. Since ρ belongs to the matching sequence φ (λ ),

Init(Ecpos(ρ , g0)) is a satisfiable formula by Lemma 1. Hence the sequence ρ is a feasible

run on E from the concrete global state g0. So, rλ = g0t1Ecpos([t1], g0)t2 Ecpos([t1, t2],

g0)· · · tnEcpos([t1, · · · , tn], g0) is a test run of λ on E. Further, rλ contains only external

transitions since ρ belongs to the matching sequence. Therefore, test λ is fully-observable

on E. A contradiction.�

The Theorem 3 establishes that the test description of a fully-observable test contains all

the information about the transitions that will appear in its test run. So, for such a test, the



49

transition sequences obtained by the syntactic matching operation can be analyzed using a

theorem prover to a priori determine the sequence of transitions that will be executed when

the test is applied. This will then provide provable guarantees about a test execution without

actually executing the test. In the rest of this section, an efficient procedure to identify

fully-observable test is described

3.4.3 Identifying Fully-Observable Tests

One way to determine if a test λ is fully-observable is to obtain the matching sequence

φ (λ ) from the description of λ , formulate the invariant ψ(λ ) using the transition sequences

in φ (λ ), and then input ¬(ψ(λ )) to the theorem prover to check its validity. If the input is

valid then the invariant ψ(λ ) is unsatisfiable and by Theorem 3, λ is not fully-observable;

otherwise λ is a fully-observable test.

However, such a naive approach may not be possible since the invariant ψ(λ ) may be

quite large and can be costly to check using a theorem prover. Often, invariants tend to

get large due to the excessive branching among the transitions in the matching sets leading

to an explosion of paths i.e., there are too many disjuncts in the formula. Such branching

occurs because we compute the matching sets for each test input individually without

considering the interactions of these transitions with those in the preceding matching sets.

We can reduce branching by analyzing the interactions among the transitions. For instance,

a certain matching transition may be safely discarded because it cannot follow any of

the preceding matching transitions. Below, a compatibility relation among transitions is

introduced to capture interactions and used to efficiently check the invariant.



50

3.4.3.1 Compatibility of Transitions

Given transitions ti and t j with input messages mi(−→pi ) and m j(−→p j) respectively, let predicate

ξ : (IQ0 == enqueue(m j(−→p j), enqueue(mi(−→pi ), initq)) be the input message context with the

input queue instance IQ0 having the input message of ti followed by that of t j. Compatibility

relation over transitions determines if a transition can immediately follow another in the

EFSM runs under a given input message context.

Transition t j is incompatible with ti under a given input message context if t j cannot

immediately follow ti in any EFSM run. Transition t j is incompatible with ti if ξ ∧

Mgpos(ti) ∧Mgpre(t j) is an unsatisfiable formula i.e., the most-general post-image and the

most-general pre-image represent disjoint sets of global states under the given context.

Example : In Figure 2, transition t12 is incompatible with transition t6 under the context

ξ : (IQ0 == enqueue(wdraw(i2, v2), enqueue(deposit(i1, v1), initq))). The most-general

post-image, Mgpos(t6): (xs0 == s2 ∧ xs1 == s1) ∧ (i1 == id ∧ v1 > 0 ∧ (B0[i1] + v1)

>= min0 ∧ T 10 == max ∧ IQ1 == dequeue(IQ0) ∧ IQ0.head == deposit(i1, v1) ∧ OQ1

== enqueue(OQ0, ack(B1[id])) ∧ B1[id] == B0[id] + v1) and the most-general pre-image,

Mgpre(t12): (xs1 == s2) ∧ (i2 == id ∧ v2 > 0 ∧ IQ1.hd = wdraw(i2, v2)). It can be verified

that ξ ∧Mgpos(t6) ∧Mgpre(t12) is unsatisfiable.�

Note that in general, to determine compatibility, the input parameters in transitions ti

and t j are first renamed so that they are disjoint. Hence incompatibility of ti with t j is

independent of the constraints involving the input parameters.

Transition t j is strongly compatible with ti under a given input message context if t j



51

can immediately follow ti in every EFSM run under that context. Transition t j is strongly

compatible with ti if (ξ ∧Mgpos(ti)) =⇒ PreElim(t j) is a valid formula. The consequent

PreElim(t j) is obtained from Mgpre(t j) by eliminating conjuncts that are made of only the

input parameters of t j. This ensures that t j immediately follows ti regardless of the values

of the input parameters. Note that the most general pre-images and post-images must be

satisfiable formulas for a consistent EFSM since every transition in such an EFSM has a

satisfiable guard and must terminate. Hence the above formula cannot be vacuously true.

Example : In Figure 2, transition t8 is strongly compatible with t6. Context ξ : (IQ0 ==

enqueue(close(i2), enqueue(wdraw(i1, v1), initq))); Mgpre(t8) = PreElim(t8): xs1 == s1

∧ IQ1.head = close(i2); and, Mgpos(t6) is as given above. It can be verified that (ξ ∧

Mgpos(t6)) =⇒ PreElim(t8) is a valid formula. Also, transition t6 is strongly compatible

with transition t2 since (ξ ∧ Mgpos(t6)) =⇒ PreElim(t2) is a valid formula. However,

it is evident (ξ ∧ Mgpos(t6)) =⇒ Mgpre(t2) is not a valid formula since the conjunct in

Mgpre(t2) obtained from the condition v > 0 of the transition t2 involving the free input

parameter v, is not valid. �

It should be emphasized that more than one transition can be strongly compatible with

a given transition under a given context provided these transitions have mutually exclusive

guards. For instance, consider a deterministic EFSM having three transitions, t1: m1, true,

s0 7→ s1, ack; t2: m2(v), v > 0, s1 7→ s1, ack; and t3: m3(v), v < 0, s1 7→ s1, ack. It

can be verified that both t2 and t3 are strongly compatible with t1 under the corresponding

input message contexts. However, only one of t2 or t3 can immediately follow t1 in any

concrete global state under that context. Note however, that transitions whose guards are



52

not mutually exclusive cannot be strongly compatible with the same transition since the

EFSMs are deterministic.

Transition t j is compatible with ti under a given input message context if t j can imme-

diately follow ti in some EFSM runs but not in others in that context. Transition t j is found

to be compatible with ti if t j is neither incompatible nor strongly compatible with ti.

Example : In Figure 2, transition t3 is compatible with t1 under the corresponding context,

since ξ ∧Mgpos(t1)∧Mgpre(t3) is not unsatisfiable and (ξ ∧Mgpos(t1)) =⇒ PreElim(t3)

is not valid. �

Several transitions can be compatible with a given transition. Further, it is also possible

to have transitions t j and tk such that t j is strongly compatible and tk is compatible with a

given transition ti.

Note that the compatibility relation uses the most general pre- and post-images of the

transitions only and hence can be pre-computed using the EFSM, independent of the tests.

We assume that the compatibility information so computed is available with each EFSM

transition using three sets – the incompatible, the strongly compatible, and the compatible

sets of transitions.

3.4.3.2 Checking Full-Observability

Given a test λ = 〈g0, [i1/o1, · · · , in/on]〉, where the concrete global state g0 = (xs == s)∧ pred,

we use the pre-computed compatibility information among the EFSM transitions and build

a directed, acyclic, transition compatibility graph TCG(λ ). The graph TCG(λ ) contains the

compatibility information about the transitions belonging to the matching sequence φ (λ ).



53

Nodes of this graph denote occurrences of transitions in the matching sequence and the

labeled edges denote the compatibility relations.

The graph has a special start node and one node for each occurrence of each transition

in the matching sequence φ (λ ). Node tw j denotes the occurrence of transition tw in the jth

matching set T (i j) in φ (λ ). The graph TCG(λ ) is a levelized graph with level 0 having the

start node and the level k, k ≥ 1, consisting of nodes representing all the transitions in the

matching set T (ik).

Directed, labeled, edges in the graph connect a node in a level to zero or more nodes

in the next level. Edges can have a label s (strong compatible) or a label c (compatible).

An edge (tvk, tw(k+1), s) (resp. (tvk, tw(k+1), c)) from node tvk at level k to node tw(k+1) at

level k + 1 with label s (resp. c) belongs to TCG(λ ) if transition tw is strongly compatible

(resp. compatible) with the transition tv. No edge exists between incompatible nodes at the

successive levels and also between nodes in the same level. An edge from start to a node

tw1 with label s is added if g0 =⇒ PreElim(tw) is a valid formula.

As discussed in the previous section, two transitions can be strongly compatible with a

single node only if they have mutually exclusive guards. Since the guards of all transitions

matching a particular test input are satisfied under the same matching substitution, they

cannot be mutually exclusive. Hence no two transitions in any matching set can be strongly

compatible with the same transition. Consequently, in the graph TCG(λ ), there can be at

most one outgoing edge from a node tvk at level k with label s to any of the nodes in the

level k + 1.



54

Inputs: Test λ = 〈g0,[i1/o1, · · · , in/on]〉,
g0 = (xs == s0) ∧ pred;
Graph TCG(λ ) with n levels

Output: Success if ψ(λ ) is satisfiable;
Fail otherwise

Method:
L(start) = true;
Emgpos(start) = g0;
clevel = 0; Mark start
while (clevel < n) do
for the marked node, tw, in clevel do:
Clean-up:
if (tw, tw+1, s) ∈ TCG then

TCG = TCG − (tw, tv, c),
tv ∈ TCG

Delete dangling nodes and edges
until none remain

Extend to next level:
foreach tw+1 ∈ immedsucc(tw) do

F = (L(tw) ∧ Emgpos(tw))
=⇒ Emgpre(tw+1)

if valid(F)
L(tw+1) = L(tw) ∧ Emgpos(tw));
Mark tw+1;
clevel = clevel + 1

If no immedsucc(tw) marked, Fail
Let tn be the last marked node
if Init(L(tn) ∧ Emgpos(tn))
return Success
else return Fail

Figure 3.3: Full-Observability Procedure

Figure 3.4: TCG for Test λ2

Figure 3.5: Test Suite Tree for Bank Example



55

Example : The Figure 3.4 depicts the compatibility graph TCG(λ2) for the test λ2. �

A procedure to determine if a test λ is fully-observable using TCG(λ ) is described

in Figure 3.3. The procedure takes a test λ and its compatibility graph TCG(λ ) as its

inputs and outputs Success if λ is fully-observable and Fail otherwise. Henceforth, we

slightly abuse the notation and refer to the compatibility graph nodes by the corresponding

transition.

The graph TCG(λ ) is traversed level by level starting at the level 0 to see if any path in

the graph forms a feasible run from the concrete global state g0. At each level, a node is

marked by the procedure if the sequence of transitions in the path from the start node to

the marked node in the graph form a feasible path from the concrete state g0 of the test λ .

A label, L(tk), is associated with the marked node tk in each level k. Let ρ = [t1, · · · , tw] be

the transition sequence that forms a feasible path from g0 when the procedure reaches the

current level (clevel in Figure 3.3 w. The label associated with a node tk belonging to the

sequence ρ is L(tk) = g0 ∧ Emgpos(t1) ∧ ·· · ∧ Emgpos(tk−1).

To extend the feasible path to the w + 1th level, first, the candidate immediate successor

nodes of the marked node at the current level are identified. If the marked node correspond-

ing to tw has a strongly compatible immediate successor then this is the only candidate

immediate successor as explained above. In this case, the other immediate successors of

the node corresponding to tw linked by c labeled edges, if any, are deleted from the graph.

Deleting these edges from the graph may make certain nodes dangling i.e., nodes that do

not have any successor and/or a predecessor. Such nodes cannot participate in the feasible

run, if any, and hence are deleted from the graph along with the resulting dangling edges.



56

Such deletion of dangling nodes and edges is repeated until no more such nodes and edges

remain. If the marked node corresponding to tw has no strongly compatible immediate

successor then all the immediate successors linked by edges with the label value c are

candidate immediate successors.

Then, we propagate the label L(tw) to each of the candidate immediate successors tw+1

and compute a formula F = (L(tw) ∧ Emgpos(tw)) =⇒ Emgpre(tw+1). The formula F

states that processing the test input w using transition tw in the concrete global state g0

∧ Emgpos(t1) ∧ ·· · ∧ Emgpos(tw−1) will result in a concrete global state in which the

immediate successor transition tw+1 processing the test input iw+1 is enabled. If F is valid

then that immediate successor node is marked and the label L(tw+1) is set. The current level

is incremented and the procedure is continued. If the propagated formula F is not valid

for any of the candidate successors then this implies that no transition in the matching set

T (iw+1) can process the test input iw+1 in the concrete global state obtained after processing

the first w test inputs. And, the procedure fails. If the path can be extended up to the last

level (level n) of the graph and the L(tn) ∧ Emgpos(tn) is an initial concrete global state

then the procedure returns Success. Otherwise, the procedure returns Fail.

Example : To determine if the test λ2 is fully-observable, the graph TCG(λ2) in Figure

3.4 is constructed using the pre-computed compatibility information and analyzed level by

level starting at the level 0. The candidate immediate successor for the start node is the

node t1. The formula generated at node t1 is: F = (xs == s0 ∧ (min == 50) ∧ IQ0 ==

enqueue(open(100), initq)) =⇒ (xs == s0 ∧ IQ0.head == open(100) ∧ 100 > 0), is valid.

Hence node t1 in level 1 is marked and hence the label L(t1) is assigned to be this formula.



57

The candidate successor at level 2 is node t2. The formula generated for this node is also

valid resulting in the marking of t2 and its label is set to the generated formula.

At the third level, t2 has three successors t31, t41 and t51. The formula generated at t31 is:

F = (L(t2) ∧ Emgpos(t2)) =⇒ Emgpre(t31) where substitution σ2 uniformly replaces i by 1

and v by 50 in t2 and σ3 uniformly replaces i by 1 and v by 110 in t3. Since a conjunct in the

consequent of F : ((B1[1] - 110) >= 50) cannot be established from the conjuncts: (B1[1]

== B0[1] + 50) and B0[1] == 100 in the antecedent of F , the formula F is not valid and the

node t31 is skipped. Similarly, node t41 is also skipped. The relevant conjunct in the formula

generated for t51 : (B1[1] - 110 < 50), follows from those in the antecedent, resulting in

a valid formula. Hence t51 is labeled with this formula as its label L(t51). The next two

levels have a single successor, nodes t122 and t7 respectively. The formula generated at t122

using L(t51) is a valid formula and is assigned to L(t122). The formula generated at t7 is also

valid and is assigned to L(t7), resulting in the executable path that is highlighted in Figure

3. Therefore, the test λ2 is declared fully-observable, which can be easily verified. �

3.5 Selecting Fully-Observable Tests

The regression test selection problem for the EFSMs is analogous to that for programs [44].

It takes as inputs – a deterministic, consistent EFSM E1 with a test suite T , and a change δ

that produces a modified, deterministic and consistent EFSM E2. It outputs a test suite T ′

⊆ T , consisting of subset of tests of T guaranteed to exercise the change δ on E2. All the

tests in the original test suite T are assumed to be complete on E1.



58

Test λ = 〈g0, [i1/o1, · · · , in/on]〉 exercises an addition change δ = 〈+, ta〉 on E2 if there

exists a feasible path ρ = [t1, · · · , ta] from g0 on E2. Test λ exercises a deletion change δ =

〈−, td〉 on E2 if there exists a feasible path ρ = [t1, · · · , td] from g0 on E1. Test λ exercises a

replacement change, δ = 〈−/+, (td , ta)〉 on E2 if it either exercises the addition change 〈+,

ta〉 on E2 or it exercises the deletion change 〈−, td〉 on E2.

Our criteria for tests exercising changes are inspired by the notion of modification-

traversing tests described in [78]. Note that a modification-traversing test may or may not

produce identical observable behaviors on both E1 and E2. Such tests are anyhow included

for regression. But if a test is not included for regression then its observable behavior on

these two EFSMs will be identical.

For test selection, we slightly generalize fully-observable tests. Let λ be any test for an

EFSM E.

Definition 4 Let ρ = [t1, · · · , tk] be a transition sequence obtained from a path start → t1

→ ·· · → tk6 of TCG(λ ). λ is fully-observable on E up to level k if ρ is a feasible path over

E for the test λ .

3.5.1 Selecting for Addition Changes

Consider an addition change, δ = 〈+, ta〉. The main steps of an incremental procedure to

determine if the test λ is a candidate for change δ are given below. The procedure takes the

compatibility information among the transitions of the original EFSM, the graph TCG(λ ),

and the added transition ta as its inputs and returns 1 if λ is a candidate test for δ and returns

0 otherwise. It also outputs the updated compatibility graph to be used for future changes.
6For brevity, we ignore the labels on the edges in the path; tk appears in level k.



59

1. Update the matching sequence φ (λ ) by adding ta to the appropriate matching sets.

2. Suppose that transition ta occurs exactly once in the kth matching set of the matching

sequence φ (λ ). Using the input graph TCG(λ ) involving the original transitions

check if λ is fully-observable on E1 up to level k. If so, the transitions from E1 will

process the first k test inputs and ta will not process the kth test input.

If λ is fully-observable only up to level k - 1 then let formula F = (L(tk−1) ∧

Emgpos(tk−1)) =⇒ Emgpre(ta) where tk−1 is the node marked at the level k - 1 of

the input graph. If F is not a valid formula then ta will not process the kth test input

(also the case if λ is fully-observable up to a level less than k - 1). So, λ is not a

candidate and the compatibility graph is unchanged.

If λ is fully-observable up to level k - 1 but not up to level k, and F is a valid formula

then λ is a candidate since by Theorem 3, the transition ta will process the kth test

input when λ is applied on E2. Then, update TCG(λ ) by adding node ta at level

k and edge (tk−1, ta, s). Attempt to extend the feasible path to level k + 1 using

the full-observability procedure described in Figure 3.3 on the updated graph. If

successful and tk+1 is the marked node at this level then add one more edge, (ta, tk+1,

s), to the updated graph and output the resulting graph.

3. If ta occurs in many matching sets all covered by interval [l, m] and λ is fully-

observable on E1 up to level m or higher then λ is not a candidate and the graph is

unchanged. Otherwise, process each matching level in the interval, starting at level l,

as described above. Move to the next level only if ta does not process the test inputs

at any of the previous levels.



60

4. Finally, if ta does not appear in any of the matching sets of the sequence φ (λ ) then

the test λ is not a candidate and the graph is unchanged.

The above incremental procedure [75, 90] uses the original compatibility graph to identify

candidate tests. The graphs are locally updated so that they can be similarly used in selecting

tests for future changes. Such an incremental procedure is likely to be effective in practice

since it is bounded by the size of the matching sets affected by the change and is independent

of the overall size of the EFSM. Further, focussing on the earliest occurrence can reduce

the analysis time, especially for long tests.

Theorem 4 Test λ is selected for an addition change δ = 〈+, ta〉 if and only if λ exercises

δ when λ is applied on the modified EFSM.

Proof: (⇒:) Suppose λ is selected by the procedure in step 2. Then, ta ∈ T (ik). Also, λ

must be fully-observable up to at least level k - 1 but not up to level k on E1. Since λ is

fully-observable up to level k - 1, by Definition 4, there exists a path start → t1 → ··· →

tk−1 in the original TCG(λ ) such that the transition sequence ρ = [t1, · · · , tk−1] obtained

from this path is a feasible path on E1 from the concrete global state g0. Hence Ecpos(ρ ,

g0) must be satisfiable on E1, which implies by Lemma 1 that the antecedent of formula F ,

L(tk−1) ∧ Emgpos(tk−1), is satisfiable on E1. Further, since the formula F must be valid

in step 2, it follows by Lemma 1 that Ecpos([t1, · · · , tk−1, ta], g0) is satisfiable. Therefore,

the sequence [t1, · · · , tk−1, ta] must be a feasible path on E2 from g0. Hence λ will exercise

the change δ when applied to E2. However, if λ is not selected in step 2, then it must be

selected in step 3, which means that λ is fully-observable up to some level m greater than

k - 1 then ta must occur in matching sets following T (ik) in the sequence φ (λ ). We can



61

establish for each of these occurrences that if λ is selected then it will exercise the change.

(⇐:) Suppose that λ exercises the change δ on E2. This implies that there exists a feasible

path, say, ρ = [t1, · · · , tk−1, ta] on E2 from the concrete global state g0, which means that

Ecpos(ρ , g0) is a satisfiable formula on E2. Hence by Lemma 1, g0 ∧ Emgpos(t1) ∧ ·· ·

∧ Emgpos(ta) must be a satisfiable formula. Now, since the sequence ρ forms a feasible

path from g0, each transition appearing in ρ must process the corresponding test input

of λ . Therefore, by Proposition 2, sequence ρ belongs to the matching sequence φ (λ ).

Hence λ must be fully-observable up to level k - 1 on the original TCG(λ ). But λ is not

fully-observable up to level k since ρ containing the new transition ta forms a feasible path,

and the change δ preserves determinism. Hence all the conditions of step 2 of the procedure

to select λ are satisfied and therefore, the procedure will select λ . �

3.5.2 Selecting for Deletion Changes

Candidate tests for deletions are identified using an incremental procedure similar to that

used for addition. The main steps of the incremental procedure are similar to those of the

procedure for the addition change described above. The only difference is in the updating

of the compatibility graph. While handling a deletion change, if a node corresponding to

transition td at any of the levels of the graph is marked by the full-observability procedure

over E1 then the corresponding test is chosen as a candidate for the change. In this case, the

updated graph is obtained by deleting every node and the resulting dangling edges from the

graph corresponding to transition td . The process is repeated with all the nodes that do not

have an immediate predecessor or an immediate successor until no more such nodes can be



62

found and the resulting graph is returned as the updated compatibility graph.

An important goal for validating a deletion change is to highlight the unanticipated

consequences of removal of transition td , if any. Therefore, tests that become incomplete

over the modified EFSM due to absence of td can be potentially important for validating

such changes. However, some of these candidate tests may be unusable and need to be

discarded as discussed below in Section 3.5.4.

3.5.3 Selecting for Replacement Changes

For a replacement change δ = 〈−/+, (td , ta)〉, we can effectively identify candidate tests

by analyzing the relation between the transitions td and ta. A replacement change is local

if td is enabled in any global state in E27 then ta is enabled in that state or vice versa, i.e.,

the input message and the input state of the transitions are identical and either guard of td

implies that of ta or guard of ta implies that of td . In a local replacement, the transitions

differ only in their output states and/or their actions.

Candidate tests for local replacements can be identified relatively easily by analyzing

only the added or the deleted transition. If the guard of td implies that of ta, we determine

if a given test λ is a candidate for the added transition. If λ is not a candidate for addition

then it cannot be a candidate for deletion as well and hence λ is not a candidate for the

replacement and the compatibility graph remains unchanged. However, if λ is a candidate

for the addition then it is chosen to be a candidate for the replacement and the graph is

updated as described in the addition procedure above. On the other hand, if the guard

of ta implies that of td then repeat the above procedure for deletion only. For non-local
7Note that though td is not present in E2 but it can be checked whether or not it is enabled in a global state of
E2.



63

replacements, we check both added and deleted transitions using their respective procedures.

If λ is a candidate for neither then it is not a candidate for the replacement and the graph

remains unchanged. Otherwise, λ is chosen to be a candidate and the updated graph is

obtained by performing the updates for added transition and/or the deleted transition. Note

that though candidate tests can be selected by only considering addition (or deletion) for

local replacements, updating of the compatibility graph does require analyzing deletion (or

addition).

We have focussed on fully-observable tests in this dissertation, as the descriptions

of these tests contain adequate information to efficiently predict that their execution will

exercise changes. However, the approach can be generalized to handle tests that are not

fully-observable. The failure of the invariant for tests that are not fully-observable can be

analyzed to provably predict whether or not these tests will exercise changes. Some of our

preliminary work in this direction appears in [89].

3.5.4 Pruning Unusable Tests

A change may make certain tests unusable on the modified EFSM E2. Tests may become

unusable either due to the modification of interface of the original EFSM E1, or tests not

completing on E2, or test applications on E2 producing unintended output mismatches.

Usually, the interface of E2 may change from that of E1 due to a transition level change

that either deletes amessage (or state) from the EFSME1 altogether, modifies the parameters

of an existing message, or adds a new message (or state). A test from the original test suite

T whose description refers to an older message (or state) is unusable on the modified EFSM



64

E2. Tests becoming unusable on E2 due to such interface changes are easily identified and

removed from the original test suite before identifying candidate tests exercising changes.

Of the remaining tests in T , we consider the tests identified as candidates for regression.

Some of these tests could be unusable because either they do not complete or produce

unintended output mismatches. Suppose λ is a candidate test which exercises the change

while processing its kth test input using the transition tk, producing the concrete global

state gk. To determine if λ is unusable, we attempt to complete the feasible path by

symbolically executing the modified EFSM from the concrete global state gk by treating

the input parameters of each transition as distinct uninterpreted variables. If an initial

global state is reached then this means that there exist one or more assignments to the input

parameters of the transitions and any of these assignments can be used to extend the path

to a feasible run. Each of these assignments constitutes a sequence of test inputs following

the input ik that can be used to complete the test λ . If the original test inputs ik+1, · · · , in of

λ belong to these satisfying assignments then λ is selected since it is exercising the change.

Otherwise, it is declared unusable and discarded. Test λ is also selected if no satisfying

assignments exist, i.e., the test cannot be completed by symbolic execution, because in this

case λ is highlighting a potential adverse impact of the change. Note that for a deletion

change all tests that do not complete on the modified EFSM will be selected.

Note also that, in general symbolic execution need not terminate when there are loops

depending on the input parameters. Such cases are handled by unrolling the loops by a

specified threshold value. The values may be set depending on the maximum length of test

cases to be included for regression. If the path can be extended to a run by executing the



65

loops up to the specified threshold values then the test is declared usable. Otherwise, the

test is selected.

A complete candidate test can be unusable because changes require the test outputs

to be modified. Given the modified test purpose, such unusable tests can be identified

and removed using test extended concrete post-images and comparing the generated and

expected outputs.

Automatically identifying candidate tests in the absence of additional information such

as an updated specification is difficult in general. As discussed above, not all incomplete tests

or producing unintended output mismatches can be considered unusable. Such a behavior

of a test may be caused either because the original test description does not conform to the

updated specification or because the formulated change does not do so. Our basic idea to

identify unusable tests in the absence of additional information is – declare the test unusable,

if the test can be patched to generate a different test whose application completes on the

modified EFSM. Otherwise, no such test can be designed for the modified EFSM and hence

the formulation of the change is declared to be problematic and the given test can be used

to detect the potential fault in the formulation.

3.6 Selecting Multiple Tests

Building a regression test suite by individually analyzing each test in a given test suite can

be costly for large test suites. Often, several tests in the given test suite start in the same

concrete global state and have overlapping test inputs. For instance, it is typical for tests to

use the same inputs to bring the EFSM to a common state and then exercise other specific



66

behaviors. Such tests can be selected (and discarded) simultaneously whenever a given

change matches these tests at the overlapping portions of their test inputs. We now describe

a procedure that given a test suite and a change, simultaneously selects and discards groups

of tests to build a regression test suite.

To simultaneously select and discard tests, the available test suite T = {λ1, · · · , λn} of

the original EFSM E1 is partitioned into groups of tests. Each group G = {λ1, · · · , λk} ⊆ T

consists of tests that are applied in the same concrete global state g0 and share a non-empty

prefix of their test inputs, i.e., they have at least the same first test input.

Each group G is represented using a test suite tree (TST). Each node of the TST tree

denotes a test input occurring at a particular position in the non-empty prefix of the test

inputs of the tests in G. The root node of TST denotes test input of the tests in G occurring

at the first position of the prefix. Node v is a child of node u in TST if in some test in G,

the test input iu at a position p in the prefix is an immediate predecessor of the test input

iv at position p + 1. The edge between a parent node u and child node v is labeled by the

set consisting of all tests where this is the case. Further, the set of tests labeling an edge

between a parent and a child node is the union of all tests appearing in the subtree rooted at

the child node.

Essentially, each TST can be viewed as a trie of test input sequences and the set of tests

in TST are refined as we go down the tree.

Example : The TST in Figure 3.5 represents the test suite of Figure 3.1(b). �

Below, we describe a procedure to simultaneously select and discard tests from T to

build a regression test suite T ′ for the modified EFSM E2 obtained using the addition change



67

δ = 〈+, ta〉.

Consider a TST comprised of a group of tests G all starting in the concrete global state

g0. To select tests from this TST, for each node u, the set of transitions of the EFSM E2

matching the test input iu, T (iu), is computed. Each matching set T (u) of the node u is

maintained at that node. If the added transition ta does not appear in any of these matching

sets then none of the tests in the TST are chosen as candidate for regression.

Suppose that ta appears in somematching set T (iu) at node u of the TST. Let the sequence

of matching sets from the root node of the TST to the node u be the matching sequence α

=[T (i1), · · · , T (in), T (iu)]. We build a compatibility graph using the transitions appearing

in α and use the procedure in Figure 3.3 with the compatibility graph and g0 as its inputs to

determine if some transition sequence belonging to α forms a feasible path from g0 on E2.

If the procedure returns Success and transition ta is the transition marked by the procedure

in the matching set T (iu) then all the tests labeling the edge between in and iu in the TST

are chosen as candidates. The node iu and its descendants are removed from TST since all

the tests appearing in this subtree are already chosen.

If the procedure returns Fail because only a prefix of the matching sequence α , say,

[T (i1), · · · , T (im)] contains a feasible path then the TST is updated by setting the matching

sets T (i1), · · · , T (im) to the respective transitions marked by the procedure. Then, the

subtree of TST rooted at the node im+1 is removed (all tests in this subtree can be discarded

since they are incomplete tests that do not exercise the addition change and are therefore,

unusable for the modified EFSM E2.).

The procedure can also return Success but ta may not be the marked transition in the



68

matching set T (iu). In this case, we update the matching sets with the transitions marked by

the procedure to incrementally continue analyzing the extensions of the matching sequence

α reaching other nodes of the TST whose matching sets, if any, include the transition ta.

The left-right traversal of the updated TST (and the test suite T ) is continued until all

nodes in the TST whose matching sets contain ta have been analyzed. All the tests chosen

as candidates in the TST are included in the regression test suite T ′ and the same process is

repeated with each of TST.

Example : The matching nodes u for the bank example are highlighted in Figure 3.5. A

left-to-right traversal of this tree selects tests λ2-λ5 at level 4 after which the nodes at the

lower levels can be removed.�

The procedures to select multiple tests for deletion and replacement changes are similar.

3.7 Evaluation

We refer to our approach as SPG (selection with provable guarantees) in this section. We

have implemented SPG and applied it several web services, protocols, as well as many

model programs taken from a well-known testing benchmark [31]. Our objectives for these

experiments are to answer the following research questions.

• RQ1: Can SPG safely and effectively reduce the size of the test suite to build

regression test suites, whose tests are provably guaranteed to exercise a change to

system?

• RQ2: Can SPG reduce a substantial amount of time to rerun the test suite?



69

Moreover, we compare SPG precision and inclusiveness with those of the earlier depen-

dency based approaches (DEP) from [20,61,62,79], and with our own brute-force symbolic

execution approach (SYM). We also study the effectiveness of the approach in selecting

tests that can detect certain faults that can be mapped back to changes over the models.

3.7.1 Experimental Design

Our prototype is coded in Perl and C on a Linux server with 4GB memory and employs

built-in graph libraries. It uses the reasoning framework, SAIL, implemented based on the

theorem prover Simplify [29] extended with queues [88]. SAIL is used in a push-button

manner to discharge proof obligations. The major activities for setting up our experiments

are as follows.

Change Generation. Changes to EFSMs play an important role in all of our applica-

tions. We use the changes provided by the applications whenever they are available. In

addition, changes are synthetically generated using the following simple process. Given an

EFSMmodel (text files), the number of transitions to be changed, and the overall number of

modified EFSMs, as inputs, the input EFSM is first compiled into a graph8 after ensuring its

well-formedness, determinism, and consistency [87]. A modified graph corresponding to

a modified EFSM is built from the input graph by marking the number of transitions given

as input with the change actions a (addition) or d (deletion), chosen randomly. The process

is repeated to generate the number of modified EFSMs specified as input.

Note that for single transition changes, a modified EFSM corresponding to each tran-

sition and each change action is produced. Consequently, for these changes, occurrences
8For examples of the graphs, please see the EFSMs of the particular applications depicted later in this section.



70

of transitions matching changes are uniformly distributed over the inputs of each test in the

test suite.

TestGeneration. The test suite for the original EFSM is hand craftedwherever possible,

such as those for model programs from [31]. Tests were also automatically generated using

the model-based test generator ParTeg [99]. The current version of ParTeg has limited

support for EFSMs containing self-loops and aggregate data types such as arrays. To

perform test generation for such EFSMs, first, the given EFSM E is changed to an EFSM

E ′ as follows – 1. the self-loops in E are unrolled a specified threshold number of times. 2.

Array accesses are disambiguated using their most recent instances and then, each distinct

array access is replaced by a distinct new integer variable. Tests are generated based on E ′

using ParTeg. The values assigned by ParTeg to the new integer variable are then mapped

back to the array accesses to construct a test having an array input value. Generated tests

traverse the self-loops in E up to the threshold number of times.

Note that it may not always be feasible to form an array value by using the integer input

values assigned by ParTeg. For instance, semantically equivalent but lexically different

array accesses such as B[i + j] and B[ j + i] are replaced by different integer variables and

may be assigned different input values by ParTeg in which case no array value can be built.

We weed out such unusable tests and others by using the theorem prover. The remaining

tests are then added to the hand-crafted tests to form a test suite for the original EFSM. The

changed EFSM E ′ used for test generation is discarded after generating tests. Further, the

change generation and the test generation are totally independent of each other. Hence the

above test generation process has limited impact on our experimental results.



71

Selection with provable guarantees (SPG). To perform regression test selection using

the SPG approach, compatibility information for the transitions appearing in the test suite

is computed, compatibility graphs are built, and a regression test suite for each change is

produced using the original and modified EFSM graphs as described in Section 3.5 and

Section 3.6. Efficiency, precision, and inclusiveness of the approach are computed based on

the costs [78] – C1(retest-all) the cost to re-run the entire original test suite9; C2 (selective-

retest) the cost of running the regression test suite; and C3 (regression analysis) the cost to

build the regression test suite.

Symbolic Execution (SYM). To study the benefits of the selective use of the reasoning

engine and the incremental procedures in the SPG approach, we adapted symbolic execution

[59] to apply tests on EFSMs. Our implementation instruments the original and/or modified

EFSM graphs with the transitions appearing in the changes and applies a test by repeatedly

computing concrete post-images over these graphs until either one of the instrumented

transitions is executed or a global initial state is reached, or the procedure cannot make

progress. Tests executing an instrumented transition are selected for regression. In the SYM

approach, in each step, every EFSM transition is considered, a post-image is formulated,

and its satisfiability is checked using the reasoning engine. The path is extended using the

transition if the corresponding post-image is satisfiable.

Dependency based EFSM Selection (DEP). We also implemented the DEP approach

described by Korel et al in [62]. Since tests are viewed as sequences of transitions ignoring

input values in [62], matching sequence for each original SPG test is computed by using the

appropriate EFSM graphs and each transition sequence belonging to the matching sequence
9Tests that become unusable due to interface changes can be detected at a negligible cost and are removed.



72

of the SPG test forms a DEP test. A DEP test is a regression candidate if the transitions in

the change appear in that test. Candidate DEP tests causing identical dependency patterns10

in the modified (or original) EFSM control and data dependency graphs are equivalent and

used to remove redundant candidate DEP tests. The remaining DEP tests are mapped back

to the original SPG tests to build a regression test suite as follows. Select an original SPG

test only if some DEP test derived from this test causes a dependency pattern that is not

identical to the dependency pattern caused by any of the other DEP tests. The analysis time

C3, inclusiveness, and precision are computed for DEP approach in terms of the SPG tests

and not DEP tests. However, C3 does not include the time to map SPG tests to DEP tests

and vice versa.

3.7.2 Case Studies

We have applied the prototype to ten examples from the literature: completion (Cmp),

two-phase commit (Tcp), and conference (Cnf ), and third-party call (Thp), Cruise Control

(Con), Printtokens (Pri)11, automatic teller machine (Atm) [20, 62], bank (Bnk), vending

machine (Ven), and a Microwave oven (Mic) [22]. The completion, two-phase commit,

and conference protocols described on the web-site 12 have been used earlier to evaluate

formal testing approaches. The completion protocol Cmp is used by an application to tell

the coordinator to either try, commit, or abort an atomic transaction. The two-phase commit

Tcp is a coordination protocol that defines how multiple participants reach an agreement

on the outcome of an atomic transaction. The conference protocol, Cnf, is a chatbox-like
10Please see Section 2.2 for more details.
11Software-artifact Infrastructure Repository: http://sir.unl.edu/portal/index.html
12http://fmt.cs.utwente.nl/ConfCase/



73

protocol. The EFSM models for Cmp and Tcp are manually created using their graphical

and textual descriptions and contain 7 and 14 transitions respectively. Their test suites have

300 and 800 tests respectively. For the Cnf protocol, we used the EFSM description (c)

available from the web site referred above. This model has 19 transitions and the test suite

has 723 tests. The web site gives two EFSMs called (c) and (d) and describes four changes

to transform EFSM (c) to EFSM (d). The four changes specified there are all additions that

allow members to send data before joining the conference. The third-party call (Thp) is a

protocol from Praxis, whose EFSM has 15 transitions and test suite has 837 tests [56].

Cruise Control (Con) and Printtokens (Pri) are programs from the popular test bench-

mark [31]. These programs are manually translated to obtain the EFSMmodels. The EFSM

for Con has 13 transitions and its test suite has 1000 tests. The EFSM for the program Pri is

omitted in the dissertation due to its size. We briefly describe how this EFSM was created

from the program. The C code for Pri, given Appendix, reads an input file containing

strings delimited by white space, terminated by ";", and tokenizes them into categories

such as identifers, characters, numbers and so on. Based on the input symbol read and the

current token category, a switch statement in the code determines the next token category

and processes the input symbol. The current token category is output if the input symbol is

a whitespace. Each case of the switch statement is mapped to an EFSM transition whose

input message is the input symbol read, input state corresponds to the current category, and

the output state is the next category. The actions and the output message of the transition

are obtained by translating the case statement body. Each test file provided with the Pri

application is translated into an EFSM test whose individual test inputs correspond to the



74

string elements and the outputs are the expected token values.

Microwave Oven (Mic) is originally described as a Kripke structure [22]. We simply

modified the labels on the arcs to obtain EFSM transitions by adding input and output

messages. The model has 12 transitions and 1160 tests. The remaining examples web

automatic teller machine (Atm) (6 transitions and 800 tests), bank (Bnk) (9 transitions and

1124 tests), a vending machine example (Ven) (8 transitions and 87 tests) all appear as

EFSMs in earlier testing literature [91] and were used as such.

3.7.3 Study Results and Discussion

Our results for the SPG approach are summarized in a table in Table 3.1. The first column

of the table lists the ten examples along with the number of EFSM transitions. The second

column lists the test suite size and the average test length for each example. The third

column lists the total number of changes made to each example. Columns four, five, and

six show C1, the cost for running the full test suite, C2, the cost for running the selected

tests, and C3, the cost for performing analysis respectively. These columns list the average

costs per change. Column seven lists the average number of unusable tests per change for

each example. Next column is the average number of selected tests per change. Finally,

the last column lists the average time savings per change, defined as the percentage (C1 -

(C2 + C3))/C1, based on the cost model of [68]. As seen from Table 3.1, SPG achieves an

average time savings of around 30%while achieving an average reduction of around 40% in

the size of the test suite selected for all attempted examples. Non-zero number of unusable

tests are identified in all of the examples with up to nearly 15% of tests being unusable in



75

some cases. First, we describe these three aspects in detail below. Then, we discuss the

effectiveness of SPG approach for detecting faults.

Table 3.1: SPG Regression Test Selection Costs Table

Example
Test Suite Number

of
changes

C1
(Secs)

C2
(Secs)

C3
(Secs)

Average
number
of unusable
tests

Average
number
of selected
tests

Average
time
savings
(%)

Size Average
length

Con (13) 1000 78 26 2152.31 837.34 629.39 31 386 31.9

Prn (99) 1439 102 3 6345.04 3511.73 2035.87 62 798 12.6

Atm (6) 800 50 12 1210.13 842.97 214.63 89 486 12.6

Mic (12) 1160 12 24 289.2 92.3 7.45 25 614 65.5

Bnk (9) 1124 35 18 2483.11 738.96 1041.34 43 364 28.3

Thp (15) 837 66 30 1249.41 367.91 232.11 58 203 52

Ven (8) 87 37 16 92.38 23.13 50.35 12 20 20.4

Cnf (19) 723 47 38 629.23 328.13 187.43 32 257 18.1

Cmp (7) 800 59 14 532.21 252.66 132.71 12 316 27.6

Tcp (14) 311 18 28 147.47 48 27.76 39 102 48.6

RQ1. Reduction in Test Suites and Unusable Tests? The variance in the number of

selected tests largely depends on the number of transitions in the EFSM models, and those

appearing in loops. Consider the examples Atm with 6 transitions and high (486) average

number of selected tests and Ven with 8 transitions and a very low (20) average number

of selected tests. The difference in the average number of selected tests in these examples

can be attributed to the number of transitions appearing in loops. Almost all transitions of

example Atm appear together in one or more loops. Hence a feasible run corresponding to

each test is likely to contain all of the transitions and this leads to a high number of selected

tests. This is in contrast with Ven where loops involve at most one or two transitions.

As expected, reduction in test suite size is directly correlated to the time savings in

examples such as Prn, Atm, and Thp. However, it is not so in Con, where almost 70%

of the original test suite is eliminated but the time savings are not as much. On further

examination of the discarded tests we concluded that these do not take much time to run.



76

Similarly, we observed in exampleMic that few tests are eliminated but the time savings are

higher.

The varying number of unusable tests found in these examples depends largely on

the interaction among transitions. Usually, examples such as Atm, Bnk, and Ven whose

transitions with complex guards interact with each other in subtle ways seem to produce

more unusable tests. We can also reduce the number of unusable tests by using carefully

hand-crafted tests.

RQ2. Time Savings? Varying amount of time savings obtained across these examples

can bemainly attributed to three reasons – complexity of the data values, and data types used

in the EFSMs and the tests, exploiting overlap in the test descriptions, and the compatibility

of transitions. Time savings higher than 50% for Mic can be mainly attributed to simple

data values and data types such as boolean and integers whereas Atm and Bnk do not have as

much time savings since their EFSMs and tests involve complex aggregate data types such

as arrays. We believe that more savings can be realized for examples with aggregate data

types with the ongoing advances in the SMT solvers [1,2]. Time savings are significant for

Thp because the input messages in its EFSM have no parameters. Consequently, its tests

do not involve any concrete values and allow for lot more overlaps in the test descriptions.

These overlaps are effectively exploited by our simultaneous test selection procedures using

the TST trees. Compatibility of transitions played an important role in all examples in

obtaining time savings.

Fault Detection Using SPG.We also studied whether faults in the system under test can

be detected by SPG. We considered faults that are caused solely due to the changes in the



77

model. The criterion for test selection used by SPG is a necessary condition for detecting

such faults. We used the popular TCAS example from the test benchmark [31] with 41

versions and 1590 tests. We chose the faulty versions Ver1, Ver2, Ver6, Ver7, Ver8, and

Ver9 produced by mutation analysis. We created models from each of the faulty versions of

the code and translated the code-based tests to model-based tests. SPG was used to select

the model-based tests. The corresponding code-based tests were run on the original and

modified code to identify the model-based tests revealing faults. Our results are depicted

in Table 3.2. The first column gives the faulty versions; the second column gives the tests

selected by SPG; the third column gives the number of selected tests that reveal faults. As

shown, SPGwas able to identify a non-zero number of fault-revealing tests for each version.

To further check if SPG missed any of the fault-revealing tests, we ran all the code-based

tests in the original test suite on both the original and modified C programs and collected

the tests producing different outputs. We compared the corresponding model-based tests

and those identified using SPG and found these two sets of tests to be identical in all cases.

Hence SPG is able to select all the fault-revealing tests in all the versions in this example,

which is quite encouraging.

Table 3.2: Fault Detection for TCAS
TCAS
(1590 tests)

Number of
selected tests

Number of fault
revealing tests

Ver1 432 130

Ver2 527 61

Ver6 331 12

Ver7 1560 36

Ver8 1560 1

Ver9 508 9

Multiple Changes. To study the effect of multiple changes, several modified models

were generated by changing up to 10 transitions in each example. SPG was applied on each



78

of these modified models. The average time savings obtained for each example is depicted

in Figure 3.6. The X-axis plots the number of changes made to each example and the

Y-axis plots the average time savings obtained. As expected, our results show that for every

example, the time savings reduce as the number of changed transitions increases. The time

savings reach zero in examples such as Atm, Cmp, and Ven that have less than 10 transitions

since the entire model is eventually changed and hence all the tests in the original test suite

have to be selected. In Figure 3.7, the X-axis plots the number of changes made to each

example and the Y-axis plots the number of selected tests. The results show that the average

number of selected tests increases with the increased number of transition changes, which

is not surprising. For examples like Con, and Cnf there is sometimes a sharp increase in

the average number of selected tests because the newly changed transitions dominate other

transitions and hence appear in more test runs.

SPG vs. SYM. The first and third bars in Figure 3.8 depict the results of our comparison

of the analysis costs (C3) of the SPG and the SYMapproaches. TheX-axis plots the examples

and the Y-axis plots the analysis cost in seconds. The results show that the cost of using

SYM are much higher than that of SPG for all examples. We attribute this to two factors.

First, SYM does not exploit the test description and hence analyzes every EFSM transition

in each execution step. Second, SYM has to analyze non-modification traversing tests in

their entirety. The inclusiveness and precision of SYM are the same as that of SPG for

modification traversing tests.

SPG vs. DEP.We compared SPG and the DEP approaches in terms of the analysis cost

(C3) and the number of selected tests. Our results are depicted in figure 3.8 and figure 3.9. In



79

figure 3.8 the second and third bars depict the analysis costs for DEP and SPG respectively.

As seen from this figure, the analysis cost for DEP is higher than that of SPG in all these

examples. We attribute this to DEP having to consider all of the exponential transition

sequences belonging to the matching sequence of a test and compare their dependency

patterns to find the sequences that are to be selected. As explained before, SPG analysis

costs vary based on the characteristics of the examples and this leads to varying analysis

cost differences between the SPG and DEP approaches shown in figure 3.8.

The figure 3.9 depicts the number of tests selected by SPG and DEP for all examples.

As seen from this figure, there is no direct correlation between the two approaches for the

number of tests selected in these examples. Based on a closer analysis, we observe that

DEP selects more tests mainly because of two reasons – i) does not discard unusable tests,

ii) chooses valid tests that do not exercise a change. Such tests are discarded by SPG. We

observed that DEP selects more tests in examples Atm, Bnk, and Cnf because of choosing

unusable tests. More tests are selected by DEP for examples Prn andMic because it cannot

distinguish among valid tests that do not exercise the change.

More specifically, consider tests λ4 and λ5 in the original test suite in Figure 1(b). Both

of these tests are unusable tests and this cannot be discerned based on their dependency

patterns. Further, DEP cannot distinguish the dependency patterns of these two tests with

respect to the change transition t ′12. Hence DEP will select one of these tests at random

whereas both these tests will be discarded by SPG. As another example, consider the test

λ6 = [Open(100)/ack(1), deposit(1, 25)/ack(B[1]), wdraw(1, 310)/ack(B[1]), wdraw(1,

10)/ack(B[1]), close(1)/ack(B[1])] along with the other 5 tests the original test suite in



80

Figure 1(b). Test λ1 and λ6 are both valid tests for the modified EFSM but neither exercises

the change. However, DEP will select one of these tests because it cannot distinguish them

based on dependency patterns whereas SPG will discard both.

We observed that DEP selects fewer tests in the examples Con, Thp, Ven, Cmp, and

Tcp when the dependency patterns are identical for tests exercising changes and those not

exercising changes. More specifically, consider a test λ7 = Open(100)/ack(1), deposit(1,

25)/ack(B[1]), wdraw(1,60)/ack(B[1]), wdraw(1,10)/ack(B[1]), close(1)/ack(B[1]) along

with the other 5 tests in the original test suite in Figure 1(b). Tests λ1, λ2, and λ7 potentially

execute the change transition t ′12 in Figure 1(b) since they all have wdraw messages that is an

instance of t ′12’s input message. However, λ1 does not exercise the change whereas the other

two tests do. Only one of these tests is selected by DEP since it cannot distinguish them

based on their dependency patterns whereas SPG selects the tests λ2 and λ7. Therefore,

DEP selects fewer tests because it does not select a test exercising the change.



81

0

10

20

30

40

50

60

70

1 2 3 4 5 6 7 8 9 10

Number of changes

Average

time

savings

(%)

Figure 3.6: Time Savings across multiple changes

0

200

400

600

800

1000

1 2 3 4 5 6 7 8 9 10

Con

Atm

Mic

Bnk

Thp

Ven

Cnf

Cmp

Tcp

Number of changes

Average

number

of 

selected

tests

Figure 3.7: Tests Selected across multiple changes

0

500

1000

1500

2000

2500

3000

Con Prn Atm Mic Bnk Thp Ven Cnf Cmp Tcp

SYM DEP SPG

(seconds)

Figure 3.8: Analysis Costs of SYM, DEP and SPG

0

200

400

600

800

1000

Con Prn Atm Mic Bnk Thp Ven Cnf Cmp Tcp

DEP SPG

(No. of selected tests)

Figure 3.9: Selected Tests of DEP and SPG



82

3.7.4 SPG and Code-based Approaches

We now compare SPG with the well-known graph-walk approaches of Rothermal and

Harrold [79, 105]. Graph-walk approaches compare original and modified control flow

graphs (CFGs) or program dependence graphs (PDGs) derived from original and modified

code respectively to determine whether or not a test applied on the original code should

be selected for the modified code. A walk of the original and the modified graphs is

performed while lexicographically comparing the contents of the corresponding nodes. If

two corresponding immediate successors of two equivalent nodes differ lexicographically

then the edge in the modified graph is supposed to be exercising a change. In this case, the

edge in the original graph is checked for inclusion in the available test executions and all

the tests whose executions include this edge are selected for regression.

We compared SPG with the graph-walk approach based on CFGs using an example

derived from [79](page 184). The code segment and its CFG are depicted in Figure 3.10

(a), (b) and (c); modified portions are colored red. Consider a test x = 0 used on the original

code. This test does not exercise the change but will be selected by the CFG (as explained

in [79] itself, page 184). This is because the nodesP1 andP2 are lexicographically equivalent

whereas the immediate successor s1 of P1 is lexicographically different from the immediate

successor P1 of P2 and the edge (P1, s1) in the original CFG appears in the execution of

the test. For comparison, we first created an EFSM model from the original code, mapped

the code changes to EFSM changes, and created a modified EFSM model, as depicted in

Figure 3.10(d) and (e). The test x = 0, was then mapped to the EFSM test λ : [incr1(0)/null,

jump()/return(0)]. It is easy to verify that SPG will not select this λ since it does not



83

exercise any of the changed transitions t2, t4, t5, and t6.

Note that the same result can be obtained for the above example, by performing the com-

parison in the forward direction, i.e., starting with the EFSMs, deriving the corresponding

flow-graphs from these models, and applying the graph-walk on the corresponding flow-

graphs. We also considered the graph-walk approach based on PDGs and can similarly

show that the graph-walk approach based on PDG will select tests not exercising changes

whereas these tests are discarded by SPG.

In general, the graph-walk method selects a superset of modification-traversing tests

and hence will include all the tests selected by the SPG. This is perhaps not surprising

since the graph-walk method is based on lexicographic comparison that may not be able

to distinguish control and data paths despite having test executions, whereas SPG is able

to differentiate these paths due to the more detailed semantic analysis performed using a

theorem prover. Additionally, SPG performs analysis without using prior test executions

whereas the graph-walk method requires such executions to be available.

P1:

incr1 (x) {

p1         while(++x <= 0) 

{

p2                while(++x <= 0) 

{}

}

s1         return x;

}

(a) (b)

P1

E

s1

X

F
P2

T

T

F

(c)

t3: jump()

[x+1>0]

/{x=x+1;

return(x)}

t1: incr1(p) 

/{x = p} 

s0

s1
t4: while(), 

[x+1<=0]

/{x=x+1}

s2

t5: while()

[x+1<=0]

/{x=x+1}

t6: jump(),

[x+1>0]

/{x=x+1}

P1

E

s1

X

T
F

s0

s1

t2: while()

[x+1<=0]

/{x=x+1}

t1: incr1(p) 

/{x = p} 

t3: jump()

[x+1>0]

/{x=x+1; 

return(x)}

(d) (e)

Figure 3.10: SPG vs. CFG (1) (a)code, (b)CFG, (c)new CFG (d) EFSM (e)new EFSM

In some cases, CFG approach possibly misses selecting tests that are modification-



84

traversing. For example, the code segment and its CFG are depicted in Figure 3.11 (a), (b)

and (c); modified portions are colored red. Consider a test x =−1 used on the original code.

This test does exercise the change but won’t be selected by the CFG. This is because each

nodes in original CFG and modified CFG are lexicographically equivalent when traversing

the graphs. For comparison, we first created an EFSM model from the original code,

mapped the code changes to EFSM changes, and created a modified EFSM model, as

depicted in Figure 3.11(d) and (e). The test x = −1, was then mapped to the EFSM test λ :

[incr1(−1)/null, while()/null, jump()/return(0)]. It is easy to verify that SPG will select

this λ since it exercises the changed transitions t4, and t6.

P3:

incr1 (x) {

p1         while(++x <= 0) 

{

p2                while(++x <= 0)    

{}

s2                  return x; 

}

s1         return x;

}

(a) (b) (c)

P1

E

s1

X

F
P2

T

T
F

s2

t3: jump()

[x+1>0]

/{x=x+1;

return(x)}

t1: incr1(p) 

/{x = p} 

s0

s1
t4: while(), 

[x+1<=0]

/{x=x+1}

s2

t5: while()

[x+1<=0]

/{x=x+1}

t6: jump(),

[x+1>0]

/{x=x+1;

return(x)}

P1

E

s1

X

T
F

s0

s1

t2: while()

[x+1<=0]

/{x=x+1}

t1: incr1(p) 

/{x = p} 

t3: jump()

[x+1>0]

/{x=x+1; 

return(x)}

(d) (e)

Figure 3.11: SPG vs. CFG (2) (a)code, (b)CFG, (c)new CFG (d) EFSM (e)new EFSM

The second is to use Program Dependency Graph (PDG) to select tests [77]. In certain

case, it is also possible for PDG to select tests that are not modification-traversing by adding

new branches. For example, the code segment and its CFG are depicted in Figure 3.12 (a),

(b) and (c); modified portions are colored red. Consider a test x = 1 used on the original

code. This test does not exercise the change but will be selected by the PDG. This is because

the region R1 colored by red in original PDG of Figure 3.12 (b) is affected by adding new



85

branch in the modified program. For comparison, we first created an EFSMmodel from the

original code, mapped the code changes to EFSM changes, and created a modified EFSM

model, as depicted in Figure 3.12(d) and (e). The test x = 1, was then mapped to the EFSM

test λ : [incr1(1)/null, i f ()/null, jump()/return(2)]. It is easy to verify that SPG will not

select this λ since it exercises neither of the changed transitions t5, and t6.

P2:

incr2 (x) {

p1         if (x > 0) {

s1              x++;

p2              if ( x > 5)

s3                   x=0; 

}

s4          return x;

}

P1

E

s4

R1

T

s2 P2

R2

T

s3

(a) (c) (d)

P1

E

s4

R1

T

s2

t1: incr2(p)

/{x=p]

s0

s1

t4: jump(),

/return(x)

t3:if(),

[x<=0]

/return(x)

s2

t2: if(),

[x>0],

/{x=x+1}

s3

t5: if(),

[x>5]

/{x=0}

t6: jump(),

/return(x)
t1: incr2(p)

/{x=p]

s0

s1
t4: jump(),

/return(x)

t3:if(),

[x<=0]

/return(x)

s2

t2: if(),

[x>0],

/{x=x+1}

(e)(b)

Figure 3.12: SPG vs. PDG (1) (a)code, (b)PDG, (c)new PDG (d) EFSM (e)new EFSM

3.7.5 Threats to Validity

The primary threat to validity of our experiments involves the change and test generation

processes. In many examples, we have synthetically generated changes. This is alleviated

by generating all changes expressible in terms of additions, deletions, and replacement

of transitions. More experiments with real-world data would also be highly beneficial

in further demonstrating the effectiveness of the approach. Concrete data assignment in

generated tests also influences our experimental results, which was mitigated by use of a

theorem prover to weed out inapplicable randomly generated values. Another related issue



86

is the use of multiple different test generators to produce quality test suites. Finally, the

authors’ subjectivity and bias during manual conversion from the code to EFSMs in some

examples can influence our results.



87

CHAPTER 4

DECOMPOSING COMPOSITE CHANGES to SUPPORT

CODE REVIEW

4.1 Motivating Example

Figure 4.1 shows our motivating example from JFreeChart project, an information visual-

ization library to display graphs and charts. We adapt and simplify the example for the

presentation purpose. Suppose David updates a program with two independent develop-

ment tasks: (1) refactorings by standard refactoring techniques [37] and (2) bug-fixes to

resolve some graphical rendering issues. First, he applies Pull Up Field to field paintList

for moving the field to a super class AbstractRenderer, and adds a call to a new method

getSeriesPaint. He then performs Extract Method on three methods lookupSeriesPaint,

lookupSeriesFillPaint, and lookupSeriesOutlineStroke by removing reusable code

fragments and adding a call to each new method setSeriesPaint, setSeriesFillPaint,

and setSeriesStroke, respectively. Second, he fixes a bug by adding a null checker to

determine whether field basePaint is accessed before its initialization. David, then, com-

mits his changes in one single transaction to a version control repository with a message,

"Updated several methods by applying the refactorings. Also, fixed graphical rendering



88

bugs by adding null checkers.". The commit log message indicates that his changes may be

a composite change across files, which requires inspecting line level differences file by file.

Suppose that Monica investigates the code changes made by David during peer code

reviews. Since David’s modification includes multiple independent code changes, she must

inspect his changes while determining which part is related to refactorings or bug-fixes. She

needs to inspect line level differences file by file. Recent studies find that code reviewers

are most able to understand cohesive changes—strongly related modification between code

fragments [76, 92].

To alleviate the burden of inspecting a composite change, ChgCutter allowsMonica to

interactively select a sub-region of David’s changes, and it automatically identifies related

changes based on a user-selected change region. It then decomposes a composite change

into a set of related changes, and helps her efficiently validate change subsets by applying a

regression test selection technique.

Composite Change Decomposition. Firstly, Monica may need to inspect refactorings

conducted by Extract Method in method lookupSeriesPaint. She may wonder whether

there exist other locations that are modified similarly to the refactorings applied to the

method lookupSeriesPaint. Monica uses ChgCutter as a plug-in built atop Eclipse

IDE1 to select the refactored region in Figure 4.1 (green portions) within Eclipse’sCompare

editor.2 Given the selected change, ChgCutter automatically generates an edit matching

template that consists of the differences between the original and edited versions of the

program and dependent contexts. The edit matching template is used to find other related,

1http://eclipse.org/pde
2http://googl/MLkGi6

http://eclipse.org/pde


89

similar locations, such as refactorings performed in methods lookupSeriesFillPaint and

lookupSeriesOutlineStroke, respectively. ChgCutter, then, decomposes the composite

change and produces a set of related refactoring changes, excluding non-related changes

such as bug-fixes. It also allows Monica to select a different type of changes such as

bug-fixes (yellow portions). It then produces another set of related changes, excluding

refactorings.



90

1 class RendererImpl extends AbstractRenderer {
2 public Paint lookupSeriesPaint(int series) {
3 - Paint seriesPaint = this.paintList.

getPaint(series);
4 + Paint seriesPaint = getSeriesPaint(series

);
5 if (seriesPaint == null && this.

autoPopulateSeriesPaint) {
6 -

DrawingSupplier supplier = getDrawingSupplier();
7 - if (supplier != null) {
8 -

seriesPaint = supplier.getNextPaint();
9 -

this.paintList.setPaint(series, seriesPaint);
10 - }
11 - refresh(this.basePaint);
12 +

setSeriesPaint(series, seriesPaint, false);
13 + if(this.basePaint == null)
14 +

throw new Exception("Null ’basePaint’.");
15 + else
16 + refresh(this.basePaint);
17 }
18 ...
19 }
20
21 + public void setSeriesPaint(int series, Paint

paint, boolean notify) {
22 + DrawingSupplier supplier =

getDrawingSupplier();
23 + if (supplier != null) {
24 + paint = supplier.getNextPaint();
25 + this.paintList.setPaint(series, paint

);
26 + if (notify)
27 + fireChangeEvent();
28 + }
29 + }
30 }

(a) User-selection portions highlighted for these
two different types of changes.

1 class RendererImpl extends AbstractRenderer {
2 public Paint lookupSeriesFillPaint(int series) {
3 - Paint seriesFillPaint = this.fillPaintList.

getPaint(series);
4 + Paint seriesFillPaint = getSeriesFillPaint(

series);
5 if (seriesFillPaint == null && this.

autoPopulateSeriesFillPaint) {
6 - DrawingSupplier supplier =

getDrawingSupplier();
7 - if (supplier != null) {
8 - seriesFillPaint = supplier.

getNextFillPaint();
9 - this.fillPaintList.setPaint(series,

seriesFillPaint);
10 - }
11 - refresh(this.baseFilllPaint);
12 + setSeriesFillPaint(series,

seriesFillPaint, false);
13 + if(this.baseFailPaint == null)
14 + throw new Exception("Null ’

baseFilllPaint’.");
15 + else
16 + refresh(this.baseFilllPaint);
17 }
18 ...
19 }
20
21 + public void setSeriesFillPaint(int series, Paint

paint, boolean notify) {
22 + DrawingSupplier supplier = getDrawingSupplier

();
23 + if (supplier != null) {
24 + paint = supplier.getNextFillPaint();
25 + this.fillPaintList.setPaint(series, paint

);
26 + if (notify)
27 + fireChangeEvent();
28 + }
29 + }
30 }

(b) One changes that are similarly edited for these
two different types of changes.

1 class RendererImpl extends AbstractRenderer {
2 public Stroke lookupSeriesOutlineStroke(int

series) {
3 - Stroke result = this.outlineStrokeList.

getStroke(series);
4 + Stroke result = getSeriesOutlineStroke(series

);
5 if (result == null && this.

autoPopulateSeriesOutlineStroke) {
6 - DrawingSupplier supplier =

getDrawingSupplier();
7 - if (supplier != null) {
8 - result = supplier.

getNextOutlineStroke();
9 - this.outlineStrokeList.setStroke(

series, result);
10 - }
11 - refresh(this.baseOutlineStroke);
12 + setSeriesOutlineStroke(series, result,

false);
13 + if(this.baseOutlineStroke == null)
14 + throw new Exception("Null ’

baseOutlineStroke’.");
15 + else
16 + refresh(this.baseOutlineStroke);
17 }
18 ...
19 }
20
21 + public void setSeriesOutlineStroke(int series,

Stroke stroke, boolean notify) {
22 + DrawingSupplier supplier = getDrawingSupplier

();
23 + if (supplier != null) {
24 + stroke = supplier.getNextOutlineStroke();
25 + this.outlineStrokeList.setStroke(series,

stroke);
26 + if (notify)
27 + fireChangeEvent();
28 + }
29 + }
30 }

(c) Another changes that are similarly edited for
these two different types of changes.

Figure 4.1: A composite code change example, including refactorings and bug-fixes. Added code is marked with ‘+’, and deleted code marked with ‘-’.



91

Intermediate Version Construction. Secondly, Monica may need to test David’s refactor-

ings to determine that the other unchanged parts have not been adversely influenced by his

refactoring edits. ChgCutter constructs an intermediate version of the program (Figure 4.2

left) by automatically applying isolated refactoring edits to the original version. Automated

recompilation and generation for an intermediate version includes critical challenges; the

generated programmust be compilable and executable, when exercising the applied changes

against tests during the regression testing. To satisfy the requirements, ChgCutter ana-

lyzes dependencies on changed entities and surrounding contexts to extract prerequisite

edits. Similarly, for testing bug-fixes, ChgCutter constructs another intermediate version

(Figure 4.2 right), when she needs to reveal a fault in bug-fixes.

Regression Test Selection. Lastly, Monica can reuse the test suite that was used to test the

original version of the program but may need to run an appropriate subset of the test suite to

validate an intermediate version. To increase effectiveness of a testing, ChgCutter applies

a regression test selection technique to automatically select a subset of the test suit affected

by the changes applied to an intermediate version shown in Figure 4.2.



92

1 class RendererImpl extends AbstractRenderer {
2 public Paint lookupSeriesPaint(int series) {
3 Paint seriesPaint = getSeriesPaint(series);
4 if (seriesPaint == null && this.

autoPopulateSeriesPaint) {
5

setSeriesPaint(series, seriesPaint, false);
6 refresh(this.basePaint);
7 }
8 System.out.println("base is used if series is

null");
9 if (seriesPaint == null) {
10 seriesPaint = this.basePaint;
11 }
12 return seriesPaint;
13 }
14
15 public Paint lookupSeriesFillPaint(int series) {
16

Paint seriesFillPaint = getSeriesFillPaint(series);
17 if (seriesFillPaint == null && this.

autoPopulateSeriesFillPaint) {
18

setSeriesFillPaint(series, seriesFillPaint, false);
19 refresh(this.baseFillPaint);
20 }
21 if (seriesFillPaint == null) {
22 seriesFillPaint = this.baseFillPaint;
23 }
24 return seriesFillPaint;
25 }
26
27 public Stroke lookupSeriesOutlineStroke(int

series) {
28

Stroke result = getSeriesOutlineStroke(series);
29 if (result == null && this.

autoPopulateSeriesOutlineStroke) {
30

setSeriesOutlineStroke(series, result, false);
31 refresh(this.baseOutlineStroke);
32 }
33 if (result == null) {
34 result = this.baseOutlineStroke;
35 }
36 return result;
37 }
38
39

public void setSeriesPaint(int series, Paint paint,
40 boolean notify) {
41

DrawingSupplier supplier = getDrawingSupplier();
42 if (supplier != null) {
43 paint = supplier.getNextPaint();
44 this.paintList.setPaint(series, paint);
45 if (notify)
46 fireChangeEvent();
47 }
48 }
49
50 public void setSeriesFillPaint(int series,
51

Paint paint, boolean notify) {
52

DrawingSupplier supplier = getDrawingSupplier();
53 if (supplier != null) {
54 paint = supplier.getNextFillPaint();
55

this.fillPaintList.setPaint(series, paint);
56 if (notify)
57 fireChangeEvent();
58 }
59 }
60
61 public void setSeriesOutlineStroke(int series,
62

Stroke stroke, boolean notify) {
63

DrawingSupplier supplier = getDrawingSupplier();
64 if (supplier != null) {
65 stroke = supplier.getNextOutlineStroke();
66

this.outlineStrokeList.setStroke(series, stroke);
67 if (notify)
68 fireChangeEvent();
69 }
70 }
71 }

1 class RendererImpl extends AbstractRenderer {
2 public Paint lookupSeriesPaint(int series) {
3 Paint seriesPaint = this.paintList.getPaint(

series);
4 if (seriesPaint == null && this.

autoPopulateSeriesPaint) {
5 DrawingSupplier supplier =

getDrawingSupplier();
6 if (supplier != null) {
7 seriesPaint = supplier.getNextPaint();
8 this.paintList.setPaint(series,

seriesPaint);
9 }

10 if(this.basePaint == null)
11

throw new Exception("Null ’basePaint’.");
12 else
13 refresh(this.basePaint);
14 }
15 if (seriesPaint == null) {
16 seriesPaint = this.basePaint;
17 }
18 return seriesPaint;
19 }
20
21 public Paint lookupSeriesFillPaint(int series) {
22 Paint seriesFillPaint = this.fillPaintList.

getPaint(series);
23 if (seriesFillPaint == null && this.

autoPopulateSeriesFillPaint) {
24 DrawingSupplier supplier =

getDrawingSupplier();
25 if (supplier != null) {
26 seriesFillPaint = supplier.

getNextFillPaint();
27 this.fillPaintList.setPaint(series,

seriesFillPaint);
28 }
29 if(this.baseFillPaint == null)
30

throw new Exception("Null ’baseFillPaint’.");
31 else
32 refresh(this.baseFillPaint);
33 }
34 if (seriesFillPaint == null) {
35 seriesFillPaint = this.baseFillPaint;
36 }
37 return seriesFillPaint;
38 }
39
40 public Stroke lookupSeriesOutlineStroke(int

series) {
41 Stroke result = this.outlineStrokeList.

getStroke(series);
42 if (result == null && this.

autoPopulateSeriesOutlineStroke) {
43 DrawingSupplier supplier =

getDrawingSupplier();
44 if (supplier != null) {
45 result = supplier.getNextOutlineStroke

();
46 this.outlineStrokeList.setStroke(

series, result);
47 }
48 if(this.baseOutlineStroke == null)
49

throw new Exception("Null ’baseOutlineStroke’.");
50 else
51 refresh(this.baseOutlineStroke);
52 }
53 if (result == null) {
54 result = this.baseOutlineStroke;
55 }
56 return result;
57 }
58 }

Figure 4.2: An intermediate versionChgCutter gen-
erates by applying the bug-fix (left) and refactoring
(right) edits separated from a composite change in
Figure 4.1. The highlighted portions are edited by
ChgCutter.



93

4.2 ChgCutter: Decomposing Composite Changes for Code Review

and Regression Testing

We present a change decomposition approach to help developers inspect a composite change

and run tests on a decomposed, related change set.

A	Composite	
Change	

Decomposed,	Related	
Change	Subset

Decompose	and	identify	
related	changes

Intermediate	
Program	Versions

Generate	syntactically	
valid	codeRegression	Test	

Selection

Code	Review	for	a	
Related	Change	SetDeveloper

Figure 4.3: Overview of ChgCutter’s workflow.

ChgCutter applies a change set to an original version of the program and generates an

intermediate version, while applying a test selection technique to run an affected subset of

the test suite on a decomposed change. Figure 4.3 depicts our approach consisting of the

following three phases. (1) To help developers effectively inspect a composite change, Chg-

Cutter allows developers to specify code change fragments within a composite change. By

analyzing the portions of the user-selected changes that are often syntactically incomplete,

it automatically identifies related change subsets separated from non-related changes. (2)

To enable developers to investigate changes of interest, ChgCutter automatically generates

intermediate program versions edited from an original programwith related change subsets.

To validate decomposed change subsets during regression testing, it creates syntactically

correct versions of a program, collecting and ordering the prerequisites of changes. (3)

To provide confidence that the change subset edited in an intermediate version behaves as

intended and that the unchanged parts are not adversely affected by the change, we integrate



94

with a regression test selection technique, automatically selecting a subset of the test suite

affected by a change subset.

4.2.1 Decomposing Composite Changes

Decomposition by Using Program Slicing. To decompose a composite change, Chg-

Cutter allows a developer to select a change region within a large diff output which

involves composite changes. Given the user-selected change portion, ChgCutter parses

code fragments into AST representation, and relates change regions within a same method

by using static analysis. An interprocedural slicing technique is utilized to extract depen-

dent program elements including all preceding dependent AST nodes based on transitive

dependencies [48]. Based on selected change regions, the data and control dependency

analysis [84] is performed to extract dependent codes—dependent context in the control

flow graph. By using the backward static program slicing, the analysis results in a subset

of statements (i.e., slice) in dependent context, which affects to value of variables in change

regions. Thus, the dependent context enables ChgCutter to cluster change regions if two

regions are related with data and control dependent relationship. ChgCutter identifies

statically dependent regions that are likely to implement the same feature. This assump-

tion has been used in several studies [17, 27, 38, 64] that applied program slicing to detect

consistent concerns. Once change regions are grouped in the same method together, the

grouped changes becomes an input information to search for other changes that are related

code fragments distributed in different methods. We describe below a technique that obtains

related parts further by generalizing a set of dependent code regions.



95

DecompositionbyUsingProgramElementGeneralization. Given an initial user-selected

change region and dependent context, ChgCutter creates an initial editmatching template.

Similar to the previous approach [108], a template can be generalized by replacing program

elements such as identifiers (e.g., type, variable andmethod) and statementswith parameters.

The template generalization can increase a size of change subsets during ChgCutter’s de-

composition. Based on an edit matching template, a code reviewer can generalize identifiers

into parameters that can be equivalent to different identifiers during our matching analysis.

Recall the example from Figure 4.1, the variable name seriesPaint and method name

getSeriesPaint are, for instance, generalized by a reviewer. These identifiers are mapped

to each parameter $VAR1 and $VAR2, whose all references are automatically parameterized

by ChgCutter. As a result, ChgCutter parameterizes the AST node Paint seriesPaint

= getSeriesPaint(series) into the node Paint $VAR1 = $VAR2(series), which can be

matched with the AST node Paint seriesFillPaint = getSeriesFillPaint(series) in

the method lookupSeriesFillPaint. Therefore, these changes related to the refactorings

can be separated from other changes, such as bug-fixes, in other locations of methods

lookupSerie- sFillPaint and lookupSeriesOutlineStroke.

Decomposition By Using Tree-based AST Search. ChgCutter’s code search technique

is based on an AST matching technique using the RTED tree edit distance algorithm [74].

As previous studies [10, 11, 96], we parse a program to produce AST representation of

the source program. ChgCutter takes as input an input-subtree and identifies a set of

output-subtrees which is involved in exact or close matches of subtrees by comparing with

an input-subtree in the generated AST trees. An input-subtree is produced by parsing an edit



96

matching template. As a template consists of pre- and post-edit information, a pair of two

input-subtrees is used to search for similar subtrees (i.e., output-subtrees) from the original

and edited versions of a program. For similarity detection on AST trees, computing tree

edit distances is typically used as an approximation algorithm [28,107]. However, efficient

tree similarity detection still remains an open problem, since our generalization technique

for program elements needs to detect similarity between tokens of a pair of AST nodes.

To address this similarity detection problem, we combine a tree matching algorithm [74]

with the word-mode diff function3 that supports a differencing algorithm [71]. Continuing

with our motivating example, an AST node getSeriesPaint(series) in an input-subtree

is aligned with an AST node getSeriesFillPaint(series) in an output-subtree by com-

puting the tree edit distance with a tree matching algorithm. We further align and compute

similarity between a pair of tokens such as {("getSeriesPaint", "getSeriesFillPaint"),

("(", "("), ("series", "series"), (")", ")")}. We find there exists one nonequivalent token

pair in the aligned token pairs; however, if the token "getSeriesPaint" in the AST node is

replaced with a parameter $VAR2, we consider the token pair as equivalent.

Based on searched AST subtrees by applying an efficient tree matching algorithm and

the AST node parameterization, ChgCutter finds related changes and decomposes them

into related change subsets in other locations in the codebase. It differs from existing

program differencing and search techniques that can find only concrete differences without

much abstraction.
3https://code.google.com/archive/p/google-diff-match-patch/

https://code.google.com/archive/p/google-diff-match-patch/


97

4.2.2 Constructing Intermediate Versions

ChgCutter utilizes Eclipse JDT4 built as a software component in the Eclipse framework.

By using JDT APIs, ChgCutter constructs an intermediate version guaranteed to be

syntactically correct. We make use of the AST rewrite infrastructure in Eclipse JDT for

applying required edits to the AST nodes of a program.

Extracting AST Differences. To compute differences of original and edited versions of

a program, ChgCutter leverages an AST differencing tool, called ChangeDistiller [36].

ChangeDistiller computes AST tree differences between pre- and post-edit source versions.

We use ChangeDistiller, since it extracts fine-grained source changes at the level of state-

ments (e.g., method invocation or variable assignment statements), comparing the AST

representations between a pair of different versions of a program. The extracted differences

then are represented as tree edit operations that are required to transform the original version

of the program to the intermediate version. In Figure 4.4, for example, we illustrate the

required edit operations for generating intermediate versions: four deletion operations from

the original version, and four insertion operations into the edited version.
4http://eclipse.org/jdt/



98

N1: MTHD

N2: DECL N9: IF

delete

N11: RETNN3: IF

N4: DECL N5: IF

N6: ASGN N7: INVC

N10: ASGN

delete delete

N8: INVC

delete

(a) An AST subtree before applying a change set. 
Square figures with a dotted line are to be deleted. 

N12: DECL N9: IF

insert

N11: RETNN3: IF

N10: ASGN

N13: MTHD

N14: INVC

N15: MTHD
insert

N16: IF

N17: INVC

insertinsert

N19: INVC

N1: MTHD

Refactoring edits Bug-fix edits

reference

N18:ELSE

(b) A modified AST subtree after applying a change set. 

reference

Figure 4.4: Applying required edit operations to generate an intermediate version for Figure 4.2 by
using either refactoring edits or bug-fixing edits separated from a composite change in Figure 4.1.

Applying Edit Operations. ChgCutter reuses a tree matching algorithm to find edit

locations by computing maximum common subtrees between an edit matching template

and the region to be edited. As a template is partially generalized by a code reviewer,

ChgCutter matches the abstract context against the location to be updated and reconstructs

program elements for concrete change instances.

Continuing with our example, ChgCutter concretizes the variables within the parame-

terized statement $VAR1 = this.$VAR2$.$VAR3(series), and generates the corresponding

statement seriesPaint = this.paintList.getPaint(series) inmethod lookupSeriesPaint

in the original version. To find concrete program elements (e.g., variable, method, and type),

ChgCutter traverses AST trees, collects reference bindings by using the JDT framework,

and constructs a hash table for matches between abstract parameters and concrete identi-

fiers. It also produces the related, concrete statements, such as, seriesFillPaint = this.

fillPaintList.getPaint(series) and result = this.strokeList.getStroke(series)

in the methods lookupSeriesFillPaint and lookupSeriesStroke, respectively.



99

Similarly, ChgCutter maintains another AST hash table in the edited version to con-

cretize variables in the parameterized statement $VAR1 = $VAR2(series), and produces

seriesPaint = getSeriesPaint(series) in method lookupSeriesPaint. It also finds

and produces the related, concrete statements, such as, seriesFillPaint = getSeriesFillPaint

(series) and result = getSeriesStroke(series) in methods lookupSeriesFillPaint

and lookupSeriesStroke, respectively.

To apply an insertion operation to the suitable location of the original version, Chg-

Cutter needs to find common ancestor AST node based on the sibling AST nodes that

ChgCutter has identified. To find the lowest common ancestor AST node, ChgCutter

compares the corresponding sibling AST nodes and computes the distance between the root

node (i.e., method head) and each sibling node. To apply an deletion operation, ChgCutter

deletes the AST node from the original version only if there exists no referenced statement.

To apply an replacement operation, ChgCutter finds an AST node in the original ver-

sion and replaces it by referring to an edit matching template. ChgCutter automatically

rewrites a pre-edit version’s AST, which leads to the corresponding intermediate version.

It then unparses the resulting ASTs into source code, which is recompiled by Eclipse JDT.

The recompiled program runs with a test suite to determine whether a related change subset

causes a program to produce incorrect results. We will describe details below.

4.2.3 Validating Intermediate Versions

ChgCutter generates an intermediate version by applying an identified subset of related

changes to the original version of the program. Regression testing is then applied to the



100

intermediate version to provide confidence that the change subset behaves intended and

that the unchanged parts of the program have not been adversely influenced by the change

subset.

ChgCutter leverages a test selection technique [68] to identify a subset of the test

suite affected by the change subset applied to the intermediate version. Unlike previous

test selection approaches [43, 79], our approach does not analyze a control-flow-based

representation of both original and edited versions of the program to select the test cases to

be rerun.

We construct a call graph for each test in the test suite that was used to test the original

version of the program P. We obtain dynamic call graphs by tracing the execution of the

tests. For a given set T of the regression test suite, our approach determines a subset T ′ of

the entire tests that is potentially affected by the change subsets—related atomic changes A

that ChgCutter identified above. We correlate the change subsets against the dynamic call

graphs for the tests in T in the original version of the program to select a subset T ′.

The call graphs we have constructed contain one node for each method, and edges

between nodes to represent call references between methods. For example, our approach

constructs the call graphs before the changes have been applied to an intermediate version

that we have created. We determine an affected test, if its call graph in the original version

of the program either includes a node that corresponds to a changed method (CM) or deleted

method change (DM). We also determine an affected test by checking a changed call by an

overridden method or a hierarchy change, such as lookup change (LC). We define formally



101

the equations to describe how we find affected tests T ′.

A f f ectedTests(T,A) = {ti|ti ∈ T,Nodes(P, ti) ∩ (CM∪DM) 6= /0} ∪

{ti|ti ∈ T,m ∈ Nodes(P, ti),A.m→ B.m/C.m ∈ Edges(P, ti)}
(4.1)

CM represents any change to a method’s body. A call reference is defined as A.m→

B.m/C.m, indicating possible control flow from method A.m to method B.m due to a

method C.m on an object type C. To obtain the call graphs, we utilized an aspect-oriented

programming (AOP) technique [57, 58] for instrumenting the class files of the original

version of the program and their tests. For the reuse of analysis results, call graphs are

stored as XML files. Executing each test case that has been instrumented by the AOP tool

produces an XML file containing the program’s dynamic call graph. Our approach, thus,

helps developers selectively executes test cases to quickly detect faults in the edited version

of the program.

4.3 Evaluation

The evaluation of our approach aims to answer the following research questions. To answer

these questions, we conduct an exploratory study to understand how effective ChgCutter

is during code review and regression testing.

• RQ3: Can ChgCutter accurately construct syntactically valid intermediate versions

by decomposing a composite change?



102

• RQ4: Can ChgCutter accurately select a subset of the regression tests to validate

each intermediate version?

The purpose of RQ3 is to determine whether the static analysis result computed by

ChgCutter is capable of decomposing a composite change and grouping a subset of related

changes with dependent program elements as well as similar code changes, particularly in

cases where an intermediate version are required to be compiled and runnable without

developer intervention. The rational behind RQ4 is to determine whether our test selection

approach is applicable with the code review technique to validate intermediate versions.

We are interested in the number of test cases selected to test an intermediate version, which

are reasonably lower compared to all test cases for the post-edit version. This also aims

to determine whether selection accuracy are acceptable. The selection accuracy will be

estimated by precision, the percentage of correctly identified test cases compared to all

found tests, and by recall, the percentage of correct test cases out of all expected tests.

4.3.1 Experimental Design

To evaluate our approach, we apply ChgCutter to four open source projects, including

JFreeChart—a graph and chart library implemented in Java; Apache Tomcat—a Java im-

plementation for Servlet, JavaServer Pages and WebSocket technologies; ArgoUML—an

UML diagramming tool, and; Eclipse JDT—Eclipse Java development tool.5

We developed a mining strategy to obtain the ground truth data set from the four subject

applications. We manually classified individual change sets and checked whether they

address multiple development issues (composite changes). To mine change history, we
5www.jfree.org, tomcat.apache.org, argouml.tigris.org, and eclipse.org/jdt



103

wrote a batch script which runs a diff utility to compare original and edited versions of the

program and produces diff patch files containing changes such as addition, deletion, and

modification. Our script program then divides each diff file into a set of change hunks.6

Lastly, for the investigation of recurring similar changes in the data set, we useCCFinder [54]

a clone detection tool that alleviates our manual work—change set classification. Based on

the output of the clone detector, we manually decompose and group the resulting clones as

a set of related changes. Also, commit log messages mentioning more than one issues are

examined during our investigation.

As a test selection ground truth, regression test suites were generated for our dataset.

The use of randomly generated test suites is not always used in real projects. Still, random

testing has recently been a cost-effective alternative due to the available tool support. We

used an automated test generator Randoop7 for two reasons. First, Randoop is a state-

of-art automatic unit test generator for Java applications using feedback-directed random

generation. Second, it has been widely used for validating diverse changes, including

refactorings [85, 86], in open source projects. We used the same Randoop configuration in

all test suite generations (time limit is 2 seconds, and maximum test size is 500 statements).

We totally obtained 3,456 tests for original versions used for each intermediate version in

the dataset. The experiment was conducted on a machine with a quad-core 2.2GHz CPU

and 16GB RAM.

6A hunk is a single modification unit of the region regarding two versions.
7randoop.github.io



104

Table 4.1: The default ChgCutter’s results before generalization. %P1 and %R1 shows the precision and recall for the intermediate version
generation, indicating the percentage of correctly identified change locations compared to all found location and the percentage of correct change
locations out of all expected locations, respectively. %P2 and %R2 show the precision and recall for the test case selection, indicating the percentage
of correctly identified test cases compared to all found test cases and the percentage of correct test cases out of all expected test cases, respectively.

Ground Truth Data Set Intermediate Version Generation Regression Test Selection
Index GT1 GT2 GT3 GT4 RS1 RS2 RS3 %P1 %R1 %F1 %Sim RS4 RS5 %P2 %R2 %F2 RT

1 16 2 130 22 10 10 2 100 62.5 76.9 92.8 13 13 100 59.1 74.3 1,241
2 27 4 65 11 5 5 4 100 18.5 31.3 65.3 2 2 100 18.2 30.8 638
3 44 3 117 38 4 4 3 100 9.1 16.7 34.7 3 3 100 7.9 14.6 1,747
4 6 2 234 31 2 2 2 100 33.3 50.0 45.1 16 16 100 51.6 68.1 1,153
5 16 3 333 71 3 3 3 100 18.8 31.6 59.7 11 11 100 15.5 26.8 819
6 15 3 355 317 5 5 3 100 33.3 50.0 68.7 120 120 100 37.9 54.9 386
7 16 4 650 127 8 8 4 100 50.0 66.7 80.7 30 30 100 23.6 38.2 2,057
8 15 2 174 10 2 2 2 100 13.3 23.5 52.2 2 2 100 20.0 33.3 312
9 12 1 103 58 1 1 1 100 8.3 15.4 83.3 10 10 100 17.2 29.4 602
10 4 1 407 17 1 1 1 100 25.0 40.0 56.4 8 8 100 47.1 64.0 1,932
11 19 3 888 112 3 3 3 100 15.8 27.3 57.1 15 15 100 13.4 23.6 3,455

Total 190 28 3,456 814 44 44 28 100 23.2 37.6 63.3 230 230 100 28.3 44.1 14,342

Table 4.2: The ChgCuttergen’s results with generalization. TYPE denotes a type of identifier parameterizations: V (variable), M (method name), T
(type), and E (statement exclusion).

Ground Truth Data Set Intermediate Version Generation Regression Test Selection
Index GT1 GT2 GT3 GT4 TYPE RS1 RS2 RS3 %P1 %R1 %F1 %Sim RS4 RS5 %P2 %R2 %F2 RT

1 16 2 130 22 V,M,T,E 18 16 2 88.9 100 94.1 100 48 22 45.8 100 62.8 1,206
2 27 4 65 11 V,E 29 27 4 93.1 100 96.4 100 37 11 29.7 100 45.8 603
3 44 3 117 38 V 44 44 3 100 100 100 100 38 38 100 100 100 1,165
4 6 2 234 31 V 5 5 2 100 83.3 90.9 93.1 30 30 100 96.8 98.4 1,131
5 16 3 333 71 V 11 11 3 100 68.8 81.5 99.8 45 45 100 63.4 77.6 793
6 15 3 355 317 V, E 13 13 3 100 86.7 92.9 99.8 312 312 100 98.4 99.2 163
7 16 4 650 127 V 13 13 4 100 81.3 89.7 99.7 101 101 100 79.5 88.6 1,195
8 15 2 174 10 V 15 15 2 100 100 100 100 10 10 100 100 100 160
9 12 1 103 58 V,M,T,E 12 12 1 100 100 100 100 58 58 100 100 100 437
10 4 1 407 17 V,M 4 4 1 100 100 100 100 17 17 100 100 100 1,906
11 19 3 888 112 V,E 18 18 3 100 94.7 97.3 99.8 93 93 100 83.0 90.7 3,448

Total 190 28 3,456 814 182 178 28 97.8 93.7 95.7 99.3 789 737 87.6 90.5 89.0 12,207



105

4.3.2 Study Results and Discussion

We use two variants of the change investigation for our evaluation. The default ChgCutter

searches the related change set without parameterization. ChgCuttergen parameterizes

variables, types and method names, or excludes statements to iteratively search the related

change set. We apply the default ChgCutter and ChgCuttergen to the data sets. Tables 4.1

and 4.2 present the results. Regarding validation process, I investigated ChgCutter’s

results. The remaining authors then analyzed the results in the meetings. When there was

lack of consensus, the issues were put to the next analysis round, and a mutual decision was

made.

In Tables 4.1 and 4.2, each task has a unique data set ID. GT1 represents the number of

the change instances that a developer commits to a VCS repository, and GT2 the number of

the change sets. For example, the data set #1 contains a composite change which addresses

two independent issues (see GT2), including 16 code blocks (i.e., bodies of statements if,

for, etc.) that were changed (see GT1). GT3 denotes the number of the total tests Randoop

generates, and GT4 the number of the expected tests to be selected.

RS1 means the number of the change instances that ChgCutter identifies; RS2 the

number of the change instances that ChgCutter correctly identifies; RS3 the number of the

intermediate versions that ChgCutter generates with no syntactic violation. %P1 and%R1

shows the precision and recall of the ChgCutter’s capability for the intermediate version

generation, indicating the percentage of correctly identified change locations compared

to all found location and the percentage of correct change locations out of all expected

locations, respectively. %F1 calculates the accuracy by using the harmonic mean of %P1



106

and %R1. The syntactic similarity %Sim in the next column is measured by comparing the

intermediate version that ChgCutter generates and the version that a real developer has

implemented.8

RS4 in the sixth column from the last denotes the number of test cases that ChgCutter

identifies, and RS5 in the next column shows the number of test cases that ChgCutter cor-

rectly finds. %P2 and %R2 show the precision and recall of the ChgCutter’s capability for

the test case selection, indicating the percentage of correctly identified test cases compared

to all found test cases and the percentage of correct test cases out of all expected test cases,

respectively. %F2 calculates the test selection accuracy by the harmonic mean of %P2 and

%R2.

RQ3. The ChgCutter’s capability for the intermediate version generation? We

assess ChgCutter’s precision by examining how many of decomposed change sets of the

intermediate versions are indeed true decomposed intermediate versions. ChgCuttergen

builds 28 intermediate versions by the change decomposition, 26 of which are correct,

resulting in 97.8% precision. Regarding recall, ChgCuttergen builds 93.7% of all ground

truth data sets. It generates intermediate versions, separating a composite change with

95.7% accuracy and 99.3% similarity.

Our approach generates intermediate versions that are not easy to build because they

require running on the test suite without both compilation and runtime errors. For exam-

ple, our approach combines the prerequisites of the individual change subsets, which are

processed as a single set. Based on prerequisites in a dependence chain, it ensures the AST
8The Levenshtein edit distance [69] is used to measure the similarity between two sequences of characters
based on number of deletions, insertions, or substitutions required to transform one sequence to the other.



107

construction of syntactically correct intermediate versions of a program.

False Positives. No false positive in the intermediate versions are reported by the default

ChgCutter, since the default ChgCutter builds the intermediate versions by finding only

edit locations with exactly the same context with the AST edit matching template. Four

intermediate versions are incorrectly generated by ChgCuttergen due to semantically non-

related changes. For example, Extract Method [37] is applied to a clone group in Apache

Tomcat (r980410). Although ChgCuttergen identifies the related changes, it also finds

other non-related changes which have similar AST structure. Semantic similarity analysis

examining program behavior can prevent this false positive, which will be combined in our

heuristics in the future.

False Negative. The intermediate versions generated by the default ChgCutter do not

often comprise related changes, because the default edit matching template cannot iden-

tify ASTs with different identifiers despite similar structures. Most intermediate versions

generated by ChgCuttergen contain related changes due to the matching technique with

parameterization. However, 16 related changes are not identified in JFreeChart (r1424),

since the tree matching algorithm produces misalignment between AST nodes. This limi-

tation can be overcome by plugging in tree edit distance algorithms that are more resilient

to differences in structure.

RQ4. The ChgCutter’s capability for the regression test selection? We estimate

the precision of ChgCutter by evaluating how many of the identified test cases are indeed

a true affected test cases. As we determine the effects of source code modification and

identify a related subset of the test suite, we consider any test case as an affected test case, if



108

its call graph correlates the decomposed changes in an intermediate version. ChgCuttergen

identifies 789 affected tests, 737 of which are correct, resulting in 87.6% precision. Re-

garding recall, ChgCuttergen identifies 90.5% of all ground truth data sets. It identifies

789 out of 3,456 affected tests with 89.0% accuracy, and reduces both the time by over 12

seconds and the number of tests by over 78% that are required to perform regression testing

in total on the generated intermediate versions.

Our approach helps developers not only understand a composite change but also conduct

debugging on its modified behavior after a test may fail unexpectedly. It automatically

classifies tests whether each test should be run for related atomic changes separated from

a composite change, which is not easy to determine since performing regression testing

requires revealing the faults by this affected subset safely—the same as those revealed by

running the entire test suite.

False Positives. No false positive is found in test cases identified by the default Chg-

Cutter; however, the result reports affected test cases only 230 out of 814. Most tests are

incorrectly identified by ChgCuttergen due to the lack of capability to classify semantic

differences between atomic changes in an intermediate version. As we discuss above, four

intermediate versions are a false positive. In these versions, our approach identifies 26 tests

out of 995 that Randoop generates for classes CoyoteAdapter and Response in Apache

Tomcat (r980410). These test cases identified by non-related changes have influenced the

low precision with respect to the data set 1 and 2. Comparison of control flow graphs [79]

can prevent this false positive, which is our future work.

False Negatives. The subset of regression tests identified by the default ChgCutter



109

often miss affected tests, because the affecting changes in intermediate versions are related

to additions and deletions without abstraction levels, while searching for change instances

based on concrete constraints. In otherwords, it does not capture test cases from the test suite

that reveal a fault in the program version with a composite change that may use different

identifier names. Most tests identified by ChgCuttergen exercise decomposed changes

applied to intermediate versions. However, for the data sets 5, 7 and 11, ChgCuttergen may

be too conservative in the test selection compared to others, because there are few identified

related changes in classes ClusteringSingleSignOn and ChartFactory in Apache Tomcat

(r980410) and JFreeChart (r1424), respectively due to the misalignment for tree pairs with

different AST subtree shapes during the tree edit distance computation. A specific pair of

subtrees is to be resolved in our heuristics in the future.

4.3.3 Threats to Validity

Our evaluation with four open projects may not be generalizable to other projects. As

the limitation of number and coverage of the existing tests, we make use of an automated

test generation tool; however, it is a cost-effective alternative to generate test cases for

the methods impacted by changes. In our empirical study, we measured the accuracy to

identify related atomic change sets and the code completeness (i.e., similarity to expected

changes) to build a syntactically valid intermediate version. Other measures such as the

degree of the tool effectiveness and satisfaction could be used tomeasure developer usability

and productivity for code review and regression testing. In our case study, we used large

and small code changes with diverse change types, including bug-fixes and refactorings to



110

mitigate potential subjectivity bias. Since the goal of ChgCutter is to help understand

a composite change and test individual, cohesive change set, the changes usually pertain

to the modifications about similar and dependent changes, instead of general program

modifications.



111

CHAPTER 5

CONCLUSIONS and FUTURE RESEARCH

5.1 Conclusions

In this research, we develop a synergistic approach by combining static and dynamic analy-

sis techniques to address fundamental problems in software quality assurance, particularly

enabling testing techniques to offer a code review tool an attractive complement such as ac-

curate execution monitoring results. Our approach helps developers sufficiently understand

software systems after these systems are modified during quality assurance tasks. Under-

standing a system’s behavior implies studying such artifacts as source code and its changes,

which is tedious and error-prone. Also, one of the most expensive activities is the testing as

software is developed and maintained. To improve programmers productivities and reduce

development and maintenance costs, we combine static and dynamic analyses to facilitate

both activities, testing and code reviews, by making easier to translate approaches from

one activity to the other. Rather than using either purely static or purely dynamic analysis,

we synergize both the soundness of static analysis and the accuracy of dynamic analysis

to obtain a new, hybrid analysis technique for (i) confidence that the changes behave as

intended and for (ii) a sufficient level of comprehension of a system’s inner behavior during

a given maintenance task.



112

First, we present a novel formal approach to select tests for regression testing on EF-

SMs. Our approach selects tests that are guaranteed to exercise changes to EFSMs while

discarding those that are guaranteed not to exercise the changes, without actually executing

the tests. It identifies a class of fully-observable tests whose descriptions contain all the

information about the EFSM transitions executed by the test, formulating a structural invari-

ant to characterize these tests. In our evaluation, we show that our approach achieves better

efficiency in comparison to brute-force symbolic execution approaches as well as depen-

dency based approaches. We also present an approach, called ChgCutter, to decomposing

a composite change and identifying a subset of related atomic changes. By applying edits

of the identified change subset to an original version, our approach automatically generates

an intermediate version which can be tested during regression test. Given a generated

intermediate version, our approach selects and runs an affected subset of the test suite, and

reduces the time to perform regression testing. To assist developers during development,

our approach has been integrated closely with Eclipse (www.eclipse.org), a widely used

open-source development environment. In our evaluation, we assess our technique with

four open source projects and find that it helps developers investigate a composite code

change for both program understanding and debugging.

Effective maintenance and development activities require a significant amount of efforts

from the developers to thoroughly comprehend and validate code changes. Our approach

demonstrates that the large amount of the efforts devoted to the assurance activities can

be improved with these hybrid analysis approaches, complementing the major challenges

and enhancing one another by providing information that would otherwise be unavailable.



113

Our research has great potential to fundamentally impact the software quality improvement

during peer code reviews and testings by effectively managing the software evolution.

5.2 Future Research

User study to improve tool usability. Plans for future research include user study with

professional developers to improve our tool’s usability. We plan to conduct interviews with

participants from PayPal.com to understand the current challenges they face during the

code change inspection; and to study whether and how ChgCutter could help participants.

Because we are interested in whether participants accept decomposed intermediate versions,

the participants are asked to partition composite changes. If an intermediate version result

of our approach matches one of the ways humans decompose the composite change, then

this result can be considered acceptable. First we will give a presentation to introduce

ChgCutter’s features. This presentation includes demo of how to use ChgCutter Eclipse

plug-in. For individual participates, we will conduct a semi-structured interview to collect

their feedback on the utility of ChgCutter. We will audio-record the interview and analyze

the feedback. The interview questions may be described as below.

1. How often do you have composite changes during code review?

2. What kind of challenges do you face composite changes during code review?

3. In which situation, do you think ChgCutter can effectively and efficiently improve

code review process?

4. How do you like or dislike ChgCutter?



114

Code visualization for intermediate version to help undo/redo selected changes. During

code review, one change set may not be sufficient to understand all changes. To better

understand changes, a table view presents all change sets in a list of rows that are divided

into sections. Each section has edit operations for one change set. User can select one

or more change sets to build an intermediate version by applying their edit operations.

Moreover, a change set can be removed from an intermediate version by undoing. We will

extend ChgCutter Eclipse plug-in to handle code visualization for intermediate version to

leverage user undo/redo selected changes.



115

References

[1] Yices (an smt solver). http://yices.csl.sri.com/.

[2] Z3 (an thoerem prover). http://research.microsoft.com/en-us/um/redmond/projects/z3/.

[3] A. F. Ackerman, L. S. Buchwald, and F. H. Lewski. Software inspections: An effective
verification process. IEEE Software, 6(3):31–36, 1989.

[4] R. Adams, W. Tichy, and A. Weinert. The cost of selective recompilation and environment
processing. ACM Transactions Software Engineering Methodol., 3(1):3–28, 1994.

[5] F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge University Press, 1998.

[6] A. Bacchelli and C. Bird. Expectations, outcomes, and challenges of modern code review. In
Proceedings of the 2013 International Conference on Software Engineering, pages 712–721.
IEEE Press, 2013.

[7] B. S. Baker. A program for identifying duplicated code. 1993.

[8] B. S. Baker. On finding duplication and near-duplication in large software systems. In
Proceedings of 2nd Working Conference on Reverse Engineering, 1995., pages 86–95, 1995.

[9] M. Barnett, C. Bird, J. Brunet, and S. K. Lahiri. Helping developers help themselves:
Automatic decomposition of code review changesets. In Software Engineering (ICSE), 2015
IEEE/ACM 37th IEEE International Conference on, volume 1, pages 134–144. IEEE, 2015.

[10] I. D. Baxter, C. Pidgeon, and M. Mehlich. Dms®: Program transformations for practical
scalable software evolution. In Proceedings of the 26th International Conference on Software
Engineering, pages 625–634. IEEE Computer Society, 2004.

[11] I. D. Baxter, A. Yahin, L. Moura, M. S. Anna, and L. Bier. Clone detection using abstract
syntax trees. In Proceedings of International Conference on Software Maintenance, 1998.,
pages 368–377. IEEE, 1998.

[12] H. C. Benestad, B. Anda, and E. Arisholm. Understanding software maintenance and evolu-
tion by analyzing individual changes: a literature review. Journal of Software Maintenance
and Evolution: Research and Practice, 21(6):349–378, 2009.

[13] A. Bertolino. Software testing research: Achievements, challenges, dreams. In 2007 Future
of Software Engineering, pages 85–103. IEEE Computer Society, 2007.

[14] L. C. Briand, Y. Labiche, and S. He. Automating regression test selection based on uml
designs. Information and Software Technology, 51(1), 2009.

[15] L. C. Briand, Y. Labiche, and G. Soccar. Automating impact analysis and regression test
selection based on uml designs. In International Conference on Software Maintenance, 2002.

[16] E. Bringmann and A. Kramer. Model-based testing of automotive systems. In 1st Interna-
tional Conference on Software Testing, Verification and Validation (ICST’08), 2008.

[17] G. Canfora, A. Cimitile, A. De Lucia, and G. A. Di Lucca. Decomposing legacy programs:
A first step towards migrating to client–server platforms. Journal of Systems and Software,
54(2):99–110, 2000.

[18] R. Y. Chang, A. Podgurski, and J. Yang. Discovering neglected conditions in software by
mining dependence graphs. IEEE Transactions on Software Engineering, 34(5):579–596,
2008.

[19] Y. Chen, R. L. Probert, and D. P. Sims. Specification-based regression test selection with
risk analysis. In Conference of the Centre for Advanced Studies on Collaborative research
(CASCON’02). IBM Press, 2002.



116

[20] Y. Chen, R. L. Rrobert, and H. Ural. Regression test suite reduction using extended depen-
dence analysis. In 4th International Workshop on Software Quality Assurance (SOQUA’07),
2007.

[21] O. C. Chesley, X. Ren, and B. G. Ryder. Crisp: a debugging tool for java programs. In
Proceedings of the 21st IEEE International Conference on Software Maintenance, 2005
(ICSM’05)., pages 401–410, 2005.

[22] E. M. Clarke, O. Grumberg, and D. A. Peled. Model Checking. MIT Press, 1999.

[23] K. D. Cooper, K. Kennedy, and L. Torczon. Interprocedural optimization: Eliminating
unnecessary recompilation. In Proceedings of the 1986 SIGPLAN Symposium on Compiler
Construction, SIGPLAN ’86, pages 58–67. ACM, 1986.

[24] B. Cornelissen, A. Zaidman, A. van Deursen, L. Moonen, and R. Koschke. A systematic
survey of program comprehension through dynamic analysis. Software Engineering, IEEE
Transactions on, 35(5):684–702, 2009.

[25] R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and F. K. Zadeck. An efficient method
of computing static single assignment form. In 16th ACM SIGPLAN-SIGACT symposium on
Principles of programming languages (POPL’89), 1989.

[26] B. Daniel and Z. Pitro. On communicating finite-state machines. Journal of the ACM, 30(2),
1983.

[27] A. De Lucia, A. R. Fasolino, and M. Munro. Understanding function behaviors through
program slicing. In Proceedings of Fourth Workshop on Program Comprehension, 1996.,
pages 9–18. IEEE, 1996.

[28] E. D. Demaine, S. Mozes, B. Rossman, and O. Weimann. An optimal decomposition algo-
rithm for tree edit distance. ACM Transactions on Algorithms (TALG), 6(1):2, 2009.

[29] D. Detlefs, G. Nelson, and J. B. Saxe. Simplify: a theorem prover for program checking.
Journal of the ACM, 52(3), 2005.

[30] M.Dmitriev. Language-specificmake technology for the java programming language. InPro-
ceedings of the 17th ACM SIGPLAN Conference on Object-oriented Programming, Systems,
Languages, and Applications, OOPSLA ’02, pages 373–385. ACM, 2002.

[31] H. Do, S. Elbaum, and G. Rothermel. Supporting controlled experimentation with testing
techniques: An infrastructure and its potential impact. Empirical Software Engineering,
10(4), 2005.

[32] A. Dunsmore, M. Roper, and M. Wood. Practical code inspection techniques for object-
oriented systems: An experimental comparison. IEEE Software, 20(4):21–29, 2003.

[33] M. E. Eagan. Advances in software inspections. IEEE Transactions Software Engineering,
12(7):744–751, 1986.

[34] M. E. Fagan. Design and code inspections to reduce errors in program development. IBM
Syst. J., 38(2-3):258–287, 1999.

[35] R. Falke, P. Frenzel, and R. Koschke. Empirical evaluation of clone detection using syntax
suffix trees. Empirical Software Engineering, 13(6):601–643, 2008.

[36] B. Fluri, M. Wursch, M. PInzger, and H. C. Gall. Change distilling: Tree differencing for
fine-grained source code change extraction. Software Engineering, IEEE Transactions on,
33(11):725–743, 2007.

[37] M. Fowler. Refactoring: Improving the Design of Existing Code. Addison-Wesley Profes-
sional, 2000.

[38] K. B. Gallagher and J. R. Lyle. Using program slicing in software maintenance. Software
Engineering, IEEE Transactions on, 17(8):751–761, 1991.



117

[39] T. L. Graves, M. J. Harrold, J. Kim, A. Porters, and G. Rothermel. An empirical study
of regression test selection techniques. In Proceedings of the International Conference on
Software Engineering, 1998., pages 188–197, 1998.

[40] T. Guardian. Why we all sell code with bugs. Aug 2006.

[41] B.Guo,M. Subramaniam, andZ. Pap. In 20th International Conference on Testing of Software
and Communication Systems and 8th International FATES Workshop (TestCom/FATES’08).

[42] R. Gupta, M. J. Harrold, and M. L. Soffa. An approach to regression testing using slicing. In
Software Maintenance, 1992. Proceerdings., Conference on, pages 299–308, 1992.

[43] M. J. Harrold, J. A. Jones, T. Li, D. Liang, A. Orso, M. Pennings, S. Sinha, S. A. Spoon, and
A. Gujarathi. Regression test selection for java software. In Proceedings of OOPSLA, pages
312–326. ACM, 2001.

[44] M. J. Harrold and A. Orso. Retesting software during development and maintenance. In
Frontiers of Software Maintenance (FoSM’08), 2008.

[45] T. A. Henzinger, R. Jhala, R. Majumdar, and G. Sutre. Software verification with blast. In
10th International Conference on Model Checking Software, 2003.

[46] K. Herzig and A. Zeller. The impact of tangled code changes. In Proceedings of the 10th
Working Conference onMining Software Repositories, MSR ’13, pages 121–130. IEEE Press,
2013.

[47] K. Herzig and A. Zeller. The impact of tangled code changes. In Proceedings of MSR, 2013.

[48] S. Horwitz, T. Reps, and D. Binkley. Interprocedural slicing using dependence graphs. ACM
Transactions Program. Language System, 12(1):26–60, 1990.

[49] L. Jiang, G. Misherghi, Z. Su, and S. Glondu. Deckard: Scalable and accurate tree-based
detection of code clones. In Proceedings of the 29th International Conference on Software
Engineering, ICSE ’07, pages 96–105. IEEE Computer Society, 2007.

[50] J. H. Johnson. Identifying redundancy in source code using fingerprints. In Proceedings of
the 1993 Conference of the Centre for Advanced Studies on Collaborative Research: Software
Engineering - Volume 1, CASCON ’93, pages 171–183. IBM Press, 1993.

[51] J. H. Johnson. Substring matching for clone detection and change tracking. In Proceedings
of International Conference on Software Maintenance, 1994., pages 120–126, 1994.

[52] J. H. Johnson. Visualizing textual redundancy in legacy source. In Proceedings of the 1994
Conference of the Centre for Advanced Studies on Collaborative Research, CASCON ’94,
pages 32–. IBM Press, 1994.

[53] N. Juristo, A.M.Moreno, and S. Vegas. Reviewing 25 years of testing technique experiments.
Empirical Software Engineering, 9(1-2):7–44, 2004.

[54] T. Kamiya, S. Kusumoto, and K. Inoue. Ccfinder: A multilinguistic token-based code clone
detection system for large scale source code. IEEE Transactions Software Engineering,
28(7):654–670, 2002.

[55] D. Kapur and H. Zhang. An overview of rewrite rule laboratory (rrl). In 3rd International
Conference on Rewriting Techniques and Applications (RTA’89), 1989.

[56] C. Keum, S. Kang, I. Ko, J. Baik, and Y. Choi. Generating test cases for web services using
extended finite state machine. In 18st International Conference on Testing of Software and
Communication Systems (TestCom’06), 2006.

[57] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and W. G. Griswold. An overview
of aspectj. In Proceedings of ECOOP, pages 327–353. Springer-Verlag, 2001.



118

[58] G. Kiczales, J. Lamping, A. Menhdhekar, C. Maeda, C. Lopes, J.-M. Loingtier, and J. Irwin.
Aspect-oriented programming. In Proceedings of ECOOP, pages 220–242. Springer-Verlag,
1997.

[59] J. C. King. Symbolic execution and program testing. Communications of the ACM, 19(7),
1976.

[60] B. Korel, G. Koutsogiannakis, and L. H. Tahat. Model-based test prioritization heuristic
methods and their evaluation. In 3rd International workshop on Advances in model-based
testing, 2007.

[61] B.Korel, G.Koutsogiannakis, andL.H. Tahat. Application of systemmodels in regression test
suite prioritization. In IEEE International Conference on Software Maintenance (ICSM’08),
2008.

[62] B. Korel, L. Tahat, and B. Vaysburg. Model based regression test reduction using dependence
analysis. In 18th IEEE International Conference on Software Maintenance (ICSM’02), 2002.

[63] B. Korel, L. H. Tahat, and M. Harman. Test prioritization using system models. In 21st IEEE
International Conference on Software Maintenance (ICSM’05), 2005.

[64] F. Lanubile and G. Visaggio. Extracting reusable functions by flow graph based program
slicing. Software Engineering, IEEE Transactions on, 23(4):246–259, 1997.

[65] D. Lee andM. Yiannakakis. Principles and methods of testing finite state machines - a survey.
Proceedings of the IEEE, 84(8), 1996.

[66] M.-W. Lee, J.-W. Roh, S.-w. Hwang, and S. Kim. Instant code clone search. In Proceedings
of the Eighteenth ACM SIGSOFT International Symposium on Foundations of Software
Engineering, FSE ’10, pages 167–176. ACM, 2010.

[67] M. Lejter, S. Meyers, and S. P. Reiss. Support for maintaining object-oriented programs.
IEEE Transactions Software Engineering, 18(12):1045–1052, 1992.

[68] H. Leung and L. White. A cost model to compare regression test strategies. In Proceedings
Conference on Software Maintenance, 1991.

[69] V. I. Levenstein. Binary codes capable of correcting deletions, insertions, and reversals.
Soviet Physics Doklady 10, pages 707–710, 1966.

[70] Y. Lin, Z. Xing, Y. Xue, Y. Liu, X. Peng, J. Sun, and W. Zhao. Detecting differences across
multiple instances of code clones. In Proceedings of the 36th International Conference on
Software Engineering, ICSE 2014, pages 164–174. ACM, 2014.

[71] E.W.Myers. Ano (nd) difference algorithm and its variations. Algorithmica, 1(1-4):251–266,
1986.

[72] T. T. Nguyen, H. A. Nguyen, N. H. Pham, J. M. Al-Kofahi, and T. N. Nguyen. Graph-
based mining of multiple object usage patterns. In Proceedings of the 7th Joint Meeting of
the European Software Engineering Conference and the ACM SIGSOFT Symposium on The
Foundations of Software Engineering, ESEC/FSE ’09, pages 383–392. ACM, 2009.

[73] A.K.Onoma,W.-T. Tsai, M. Poonawala, andH. Suganuma. Regression testing in an industrial
environment. Commun. ACM, 41(5):81–86, 1998.

[74] M. Pawlik and N. Augsten. Rted: A robust algorithm for the tree edit distance. Proceedings
VLDB Endow., 5(4):334–345, 2011.

[75] G. Ramalingam and T. Reps. On the computational complexity of dynamic graph problems.
Theoretical Computer Science, 158(1), 1996.

[76] P. Rigby, B. Cleary, F. Painchaud, M. A. Storey, and D. German. Contemporary peer review
in action: Lessons from open source development. IEEE Software, 29(6):56–61, 2012.



119

[77] G. Rothermel and M. J. Harrold. Selecting tests and identifying test coverage requirements
for modified software. In ACM SIGSOFT International symposium on Software testing and
analysis (ISSTA ’94), 1994.

[78] G. Rothermel and M. J. Harrold. Analyzing regression test selection techniques. IEEE
Transactions on Software Engineering, 22(8), 1996.

[79] G. Rothermel and M. J. Harrold. A safe, efficient regression test selection technique. ACM
Transactions on Software Engineering and Methodology (TOSEM), 6, 1997.

[80] C. K. Roy and J. R. Cordy. An empirical study of function clones in open source software.
In Reverse Engineering, 2008. WCRE ’08. 15th Working Conference on, pages 81–90, 2008.

[81] G. W. Russell. Experience with inspection in ultralarge-scale development. IEEE Software,
8(1):25–31, 1991.

[82] R. Santelices, P. K. Chittimalli, T. Apiwattanapong, A. Orso, and M. J. Harrold. Test-
suite augmentation for evolving software. In 23rd IEEE/ACM International Conference on
Automated Software Engineering (ASE’08), 2008.

[83] F. Shull and C. Seaman. Inspecting the history of inspections: An example of evidence-based
technology diffusion. IEEE Software, 25(1):88–90, 2008.

[84] S. Sinha, M. J. Harrold, and G. Rothermel. System-dependence-graph-based slicing of
programs with arbitrary interprocedural control flow. In Proceedings of the 21st International
Conference on Software Engineering, ICSE ’99, pages 432–441. ACM, 1999.

[85] G. Soares. Making program refactoring safer. In Proceedings of ICSE, pages 521–522, 2010.

[86] G. Soares, R. Gheyi, and T. Massoni. Automated behavioral testing of refactoring engines.
IEEE Transactions on Software Engineering, pages 147–162, 2013.

[87] M. Subramaniam and P. Chundi. An approach to preserve protocol consistency and exe-
cutability across updates. In 6th International Conference on Formal Engineering Methods
(ICFEM’02), 2004.

[88] M. Subramaniam and B. Guo. A rewrite-based approach for change impact analysis of com-
municating systems using a theorem prover. Technical report, Compute Science Department,
Univerisity of Nebraska at Omaha, 2008.

[89] M. Subramaniam, B. Guo, and Z. Pap. Using change impact analysis to select tests for
extendedfinite statemachines. In 7th IEEE InternationalConference on SoftwareEngineering
and Formal Methods (SEFM’09), 2009.

[90] M. Subramaniam and Z. Pap. Analyzing the impact of protocol changes on tests. In 18th
International Conference on Testing of Communicating Systems (TestCom’06), 2006.

[91] M. Subramaniam, L.Xiao, B.Guo, andZ. Pap. An approach for test selection for efsms using a
theorem prover. In 21st International Conference on Testing of Software and Communication
Systems and 9th International FATES Workshop (TestCom/FATES’09), 2009.

[92] Y. Tao, Y. Dang, T. Xie, D. Zhang, and S. Kim. How do software engineers understand
code changes?: An exploratory study in industry. In Proceedings of the ACM SIGSOFT
20th International Symposium on the Foundations of Software Engineering, FSE ’12, pages
51:1–51:11. ACM, 2012.

[93] Y. Tao and S. Kim. Partitioning composite code changes to facilitate code review. InMining
Software Repositories (MSR), 2015 IEEE/ACM 12th Working Conference on, pages 180–190,
2015.

[94] W. F. Tichy. Smart recompilation. ACM Transactions Program Language System, 8(3):273–
291, 1986.



120

[95] B. Vaysburg, L. H. Tahat, and B. Korel. Dependence analysis in reduction of requirement
based test suites. InACMSIGSOFT International symposium on software testing and analysis
(ISSTA ’02), 2002.

[96] V. Wahler, D. Seipel, J. W. v. Gudenberg, and G. Fischer. Clone detection in source code by
frequent itemset techniques. In Proceedings of the Source Code Analysis and Manipulation,
Fourth IEEE International Workshop, SCAM ’04, pages 128–135. IEEE Computer Society,
2004.

[97] S. Wang, D. Lo, and L. Jiang. Code search via topic-enriched dependence graph matching.
In Reverse Engineering (WCRE), 2011 18th Working Conference on, pages 119–123, 2011.

[98] X. Wang, D. Lo, J. Cheng, L. Zhang, H. Mei, and J. X. Yu. Matching dependence-related
queries in the system dependence graph. In Proceedings of the IEEE/ACM International
Conference on Automated Software Engineering, ASE ’10, pages 457–466. ACM, 2010.

[99] S. Weileder. Parteg (partition test generator). http://parteg.sourceforge.net/.

[100] K. E. Wiegers. Peer reviews in software: A practical guide. Addison-Wesley Boston, 2002.

[101] N. Wilde, P. Matthews, and R. Huitt. Maintaining object-oriented software. IEEE Software,
10(1):75–80, 1993.

[102] W. E. Wong, J. R. Horgan, S. London, and H. Agrawal. A study of effective regression testing
in practice. In Proceedings of The Eighth International Symposium on Software Reliability
Engineering, 1997., pages 264–274, 1997.

[103] Z. Xu and G. Rothermel. Directed test suite augmentation. In Asia-Pacific Software Engi-
neering Conference (APSEC’09), 2009.

[104] W. Yang and W. Yang. Identifying syntactic differences between two programs. SOFTWARE
- PRACTICE AND EXPERIENCE, 21:739–755, 1991.

[105] S. Yoo and M. Harman. Regression testing minimization, selection and prioritization: a
survey. Software Testing, Verification and Reliability, 22(2):67–120, 2012.

[106] A. Zeller. Why programs fail: a guide to systematic debugging. Elsevier, 2009.

[107] K. Zhang and D. Shasha. Simple fast algorithms for the editing distance between trees and
related problems. SIAM journal on computing, 18(6):1245–1262, 1989.

[108] T. Zhang, M. Song, J. Pinedo, and M. Kim. Interactive code review for systematic changes.
In 37th IEEE/ACM International Conference on Software Engineering, ICSE 2015, Volume
1, pages 111–122, 2015.



121

Appendix A

ChgCutter: An Intermediate Version Generation Tool

The appendix presents ChgCutter features with a motivating example from JFreeChart

project, an information visualization library to display graphs and charts. We adapt and

simply the example for the presentation purpose. Suppose David updates a program with

two independent development tasks: (1) refactorings by standard refactoring techniques

and (2) bug-fixes to resolve some graphical rendering issues. Then he commits his changes

in one single transaction to a version control repository with a message, "Updated several

methods by applying the refactorings. Also, fixed graphical rendering bugs by adding null

checkers.".

Suppose Monica conducts a code review for refacotring changes. She first selects and

Compare with Each Other between jfreechat_demo_new and jfreechat_demo_old projects

from Project Explorer as Figure A.1.

Eclipse Compare View. All files different between old and new versions are displayed in

Eclipse Compare View (see 1 in Figure A.2). Monica selects one changed file, Abstrac-

tRenderer.java, to inspect differences (see 2 in Figure A.2). Locations having changes are

shown in Java Source Compare View. Monica highlights a sub-region of a diff patch which

is one of refactoring changes in lookupSeriesPaint method (see 3 in Figure A.2).



122

Figure A.1: A screen snapshot of Eclipse Compare With Each Other for two projects

Diff Template View. Monica clicks "Select Diff Region" in menu list in Figure A.3. Given

Monica’s selected change region, ChgCutter parses code fragments into AST representa-

tion. The data and control dependency analysis is performed to extract dependent context.

ChgCutter visualizes dependent context as abstract diff template (see 4 in Figure A.2).

Green nodes represent the selected codes’ parent nodes. Yellow nodes represent change

control-dependant statements. Orange nodes represent change data-dependant statements.

To increase a size of change subsets, Monica can review and generalize identifiers into

parameters that can be equivalent to different identifiers during matching analysis. The

textual template can be previewed in Diff Template (see 5 in Figure A.2). Matching

Result View. Monica clicks "Summarize Changes" in menu list in Figure A.4. Locations

having systematic changes matching the abstract diff template are listed in Matching Lo-

cations View (see 6 in Figure A.2). When Monica clicks one of matching locations, the

corresponding differences are presented in the Diff Details View (see 7 in Figure A.2).

Intermediate Version Project. Monica clicks "Create Intermediate Version" in menu

list in Figure A.5. An intermediate version, jfreechat_demo_old_iv1, is automatically



123

created by applying two Update Variable Declaration Statement Operations, in which Paint

seriesPaint = this.paintList.getPaint(series) is updated by Paint seriesPaint

= getSeriesPaint(series) and this.paintList.setPaint(series, seriesPaint) is

updated by setSeriesPaint(series, seriesPaint, false) (see 1 in FigureA.6). When

comparing old and intermediate version using Eclipse Compare, only 6 refactoring changes

in the different methods are applied to old version (see 2 and 3 in Figure A.6).

Similarly, Figure A.7 and Figure A.8 show the procedure to create Bug-fix intermediate

version, jfreechat_demo_old_iv2, if Monica is interested in bug-fix changes.



124

1 Eclipse Compare View 

2 Changed file selected

3 A sub-region of a diff patch selected by a code reviewer

5 Textual representation of the 
abstract diff template

4 A side-by-side view of AST edits and context

7 Matching diffs in 
the found location

6 Locations of systematic changes matching 
the abstract diff template

Figure A.2: A screen snapshot of ChgCutter to find matching locations for refactoring changes



125

Figure A.3: A screen snapshot of Select Diff Region

Figure A.4: A screen snapshot of Summarize Changes



126

Figure A.5: A screen snapshot of Create Intermediate Version



127

1 Intermediate Version 
Created 

3 Locations 
updated 
in this 
Intermediate
version

2 A diff patch between a old version and an intermediate version 

Figure A.6: A screen snapshot of ChgCutter to create an intermediate version for refactoring changes



128

Figure A.7: A screen snapshot of ChgCutter to find matching locations for Bug-fix changes



129

Figure A.8: A screen snapshot of ChgCutter to create an intermediate version for Bug-fix changes


	Improving Software Quality by Synergizing Effective Code Inspection and Regression Testing
	Recommended Citation

	INTRODUCTION
	Model-Based Regression Test Selection
	Code Review for Composite Changes
	Research Agenda
	Major Research Contribution
	Test Selection for Changes (RQ1)
	Time Saving for Test Selection (RQ2)
	Partitioning Composite Code Changes (RQ3)
	Validating Intermediate Version (RQ4)

	Outline

	BACKGROUND and RELATED WORK
	Background
	Regression Test Selection
	Code-based Regression Test Selection
	Model-based Regression Test Selection

	Theorem Provers and Regression Testing
	Composite Code Change Decomposition
	Code Search for Code Comprehension and Inspection
	Intermediate Version Construction
	Interactive Code Reviews for Inspecting Relevant Changes

	SELECTING TESTS with PROVABLE GUARANTEES
	Motivating Example
	Preliminaries
	EFSM Changes and Tests
	EFSM Change Model
	EFSM Test Descriptions

	Fully-Observable Tests
	Matching Transitions and Sequences
	Test Extended Most General Images
	Identifying Fully-Observable Tests

	Selecting Fully-Observable Tests
	Selecting for Addition Changes
	Selecting for Deletion Changes
	Selecting for Replacement Changes
	Pruning Unusable Tests

	Selecting Multiple Tests
	Evaluation
	Experimental Design
	Case Studies
	Study Results and Discussion
	SPG and Code-based Approaches
	Threats to Validity


	DECOMPOSING COMPOSITE CHANGES to SUPPORT CODE REVIEW
	Motivating Example
	ChgCutter: Decomposing Composite Changes for Code Review and Regression Testing
	Decomposing Composite Changes
	Constructing Intermediate Versions
	Validating Intermediate Versions

	Evaluation
	Experimental Design
	Study Results and Discussion
	Threats to Validity


	CONCLUSIONS and FUTURE RESEARCH
	Conclusions
	Future Research

	References
	Appendix ChgCutter: An Intermediate Version Generation Tool

