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Answer set programming is a declarative programming paradigm geared towards solving

difficult combinatorial search problems. Logic programs under answer set semantics can

typically be written in many different ways while still encoding the same problem. These

different versions of the program may result in diverse performances. Unfortunately, it

is not always easy to identify which version of the program performs the best, requiring

expert knowledge on both answer set processing and the problem domain. More so, the

best version to use may even vary depending on the problem instance. One measure

that has been shown to correlate with performance is the programs grounding size, a

measure of the number of ground rules in the grounded program (Gebser et al. 2011).

Computing a grounded program is an expensive task by itself, thus computing multiple

ground programs to assess their sizes to distinguish between these programs is unrealistic. In

this research, we present a new system called PREDICTOR to estimate the grounding size of

programs without the need to actually ground/instantiate these rules. We utilize a simplified

form of the grounding algorithms implemented by answer set programming grounder DLV

while borrowing techniques from join-order size estimations in relational databases. The

PREDICTOR system can be used independent of the chosen answer set programming grounder

and solver system. We assess the accuracy of the predictions produced by PREDICTOR,

while also evaluating its impact when used as a guide for rewritings produced by the

automated answer set programming rewriting system called PROJECTOR. In particular,

system PREDICTOR helps to boost the performance of PROJECTOR.



i

This thesis is dedicated to my family for their love and support throughout my education.



ii

Acknowledgements

Coming into the senior year of my Bachelor’s degree and start of my Master’s degree at

the University of Nebraska at Omaha (UNO), I was curious but uncertain of what to expect

from research. Thankfully, I had the pleasure of working with and being advised by Yuliya

Lierler, who made my experience very enjoyable. I want to thank her for the endless support

she provided me and for giving me the opportunity to conduct research.

I would also like to thank the other members of my thesis committee, Abhishek Parakh

and Victor Winter, for providing helpful feedback and serving on my committee.

I am grateful to have worked with Mirek Truszczynski as well as his students at the

University of Kentucky: Daniel Houston, Liu Liu, Michael Dingess, and Shelby Stocker,

with whom I had many discussions.

I also appreciate the assistance from Roland Kaminski and Parvathi Chundi in answer

various questions.

Finally, I would like to thank all past and present members of the Natural Language

Processing and Knowledge Representation lab (NLPKR) at UNO that I have worked with:

Da Shen, Gang Ling, John Hare, Brian Hodges, Craig Olson, and Justin Robbins.



iii

Table of Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1 Basic Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.2 Grounding Algorithms of DLV . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3 Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.4 System PROJECTOR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.4.1 Key Issues of PROJECTOR . . . . . . . . . . . . . . . . . . . . . . 12

3 Motivating Work and Problem Statement . . . . . . . . . . . . . . . . . . . . 13

4 PREDICTOR System Implementation . . . . . . . . . . . . . . . . . . . . . . . 14

4.1 Estimation Formulas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4.1.1 Tight Programs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4.1.2 Arbitrary Programs . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.2 Language Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.2.1 Pools and Intervals . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.2.2 Aggregates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.2.3 Disjunctive and Choice Rules . . . . . . . . . . . . . . . . . . . . . 35

4.2.4 Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.2.5 Binary Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.3 Language, Libraries, and Usage . . . . . . . . . . . . . . . . . . . . . . . . 38

5 System PROJECTOR Integration . . . . . . . . . . . . . . . . . . . . . . . . . . 41

6 Experimental Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

6.1 System PREDICTOR Accuracy . . . . . . . . . . . . . . . . . . . . . . . . 44



iv

6.2 Evaluation of PRD-PROJECTOR . . . . . . . . . . . . . . . . . . . . . . . . 48

7 Conclusions and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . 51

Appendix A Key Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

Appendix B Execution Times . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

Appendix C Full ASPCCG Benchmarks . . . . . . . . . . . . . . . . . . . . . . . 55



v

List of Figures

1 Typical ASP system architecture . . . . . . . . . . . . . . . . . . . . . . . 1

2 Example acyclic graph for topological sorting . . . . . . . . . . . . . . . . 9

3 Example graph with cycles . . . . . . . . . . . . . . . . . . . . . . . . . . 10

4 Typical ASP system architecture extended with PROJECTOR . . . . . . . . 10

5 Left: The dependency graph GΠ2; Right: The dependency graph GΠ3 . . . . 15

6 Left: The argument dependency graph Ga
Π2

; Right: The argument depen-

dency graph Ga
Π3

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

7 Left: The simple component graph Gsc
Π2

; Right: The simple component

graph graph Gsc
Π3

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

8 Example of using PREDICTOR as an imported library . . . . . . . . . . . . 40

9 Example of using PREDICTOR through the command line interface . . . . . 40

10 Typical ASP system architecture extended with PROJECTOR using PREDIC-

TOR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

11 Grounding size factor for instances of ENC1 . . . . . . . . . . . . . . . . . 55

12 Grounding size factor for instances of ENC7 . . . . . . . . . . . . . . . . . 56

13 Grounding size factor for instances of ENC19 . . . . . . . . . . . . . . . . 56

List of Tables

1 Feature and version details for benchmark programs . . . . . . . . . . . . . 44

2 Average error factor for benchmark programs, with and without keys . . . . 45

3 Average grounding size factor of PROJECTOR and PRD-PROJECTOR . . . . 49

4 Key information for benchmark programs . . . . . . . . . . . . . . . . . . 53

5 Average execution time factor of PROJECTOR and PRD-PROJECTOR . . . . 54



1

1 Introduction

Answer set programming (ASP) (Brewka et al. 2011) is a declarative programming paradigm

geared towards knowledge representation and solving difficult combinatorial search prob-

lems. Unlike problem solutions utilizing procedural programming, answer set programs

are defined declaratively, leaving only the task of modeling the application as a set of logic

rules for the programmer. These logic rules define a problem instance to be solved. An

ASP system is then capable of producing all solutions / answer sets that are supported by

these rules through automated reasoning. Essentially, ASP systems provide a generic search

platform to the developer.

Typical ASP system architecture consists of a two step process, depicted in Figure 1

(Lierler 2017). The first step transforms a non-ground logic program into a semantically

equivalent program without variables (such a program is called a ground program). This

step expands the number of logic rules in the program, often significantly. The number of

logic rules in a grounded program is referred to as the grounding size of a program. The

grounding step is the focus of our attention in this thesis. We introduce this step at greater

detail in Section 2.

Grounded
Program

Logic
Program Grounder Answer

SetsASP Solver

Figure 1: Typical ASP system architecture

The second step of ASP systems is to solve the grounded logic program and produce the

answer sets, also referred to as stable models. The search algorithms implemented in ASP

solvers are closely related to those in the field of SAT solving (Lierler 2017).

The task of producing an ASP solution to a problem is reduced to modeling the problem’s

search space and its constraints. As a result, developing a solution to some problems can be

much easier than the same task using an imperative algorithm tailored to a domain. In fact,

it is often the case that problems requiring complex search can be solved more effectively
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using SAT than procedural algorithms designed specifically for the problem instance thanks

to the number of optimizations in SAT solvers (Rossi et al. 2008). Due to the relation

between SAT and ASP solving procedures it is reasonable to believe the same observation is

applicable in ASP.

However, the intuitive ASP encodings are not always the most optimal. As in imperative

programming paradigms, ASP programs often require careful design and expert knowledge

in order to achieve performant results (Bichler et al. 2016). One way to mitigate this issue is

to introduce automated rewriting techniques that alleviate the burden of optimization from

the programmer. Here, we focus on rewriting techniques performed on non-ground logic

programs (ASP logic programs prior to being input to a grounder) (Bichler 2015, Bichler

et al. 2016, Eiter, Fink, Tompits, Traxler & Woltran 2006, Eiter, Traxler & Woltran 2006,

Hippen & Lierler 2019). While many rewriting techniques of this kind exist, not all of them

guarantee that the rewritten program is solved faster. Grounding size has been shown to

be predictive of a programs performance, enabling it to be used as an “optimality” metric

(Gebser et al. 2011). Unfortunately, the grounding step is usually expensive and accounts

for a reasonable chunk of an ASP system’s runtime. Thus, obtaining the grounding size

by grounding in order to elicit light on the potential performance of a given encoding is

unrealistic.

To solve this issue we have implemented a new system, called PREDICTOR, designed to

estimate the grounding size of a non-ground logic program. This system utilizes statistics

gathered from a basic parsing of the program in order to extrapolate information about the

grounding size. To achieve this, we utilize a simplified form of the grounding algorithms

implemented by answer set programming grounder DLV (Faber et al. 2012) while taking

inspiration from join-order size estimations in relational databases (Silberschatz et al. 1997).

System PREDICTOR is developed to be used independent of the grounding and solving

system chosen.

Thesis Outline In Section 2, we start by presenting necessary notation for understanding
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ASP logic programs, the grounding procedures used in ASP systems, and additional infor-

mation to understand the implementation of PREDICTOR. We continue by describing the

ASP optimization tool, PROJECTOR (Hippen & Lierler 2019), which we later utilize for

evaluation of system PREDICTOR. In Section 3 we discuss motivating work and present the

problem statement. In Section 4 we present the implementation details of system PREDIC-

TOR. In Section 5 we describe how PREDICTOR is integrated into PROJECTOR. In Section 6

we provide both an intrinsic evaluation of the accuracy of PREDICTOR and an extrinsic

evaluation of PREDICTOR when used as a guide for rewritings produced by PROJECTOR.

Finally, in Section 7 we summarize our findings and describe potential future work.

2 Preliminaries

2.1 Basic Terminology

We first consider the vocabulary necessary to understanding the syntax and semantics of

the ASP formalism. An atom is an expression p(t1, ..., tk) where p is a predicate symbol of

arity k ≥ 0 and t1, ..., tk are terms. We say atom of this form is defined by predicate symbol

p. For an atom a and an index 1 ≤ i ≤ k, by ai we denote the term ti. A term is either an

object constant or a variable.

Example 2.1 An atom p(1, X, Y ) is such that

• 1 is an object constant

• symbols X, Y are variables (here we use the standard convention for identifiers in

logic programming where they start with a capital letter to denote variables), and

• p is a predicate symbol of arity 3.

A rule of a logic program is of the form

a0 ← a1, ..., am, not am+1, ..., not an. (1)
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where n ≥ m ≥ 0, a0 is either an atom or symbol ⊥, and a1, ..., an are atoms. We refer to

a0 as the head of the rule and an expression

a1, ..., am, not am+1, ..., not an

as the body of the rule. We refer to atoms a and their negations not a as literals. To literals

a1, ..., am we refer as positive, whereas to literals not am+1, ..., not an we refer as negative.

For a rule r, by H(r) we denote the head atom of r. By B+(r) we denote the set of positive

literals in the body of r and by B−(r) the set of negative literals in the body of r. We also

use B(r) to denote B+(r) ∪ B−(r). We say that r is positive if B−(r) = ∅. We call a rule

with an empty body (B(r) = ∅) a fact while a rule whose head is ⊥ we call a constraint.

We can obtain the set of variables present in an atom a by vars(a). We can obtain the set

of variables present in a rule r by vars(r). A rule r is safe if each variable in r appears in

B+(r).

Example 2.2 Let a be the atom q(A,B), then vars(a) = {A,B}.

Example 2.3 Let r be the rule

p(A)← q(A,B), r(1, A), not s(B). (2)

Then vars(r) = {A,B}.

Example 2.4 Rule (2) is safe while both

p(A).

p(A)← not q(A).

are unsafe rules.

A logic program is a finite set of safe rules. We call programs containing variables

as non-ground ASP programs. For an ASP program Π, we use p[i] to identify predicate
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arguments, where p is a predicate and i is a valid argument index for the predicate.

Example 2.5 Consider the following non-ground ASP program Π1:

p(1). p(2).

r(3).

q(X, 1)← p(X). (3)

Predicate argument p[1] is valid for Π1 while p[2] is not because the argument index 2 is not

valid for p.

By oc(p[i]) we denote the set of object constants occurring in the head atom defined

by predicate p at argument index i for all rules. We denote the cardinality of oc(p[i]) by

|oc(p[i])|. For an ASP program Π, we extend this notation so that oc(Π) denotes the set of

object constants occurring in head atoms of all rules in Π.

Example 2.6 Let us consider the set of object constants and their cardinalities for program Π1.

We can see that:

oc(p[1]) = {1, 2}

|oc(p[1])| = 2

oc(r[1]) = {3}

oc(q[1]) = ∅

oc(q[2]) = {1}

oc(Π1) = {1, 2, 3} (4)

|oc(Π1)| = 3
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2.2 Grounding Algorithms of DLV

Typical ASP technology requires that an ASP program is grounded before it is solved. The

grounding process involves instantiating variables in the program with all object constants

of the program, producing a program without variables.

Example 2.7 Recall Π1 and its set of object constants given in (4). Grounding program Π1

will produce the following ground program, gr(Π1):

p(1). p(2).

r(3).

q(1, 1)← p(1).

q(2, 1)← p(2).

q(3, 1)← p(3). (5)

For some ASP program Π, by |gr(Π)| we denote the grounding size of gr(Π), where we

understand the grounding size of a program as the number of rules present in the grounded

program. For some rule r in Π, by |grr(Π)| we denote the grounding size of r with respect

to program Π, where we understand the grounding size of a rule r as the number of rules

present in the ground program generated by r (all rules resulting from the instantiation of r).

Example 2.8 Let r be rule (3). Then,

|gr(Π1)| = 6

|grr(Π1)| = 3

It is vital to ASP systems that these ground programs are computed efficiently. Ground-

ing procedures utilize “intelligent restrictions” that can be observed about the rules that

usually decrease, often drastically, the grounding size (Lierler et al. 2016). As such, these

intelligently grounded programs are a “subset” of the ground programs discussed before,



7

such as gr(Π1), while still having the same answer sets. Such a program is called an image.

Grounding procedures are usually not straightforward.

Example 2.9 The following program, igr(Π1), is an image of gr(Π1):

p(1). p(2).

r(3).

q(1, 1)← p(1).

q(2, 1)← p(2).

The grounding size, which we denote by |igr(Π1)|, is 5. Similarly, let r be rule (3). The

grounding size of r, denoted by |igrr(Π1)|, is 2.

Notice how in this intelligent grounding, rule (5) is no longer present. Intuitively, this

rule defined an impossible case, as p(3) could never be true in Π1. The rule can be eliminated

from the grounding while still obtaining the same answer sets. Some systems capable of

performing this task include LPARSE (Syrjänen 2000), GRINGO (Gebser et al. 2007), and

IDLV (a newer version of DLV) (Calimeri et al. 2017). For this thesis, we are mainly looking

at the intelligent grounding procedure implemented by DLV (Faber et al. 2012).

The ground extensions of a predicate within an intelligently grounded program igr(Π)

are the set of terms associated with the predicate in the program.

Example 2.10 In igr(Π1) from Example 2.9, the ground extensions of predicate p is the set

of tuples

{〈1〉, 〈2〉},

while the ground extensions of predicate q is the set of tuples

{〈1, 1〉, 〈2, 1〉}.

For a predicate argument p[i] and an intelligently grounding program igr(Π), by V (p[i])
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we denote the argument size of p[i] to be the number of distinct object constants present in

the ground extensions of p in igr(Π) for the corresponding argument position i.

Example 2.11 The predicates in igr(Π1) from Example 2.9 have the following argument

sizes:

V (p[1]) = 2

V (r[1]) = 1

V (q[1]) = 2

V (q[2]) = 1

For a rule r and a variable X in r, by args(r,X) we denote the set of predicate arguments

constructed as follows:

{p[i] | X is an argument of some predicate p at argument index i in B+(r)}

Example 2.12 Let r be rule (2). Then,

args(r, A) = {q[1], r[2]}

args(r, B) = {q[2]}

2.3 Graphs

In this subsection we introduce several graph concepts important to this thesis. A topological

sort of a directed acyclic graph G = 〈N,E〉 is an ordering of its nodes such that for every

edge (u, v) ∈ E, u is placed before v in the ordering. It is possible that there are multiple

topological sorts for any given graph.
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Example 2.13 The graph given in Figure 2 has 3 possible topological sorts.

p, q, r, s

p, r, q, s

r, p, q, s

p

q

r

s

Figure 2: Example acyclic graph for topological sorting

Given a directed graph G = 〈N,E〉, a set of nodes N ′ ⊆ N is said to be strongly

connected if there exists a path between all nodes in N ′. A strongly connected component is

a maximal strongly connected set of nodes such that no additional nodes can be added to the

set without making the set no longer strongly connected. Note that in an acyclic graph, all

strongly connected components will contain exactly one node.

Example 2.14 The strongly connected components in the graph in Figure 3 are:

{p}, {r}, {q, s}
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p

q

r

s

Figure 3: Example graph with cycles

2.4 System PROJECTOR

System PROJECTOR (Hippen & Lierler 2019) is a program designed to rewrite non-ground

ASP programs. The goal of PROJECTOR is to reduce the grounding size of a program

automatically. Figure 2.4 displays the intended use of PROJECTOR within a typical ASP

solving infrastructure. PROJECTOR takes as input a non-ground ASP logic program and

outputs a rewritten program. One can see that all rewriting occurs before any grounding is

done. As such, PROJECTOR is agnostic to both the grounding and solving systems so long as

the ASP dialect, ASP-Core-2 (Calimeri et al. 2012), supported by PROJECTOR is compatible

with that of the chosen grounder and solver pair.

Grounded
Program

Rewritten
Logic

Program
GrounderLogic

Program PROJECTOR Answer
SetsASP Solver

Figure 4: Typical ASP system architecture extended with PROJECTOR

Overall, the task of PROJECTOR is to divide a rule into multiple smaller rules such that

each rule has fewer variables than the original. The technique utilized by PROJECTOR is

inspired by projection rewriting used in SQL query optimization in relational databases

(Faber et al. 1999). More specifically, each rule r is analyzed and a set V of variables is

identified for projection. Set V can contain any combination of variables present in the body

of r so long as they do not occur in the head of r. In order to remove these variables from

the original rule, all literals containing variables in V are moved into a new rule, called the
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projection rule. The projection rule defines a fresh predicate with respect to the program,

whose terms correspond to the variables present in the projection rule that are not in V . The

literals that are removed in the original rule are replaced with the new literal defined by the

fresh predicate introduced in the projection rule. This revised version of the original rule is

referred to as the replacement rule.

Example 2.15 Let us consider the following rule r:

p(K)← q(K,P ), r(K,L), s(L).

Because variables P,L are present only in the body, we can compute all possible sets

(excluding the empty set) V to be

{{P,L}, {P}, {L}}

The projection of V = {P} follows:

q′(K)← q(K,P ).

p(K)← q′(K), r(K,L), s(L).

The projection of V = {L} follows:

rs′(K)← r(K,L), s(L).

p(K)← q(K,P ), rs′(K).

Note that there is no projection for {P,L}, as the resulting projection rule coincides with

the original rule.

For more detailed information on how to derive the results for the projections shown in

Example 2.15 as well as details on PROJECTOR and its performance, we refer the reader
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to (Hippen & Lierler 2019).

2.4.1 Key Issues of PROJECTOR

The algorithms used to compute intelligently grounded programs are expensive. Additionally,

programs may have grounding sizes that are too large to deal with in memory, leaving

grounding as either a major bottleneck or roadblock (Gebser et al. 2011). Selecting the best

rewritings prior to or during grounding may alleviate some of the grounding bottleneck.

Many efforts have been put forth to perform automatic rewrites on non-ground ASP

programs (Bichler 2015, Bichler et al. 2016, Eiter, Fink, Tompits, Traxler & Woltran 2006,

Eiter, Traxler & Woltran 2006, Hippen & Lierler 2019), yet not all techniques guarantee

that the rewritten program runs faster. Gebser et al. (2011) has provided a set of guidelines

that can be used to help tune non-ground ASP programs. One such guideline suggests to

watch out for grounding size, as reducing the grounding size of a program often leads to

faster solve times. We take this guideline as the key to predicting the quality of rewritings,

so that if a rewriting system produces a program whose grounding is smaller than that of an

original program, then we consider the performance of a rewriting system as satisfactory.

As mentioned before, the main goal of PROJECTOR is to reduce the grounding size of

a program automatically. Unfortunately, the rewritings performed by PROJECTOR do not

guarantee a reduction in grounding size. In addition to this, there are cases where there

are multiple rewritings possible for a single rule (because there are multiple candidates for

V ) and choosing one rewriting could eliminate the possibility of performing others. As

such, in order to maximize the performance of a program, it is important to identify the best

rewritings to perform, if any. It was identified that one of the major caveats of PROJECTOR

is that the heuristics implemented may often not identify projections that result in a smaller

grounding size. Additionally, the heuristics used in PROJECTOR do not support the ability to

perform no rewrite at all. If a projection rewrite is possible it will always perform one. We

address how these issues are solved in Section 5.
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3 Motivating Work and Problem Statement

System LPOPT (Bichler 2015, Bichler et al. 2016) is an ASP program pre-processing tool

that rewrites rules through tree-decomposition. Like PROJECTOR, system LPOPT may divide

a rule into multiple smaller rules with the guarantee that each rule has fewer variables than

the original. Unlike PROJECTOR, however, LPOPT derives its rewritings by converting a

given rule into a tree and computing the tree-decompositions via the general-purpose library,

htd1. An algorithm is then used to convert the decomposition back into multiple ASP rules to

replace the original rule. Nonetheless, like PROJECTOR, the rewritings produced by LPOPT

do not guarantee that the grounding size will be reduced.

Grounder IDLV has implemented the tree-decomposition based rewriting techniques

introduced by LPOPT as part of its default optimizations (Calimeri et al. 2018). However,

unlike LPOPT, grounder IDLV utilizes heuristics tailored towards its grounding procedures.

In order to achieve this, they compute grounding size estimations of the rules produced in

each rewriting. These estimations are used in deciding which rewriting decomposition, if any,

to use. They found that this grounding-size heuristic-based approach on average improves

the running time over both IDLV (without this optimization) and LPOPT combined in pipeline

with IDLV. Indeed, IDLV is capable of predicting the grounding size of individual rules,

however it is only capable of performing these predictions immediately before grounding the

rule it is predicting. As such, it is not possible to predict the grounding size of an arbitrary

rule prior to starting the grounding process. Naturally, it is also not possible to predict the

grounding size of the entire program. These predictions are also not portable; they are tightly-

coupled with the grounder IDLV. Thus, this cannot be used with other grounding systems

as-is. The success of their approach led us to investigating the possibility of developing

a stand alone tool that we call PREDICTOR whose functionality is to produce estimates

for the grounding size of a given program or rule in some context without performing

grounding itself.

1https://github.com/mabseher/htd



14

4 PREDICTOR System Implementation

System PREDICTOR is based on the grounding procedures implemented by grounder

DLV (Faber et al. 2012). The primary difference is that, instead of building the ground

instances of each rule in the program, PREDICTOR builds statistics about the predicates and

their arguments. This system is capable of producing estimates of the grounding size for

most non-ground ASP programs.

4.1 Estimation Formulas

We begin this subsection by introducing the fundamental concepts for understanding the

order to compute argument size estimations. We then introduce estimation formulas in

two parts. First, we describe a methodology for computing estimations for a class of

logic programs called tight programs. We then extend these formulas to work for arbitrary

programs.

The dependency graph of a program Π is a directed graph GΠ = 〈N,E〉 such that N is

the set of predicates appearing in Π and E contains the edge (p, q) if there is a rule r in Π in

which p occurs in B+(r) and q occurs in the head of r. We say that a predicate q depends on

some predicate p if there exists a path from p to q. A program Π is tight if GΠ is acyclic,

otherwise the program is non-tight.

Example 4.1 Recall program Π1 from Example 2.5. Program Π2 is the program Π1 extended

with a few additional rules. Program Π2 is shown below:

p(1). p(2).

r(2).r(3).r(4).

q(X, 1)← p(X). (6)

s(X, Y, Z)← r(X), p(X), p(Y ), q(Y, Z). (7)
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Program Π3 is the program Π2 extended with the rule:

q(Y,X)← s(X, Y, Z). (8)

Figure 5 shows the dependency graphs for Π2 (left) and Π3 (right). Notice how GΠ2 is

acyclic while GΠ3 is not.

p

q

r

s

p

q

r

s

Figure 5: Left: The dependency graph GΠ2; Right: The dependency graph GΠ3 .

The dependency graph serves well as a visualization for how to compute argument size

estimates based on dependencies. In GΠ2 , it is easy to see that before we compute argument

size estimates for predicate arguments of predicate s, we compute the estimates for p, q,

and r. Similarly before we compute estimates for q we compute the estimates for p. One can

obtain the order to compute all estimates of the predicates of Π2 by performing a topological

sort on GΠ2 . However, when looking at GΠ3 there is an issue. In order to compute the

estimates for s, we compute the estimates for p, q, and r. However, in order to compute

the estimates for q, we compute the estimates for p and s. Because s depends on q and q

depends on s, we have a circular dependency between q and s. Initially, we only consider

the case of tight programs, however we discuss how we handle this issue in Section 4.1.2.

It is convenient to build on the dependency graph to use predicate arguments instead

of predicates. The argument dependency graph of a program Π is a directed graph

Ga
Π = 〈N,E〉 such that N is the set of valid predicate arguments in Π and E contains

the edge (p[i], q[i′]) if there is a rule r in Π in which p[i] contains a variable in B+(r)
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and q[i′] contains that same variable in the head of r. We call those predicates arguments

with no incoming edges root predicate arguments.

Example 4.2 Recall programs Π2 and Π3 from Example 4.1. Figure 6 shows the argument

dependency graph for Π2 (left) and Π3 (right).

p[1]

q[1]

r[1]

s[2]s[1] s[3]

q[2] p[1]

q[1]

r[1]

s[2]s[1] s[3]

q[2]

Figure 6: Left: The argument dependency graph Ga
Π2

; Right: The argument dependency
graph Ga

Π3
.

In program Π2, predicate arguments r[1], p[1], and q[2] are root predicate arguments. In

program Π3, predicate arguments r[1] and p[1] are root predicate arguments.

4.1.1 Tight Programs

We now introduce some intermediate formulas for constraining our estimates based on

the data. These intermediate formulas are inspired by query optimization techniques in

relational databases, e.g., see Chapter 13 in (Silberschatz et al. 1997).

Data Distribution It is useful to keep track of some information that helps us to guess what

the actual values may be in the grounded program without storing all values. Let p[i] be a

predicate argument. We now define a useful concept of numeric predicate arguments.

If p[i] is a root predicate argument, we consider p[i] as numeric if all values in oc(p[i])

are numeric. If p[i] is not a root predicate argument, then p[i] is numeric if there exists no

non-numeric q[i′] such that there is a path from q[i′] to p[i] in the argument dependency

graph.

Example 4.3 All predicate arguments in Π2 from Example 4.1 are numeric. However, if we
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append the following fact to the program:

r(a).

, then r[1] and s[1] become non-numeric.

We introduce a methodology for tracking the range of values for predicate arguments

that are numeric. To provide intuitions for the processes, consider the following intelligent

grounding of Π2 from Example 4.1:

p(1).p(2).

r(2).r(3).r(4).

q(1, 1)← p(1).

q(2, 1)← p(2).

s(2, 1, 1)← r(2), p(2), p(1), q(1, 1). (9)

s(2, 1, 1)← r(2), p(2), p(2), q(2, 1). (10)

Note that the intelligent grounding of rule (7) produces rules (9), (10), while variable X

from rule (7) is only ever replaced with the object constant 2. Intuitively, this is due to the

intersection oc(p[1]) ∩ oc(r[1]) = {2}. We attempt to model this restriction by considering

what minimum and maximum values are possible for each predicate argument in the

intelligently grounded program. We then use these values to define an “upper restriction” to

the argument size for each predicate argument.

We begin with intuitions behind definitions of minimum and maximum estimations for

some predicate argument p[i]. Consider the case of maximum estimates. If p[i] is a root pred-

icate argument, we simply find the maximum value of oc(p[i]). Otherwise, let us consider

some rule with a head atom defined by p containing a variable X at argument position i.

This rule gives rise to multiple ground rules in the processes of ground instantiation. Among
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these ground rules, we want to identify what the maximum value appears at p[i] in the heads.

To do so, we find the maximum estimates for predicate arguments in the positive body of

the rule that contain X . Based on typical intelligent grounding procedures, we know that X

will never be instantiated by a value greater than the minimum of those estimates. Here, we

found the maximum estimate relative to a single rule. Intuitively, the maximum estimate of

p[i] with respect to the entire program is the maximum of values computed in this manner

for each rule and oc(p[i]). In the case of minimum estimates, we mirror the ideas behind

maximum estimates. We now proceed to the formalization of this estimation procedure.

For a predicate argument p[i] in some program Π, we define the minimum and maximum

estimates for tight programs, mintight
est (p[i]) and maxtight

est (p[i]), respectively, as follows:

• If p[i] is a root predicate argument in the argument dependency graph of the program,

we simply use the smallest object constant present in the heads containing an atom

defined by p for argument position i, i.e.

mintight
est (p[i]) = min

(
oc(p[i])

)
maxtight

est (p[i]) = max
(
oc(p[i])

)
• Otherwise, let R represent the set of rules r ∈ Π such that H(r) is defined by p and

H(r)i is a variable. Then,

mintight
est (p[i]) = min

(
oc(p[i])∪{
max

(
{mintight

est (p′[i′]) | p′[i′] ∈ args(r,H(r)i)}
)
| r ∈ R

})

maxtight
est (p[i]) = max

(
oc(p[i])∪{
min

(
{maxtight

est (p′[i′]) | p′[i′] ∈ args(r,H(r)i)}
)
| r ∈ R

})

We note that these recursive definitions are well defined as we are in the case of tight



19

programs so that the estimates for “body” predicate arguments present recursively in the

definition are always computed prior to “head” predicate arguments.

Now that we have estimates for minimum and maximum values, we estimate the size

of the range of values. We understand the range of a predicate argument to be the number

of values we anticipate to see in the predicate argument within the intelligently grounded

program if the values were all integers between the minimum and maximum estimates. It

is possible that our minimum estimate for a given predicate argument is greater than its

maximum estimate. Intuitively, we understand that this indicates no ground rule will contain

the predicate argument in their heads. The number of values between the minimum and

maximum estimates may also be greater than the number of object constants in the program.

Naturally, in this case it makes sense to restrict the range to the number of object constants

in the program. We compute the range, rangetightest (p[i]) as follows:

rangetightest (p[i]) = min
({

max
({

0,maxtight
est (p[i])−mintight

est (p[i]) + 1
})

, |oc(Π)|
})

Example 4.4 The following shows the operations needed to compute the maximum estimate

for predicate argument s[1] in program Π2 from Example 4.1:

maxtight
est (s[1]) = max

(
oc(s[1]) ∪

{
min

({
maxtight

est (r[1]),maxtight
est (p[1])

})})
maxtight

est (r[1]) = max
(
oc(r[1])

)
= 4

maxtight
est (p[1]) = max

(
oc(p[1])

)
= 2

maxtight
est (s[1]) = max

(
∅ ∪

{
min

({
4, 2
})})

= max
({

2
})

= 2

Without showing the intermediate operations needed, we note that mintight
est (s[1]) = 2. Using
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this, we can compute the range estimate for s[1]:

rangetightest (s[1]) = min
({

max
({

0,maxtight
est (s[1])−mintight

est (s[1]) + 1
})

, |oc(Π2)|
})

rangetightest (s[1]) = min
({

max
({

0, 2− 2 + 1
})

, |oc(Π2)|
})

= min
({

1, 4
})

= 1

Note that these equations assume that considered predicate arguments are numeric. If

predicate argument p[i] is not numeric, we assume the following:

rangetightest (p[i]) = |oc(Π)|

Argument Size Estimates We begin with an informal definition of argument size esti-

mations for some predicate argument p[i]. If p[i] is a root predicate argument, we simply

estimate that the argument size is |oc(p[i])|. Otherwise, let us consider some rule with a

head atom defined by p containing some variable X at argument position i. We want to find

the number of values X could be replaced with in an intelligent grounding. To do so, we

find the argument size estimate for predicate arguments in the positive body of the rule that

contain X . Based on typical intelligent grounding procedures, we know that X can never

be more values than the minimum of those argument size estimations. Here, we have only

found the argument size estimate relative to a single rule, but the argument size estimate

of p[i] with respect to the entire program is the sum of the number of values computed in

this manner for each rule, in addition to |oc(p[i])|. It is easy to see that the sum over all

rules may heavily overestimate the argument size. We use our range estimation discussed

before to restrict the estimation. We now proceed to the formalization of the argument size

estimation procedure.

We note that the general pattern of this formula is very similar to that of the minimum

and maximum estimation formulas. Let p[i] be a predicate argument in some program Π.

We define a argument size estimate for tight programs, V tight
est (p[i]), as follows:

• If p[i] is a root predicate argument in the argument dependency graph of the program,
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we simply count the number of distinct object constants present in the heads containing

an atom defined by p for argument position i, i.e.

V tight
est (p[i]) = |oc(p[i])|

• Otherwise, let R represent the set of rules r ∈ Π such that H(r) is defined by p and

H(r)i is a variable. Then,

V tight
est (p[i]) = min

({
|oc(p[i])|+

∑
r∈R

min
(
{V tight

est (p′[i′]) | p′[i′] ∈ args(r,H(r)i)}
)
,

rangetightest (p[i])
})

Example 4.5 The following shows the operations needed to compute the argument size

estimates for predicate argument s[2] in program Π2 from Example 4.1, given

that rangetightest (s[2]) = 2:

V tight
est (s[2]) = min

({
|oc(s[2])|+ min

(
{Vest(p[1]), Vest(q[1])}

)
, rangetightest (s[2])

})
V tight
est (p[1]) = |oc(p[1])| = 2

V tight
est (q[1]) = min

({
|oc(q[1])|+ min

(
{Vest(p[1])}

)
, rangetightest (q[1])

})
V tight
est (q[1]) = min

({
0 + min({2}), 2

})
= 2

V tight
est (s[2]) = min

({
0 + min

(
{2, 2}

)
, 2
})

= 2

4.1.2 Arbitrary Programs

To be able to process arbitrary programs (i.e. both tight and non-tight programs), we must

manage to resolve the circular dependency such as the one present in Π3. We introduce a

new graph to visualize how to resolve this issue. This graph is a simplified version of the

component graph introduced in (Faber et al. 2012), altered for the necessary functions of

PREDICTOR.



22

The simple component graph of a program Π is an acyclic directed graph Gsc
Π = 〈N,E〉

such that N is the set of strongly connected components in the dependency graph and E

contains the edge (P,Q) if there is an edge (p, q) in GΠ where p ∈ P and q ∈ Q. For tight

programs, the simplified component graph will be effectively identical to its dependency

graph, with the only difference being that the predicate nodes are replaced with predicate

sets that only contain a single corresponding predicate each. Let p be a predicate in some

component C of Gsc
Π . We will refer to C as the component of p. Figure 7 shows the simple

component graphs for Π2 (left) and Π3 (right). Notice how both Gsc
Π2

and Gsc
Π3

are acyclic.

{p}

{q}

{r}

{s}

{p} {r}

{q,s}

Figure 7: Left: The simple component graph Gsc
Π2

; Right: The simple component graph
graph Gsc

Π3
.

Like with the dependency graph, we can use the simple component graph as a visualiza-

tion for how to compute argument size estimates. We say that a predicate q strongly depends

on some predicate p if there exists a path from P to Q where p ∈ P and q ∈ Q. While

tight programs have the same dependencies as strong dependencies, non-tight programs lose

those dependencies between predicates that are grouped within the same component. It is

important to note that this dependency loss makes PREDICTOR less suited towards non-tight

programs. With tight programs, we compute estimates while only concerning ourselves with

the order of estimating predicates. For non-tight programs, we consider both the order in

which we evaluate predicates as well as the order in which we evaluate rules associated with

components that consist of several predicates.

Let C be some node in Gsc
Π . We call a module of C, denoted by PC , as the set of rules

whose head contains an atom defined by some predicate in C. A rule r ∈ PC is a recursive
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rule if there exists an atom in the positive body of r that defines some predicate p ∈ C;

otherwise r is an exit rule. We say a predicate p is a recursive predicate if p occurs in the

head of some recursive rule; otherwise it is an exit predicate. For tight programs, all rules

are exit rules and all predicates are exit predicates. Note that it is possible to have modules

with only recursive rules.

Example 4.6 The modules in program Π3 from Example 4.1 are:

P{p} = {p(1). p(2).}

P{r} = {r(2). r(3). r(4).}

P{q,s} = {q(X, 1)← p(X). s(X, Y, Z)← r(X), p(X), p(Y ), q(Y, Z).

q(Y,X)← s(X, Y, Z).}

The only recursive rules are:

s(X, Y, Z)← r(X), p(X), p(Y ), q(Y, Z).

q(Y,X)← s(X, Y, Z).

Therefore, the recursive predicates are s, q while the exit predicates are p, r.

In the sequel we consider components whose module contains an exit rule. For a

component C and its module PC , we construct a partition M1, ...,Mn (n ≥ 1) in the

following way: Let r be a rule in PC . If r is an exit rule, then r is in M1. Otherwise, r

is in Mk (k > 1) if for every predicate p ∈ C occurring in B+(r), there is a rule in

M1 ∪ ... ∪ Mk−1 such that its head atom is defined by p and there exists a predicate q

occurring in B+(r) such that there exists some rule in Mk−1 where its head atom is defined

by q. We refer to the unique partition created in this manner as the component partition of

C. We call elements of a component partition groups (the component partition is undefined

for components whose module does not contain an exit rule).
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Example 4.7 The component partition of {q, s} in Π3 from Example 4.1 follows:

M1 = {q(X, 1)← p(X).}

M2 = {s(X, Y, Z)← r(X), p(X), p(Y ), q(Y, Z).}

M3 = {q(Y,X)← s(X, Y, Z).}

Let p[i] be a predicate argument. We refer to the subset of rules in some group of a

component partition by M
p[i]
k (k ≥ 1) when it is the set of rules r ∈ Mk such that H(r) is

defined by p and H(r)i is a variable. By M
p[i]
1...k we denote the union M

p[i]
1 ∪ ... ∪M

p[i]
k .

Example 4.8 In program Π3, for predicate argument q[1]:

M
q[1]
1...3 = {q(X, 1)← p(X). q(Y,X)← s(X, Y, Z).}

We now revisit range and argument size estimation formulas for tight programs and

extend them for arbitrary programs. One may observe that these formulas are more complex

than their respective tight versions, yet they perform similar operations at their core. Intu-

itively, formulas for tight programs relied on predicate argument ordering given by acyclic

structure of a program’s dependency graph. Here in addition to some order provided by

the dependency graph we also rely on the order given to us by the component partition

corresponding to a given program.

Data Distribution Let p[i] be a numeric predicate argument in some program Π. Let C be

the component of p, where the module of C contains an exit rule. Let n be the cardinality

of the component partition of C, and j be an integer such that 1 ≤ j ≤ n. We define the

minimum estimation formula, minest(p[i]), as follows:

minest(p[i]) = mingroup
est (p[i], n)
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where

mingroup
est (p[i], j) =


mintight

est (p[i]), if p is an exit predicate

min
(
oc(p[i]) ∪

{
minrule

est (p[i], j, r) | r ∈M
p[i]
1...j

})
, otherwise

where

minrule
est (p[i], j, r) = max

({
minsplit

est (p[i], p′[i′], j) | p′[i′] ∈ args(r,H(r)i)
})

where

minsplit
est (p[i], p′[i′], j) =


mingroup

est (p′[i′], j − 1), if p′ is in the same component as p

minest(p
′[i′]), otherwise

The intermediate functions: mingroup
est (p[i], j), minrule

est (p[i], j, r), minsplit
est (p[i], p′[i′], j) pro-

vide a way to “shrink” the number of rules being considered for a given predicate argu-

ment. This is done through the “counter” argument, j, in order to avoid looping infinitely.

We note the strong similarity between the combined definitions of mingroup
est (p[i], j, r)

and minrule
est (p[i], j, r) compared to the corresponding tight formula mintight

est (p[i]). For-

mula minsplit
est (p[i], p′[i′], j) serves two purposes. If the predicate p′ is in the same component

as p, we decrement the “counter” argument j. Otherwise, we simply use the minimum

estimate for p′[i′] that is due to the computation relevant to another component. Note that

we assume ordering on components provided by the simple component graph.

Like with tight programs, the maximum estimation formula is extremely similar to the

minimum estimation formula. Let p[i] be a numeric predicate argument in some program

Π. Let C be the component of p, where the module of C contains an exit rule. Let n be the

cardinality of the component partition of C, and j be an integer such that 1 ≤ j ≤ n. We
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define the maximum estimation formula, maxest(p[i]), as follows:

maxest(p[i]) = maxgroup
est (p[i], n)

where

maxgroup
est (p[i], j) =


maxtight

est (p[i]), if p is an exit predicate

max
(
oc(p[i]) ∪

{
maxrule

est (p[i], j, r) | r ∈M
p[i]
1...j

})
, otherwise

where

maxrule
est (p[i], j, r) = min

({
maxsplit

est (p[i], p′[i′], j) | p′[i′] ∈ args(r,H(r)i)
})

where

maxsplit
est (p[i], p′[i′], j) =


maxgroup

est (p′[i′], j − 1), if p′ is in the same component as p

maxest(p
′[i′]), otherwise

Example 4.9 Let us name rules (6), (7), (8) as rules r1, r2, and r3 respectively. The

following shows the operations needed to compute the maximum estimate for predicate

argument q[1] in program Π3 from Example 4.1. Recall the modules and component partition

computed in Examples 4.6 and 4.7, respectively. We note that oc(q[1]) = oc(s[2]) = ∅ and

maxtight
est (p[1]) = 2. Then,

maxest(q[1]) = maxgroup
est (q[1], 3)

maxgroup
est (q[1], 3) = max

(
oc(q[1]) ∪

{
maxrule

est (q[1], 3, r1),maxrule
est (q[1], 3, r3)

})
maxrule

est (q[1], 3, r1) = min
({

maxsplit
est (q[1], p[1], 3)

})
= maxest(p[1]) = maxgroup

est (p[1], 1) = maxtight
est (p[1]) = 2

maxrule
est (q[1], 3, r3) = min

({
maxsplit

est (q[1], s[2], 3)
})
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= maxgroup
est (s[2], 2)

= max
(
oc(s[2]) ∪

{
maxrule

est (s[2], 2, r2)
})

maxrule
est (s[2], 2, r2) = min

({
maxsplit

est (s[2], p[1], 2),maxsplit
est (s[2], q[1], 2)

})
maxsplit

est (s[2], p[1], 2) = maxest(p[1]) = 2

maxsplit
est (s[2], q[1], 2) = maxgroup

est (q[1], 1)

= max
(
oc(q[1]) ∪

{
maxrule

est (q[1], 1, r1)
})

maxrule
est (q[1], 1, r1) = min

({
maxsplit

est (q[1], p[1], 0)
})

= maxest(p[1]) = 2

maxsplit
est (s[2], q[1], 2) = max

(
∅ ∪

{
2
})

= 2

maxrule
est (s[2], 2, r2) = min

({
2, 2
})

= 2

maxrule
est (q[1], 3, r3) = max

(
∅ ∪

{
2
})

= 2

maxgroup
est (q[1], 3) = max(∅ ∪ {2, 2}) = 2

maxest(q[1]) = 2

We compute the range estimate for arbitrary programs in the same manner as we

compute the range estimates of tight programs. We replace the min and max formulas for

tight programs with their corresponding arbitrary formulas:

rangeest(p[i]) = min
({

max
({

0,maxest(p[i])−minest(p[i]) + 1
})

, |oc(Π)|
})

We also apply the same assumption for non-numeric arguments. Let p[i] be non-numeric.

Then,

rangeest(p[i]) = |oc(Π)|
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Furthermore, if the module of C does not contain an exit rule, then

rangeest(p[i]) = 0

Example 4.10 The following shows the operations needed to compute the range estimate

for predicate argument q[1] in program Π3 from Example 4.1. Recall from Example 4.9 that

maxest(q[1]) = 2. We note that minest(q[1]) = 1 and |oc(Π3)| = 4. We compute the range

estimate for q[1]:

rangeest(q[1]) = min
({

max
({

0,maxest(q[1])−minest(q[1]) + 1
})

, |oc(Π3)|
})

rangeest(q[1]) = min
({

max
({

0, 2− 1 + 1
})

, |oc(Π3)|
})

= min
({

2, 4
})

= 2

Argument Size Estimates Let p[i] be a predicate argument in some program Π. Let C be

the component of p, where the module of C contains an exit rule, and let n be the cardinality

of the component partition of C. We define the formula for finding the argument size

estimates, Vest(p[i]), as follows:

Vest(p[i]) = V group
est (p[i], n)

where

V group
est (p[i], j) =


V tight
est (p[i]), if p[i] is an exit predicate

min
({
|oc(p[i])|+

∑
r∈Mp[i]

1...j
V rule
est (p[i], j, r),

rangeest(p[i])
})

, otherwise

where

V rule
est (p[i], j, r) = min

({
V split
est (p[i], p′[i′], j) | p′[i′] ∈ args(r,H(r)i)

})
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where

V split
est (p[i], p′[i′], j) =


V group
est (p′[i′], j − 1), if p′ is in the same component as p

Vest(p
′[i′]), otherwise

Like with the minimum and maximum estimation formulas, the intermediate functions:

V group
est (p[i], j), V rule

est (p[i], j, r), V split
est (p[i], p′[i′], j) provide a way to “shrink” the number

of rules being considered for a given predicate argument.

Furthermore, if the module of C does not contain an exit rule, then

Vest(p[i]) = 0

Example 4.11 Let us again recall rules (6), (7), (8) as rules r1, r2, and r3 respectively. The

following shows the operations needed to compute the argument size estimate for predicate

argument q[1] in program Π3. We note that rangeest(s[2]) = 2, |oc(q[1])| = |oc(s[2])| = 0,

|oc(Π3)| = 4, and V tight
est (p[1]) = 2. Then,

Vest(q[1]) = V group
est (q[1], 3)

V group
est (q[1], 3) = min

({
|oc(q[1])|+ V rule

est (q[1], 3, r1) + V rule
est (q[1], 3, r3), rangeest(q[1]), |oc(Π3)|

})
V rule
est (q[1], 3, r1) = min

({
V split
est (q[1], p[1], 3)

})
= Vest(p[1]) = V group

est (p[1], 1) = V tight
est (p[1]) = 2

V rule
est (q[1], 3, r3) = min

({
V split
est (q[1], s[2], 3)

})
= V group

est (s[2], 2)

= min
({
|oc(s[2])|+ V rule

est (s[2], 2, r2), rangeest(s[2]), |oc(Π3)|
})

V rule
est (s[2], 2, r2) = min

({
V split
est (s[2], p[1], 2), V split

est (s[2], q[1], 2)
})

V rule
est (s[2], p[1], 2) = Vest(p[1]) = 2

V split
est (s[2], q[1], 2) = V group

est (q[1], 1)
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= min
({
|oc(q[1])|+ V rule

est (q[1], 1, r1), rangeest(q[1]), |oc(Π3)|
})

V rule
est (q[1], 1, r1) = min

({
V split
est (q[1], p[1], 0)

})
= Vest(p[1]) = 2

V split
est (s[2], q[1], 2) = min

({
0 + 2, 2, 4

})
= 2

V rule
est (s[2], 2, r2) = min

(
{2, 2}

)
= 2

V rule
est (q[1], 3, r3) = min

({
0 + 2, 2, 4

})
= 2

V group
est (q[1], 3) = min

({
0 + 2 + 2, 2, 4

})
= 2

Here we can also see the impact that tracking the range of values can have on argument size

estimates. Had the object constants in Π3 been considered non-numeric, we would have

instead estimated that the argument size of q[1] is 4.

Keys We now borrow the concept of keys from relational databases. For some predicate p,

we refer to any set of predicate arguments of p that can uniquely identify all ground

extensions of p as a superkey of p.

Example 4.12 Let the following be the ground extensions of p:

{〈1, 1, a〉, 〈1, 2, b〉, 〈1, 3, b〉,

〈2, 1, c〉, 〈2, 2, c〉, 〈2, 3, a〉,

〈3, 1, d〉, 〈3, 2, c〉, 〈3, 3, b〉}

It is easy to see that both {p[1], p[2]} and {p[1], p[2], p[3]} are superkeys of p, while {p[1]}

is not a superkey.

We say a superkey K of p is a candidate key of p if there is no other superkey K ′

of p such that K ′ ⊂ K. In other words, a candidate key is a minimal superkey. From

Example 4.12, only {p[1], p[2]} is a candidate key. A primary key of p is a single chosen
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candidate key. A predicate may have at most one primary key. For the purposes of this

thesis, the primary key is manually determined. We discuss how the user specifies keys

in Section 4.3. It is possible that some predicates do not have primary keys specified. To

handle such predicates, we define key(p) to mean the following:

key(p) =


the primary key of p, if p has a primary key

{p[1], ..., p[n]}, otherwise

where n is the arity of p. We call a predicate argument p[i] a key predicate argument if it is

in key(p).

Let r be a rule. By kvars(r) we denote the set of all variables that occur only in key

predicate arguments in rule r.

Example 4.13 Let r be the rule:

⊥ ← p(X, Y, V ), q(V ), r(X). (11)

and let the keys be:

keys(p) = {p[1], p[2]}

keys(q) = {q[1]}

keys(r) = {r[1]}

Then,

kvars(r) = {X, Y }.

Rule and Program Estimates We can now compute the estimated grounding size of rules.
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Let Π be a logic program and let r be a rule in Π. The estimated grounding size of a rule,

igrest(r), is the following:

igrest(r) =
∏

X∈kvars(r)

min
(
{Vest(p[i]) | p[i] ∈ args(r,X)}

)

Example 4.14 Let us refer to rule (11) as r. Recall its associated keys from Example 4.13.

Given that Vest(p[1]) = 3, Vest(p[2]) = 3, and Vest(r[1]) = 2, we can compute the grounding

size of the rule in the following way:

igrest(r) = min
({

Vest(p[1]), Vest(r[1])
})
∗min

({
Vest(p[2])

})
= min

({
3, 2
})
∗min

({
3
})

= 2 ∗ 3 = 6

Naturally, we can also compute the estimated grounding size of some logic program Π

in the following way:

∑
r∈Π

igrest(r)

4.2 Language Extensions

In order to ensure that system PREDICTOR is applicable to real world problems, it has

been designed to operate on many common features of ASP-Core-2 logic programs. In the

following we extend the definition of logic rules to include these features and discuss how

these features are handled by PREDICTOR.

4.2.1 Pools and Intervals

In ASP-Core-2 logic programs, an atom may have the form p(t1; ...; tn), where p is a

predicate of arity 1, and t1; ...; tn is a semi-colon separated list of terms. Here, t1; ...; tn is a



33

pool term. A predicate with a pool term is “syntactic sugar” that indicates there is a copy of

that rule for every object constant in the pool.

Example 4.15 The following rule containing pool terms:

p(a; b)← q(c; d).

can be expanded to the following rules:

p(a)← q(c).

p(a)← q(d).

p(b)← q(c).

p(b)← q(d).

Similarly, ASP-Core-2 programs may contain atoms of the form p(l..r), where p is a

predicate of arity 1, and l, r are terms. Here, l..r is an interval term. A predicate with an

interval term is “syntactic sugar” indicating that there is a copy of this rule for every integer

between the range of l to r, inclusive.

Example 4.16 The following rule containing interval terms:

p(1..3, a)← q(1..2).
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can be expanded to the following rules:

p(1, a)← q(1).

p(1, a)← q(2).

p(2, a)← q(1).

p(2, a)← q(2).

p(3, a)← q(1).

p(3, a)← q(2).

For both pool and interval terms, system PREDICTOR handles the program as though it

were in its expanded form.

4.2.2 Aggregates

An aggregate element has the form

t0, ..., tk : a0, ..., am, not am+1, ..., not an.

where k ≥ 0, n ≥ m ≥ 0, t0, ..., tk are terms and a0, ..., an are atoms. An aggregate atom

has the form

#aggr{e0, ..., en} ≺ t

where n ≥ 0 and e0, ..., en are aggregate elements. Symbol #aggr is either #count, #sum,

#max, or #min. Symbol ≺ is either <, ≤, =, 6=, >, or ≥. Symbol t is a term.

System PREDICTOR supports rules containing aggregates to a limited extent. In particular,

PREDICTOR will only see those literals outside of aggregate atoms.
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Example 4.17 The rule containing an aggregate atom:

p(X)← q(X),#count{Y : r(X, Y )} < 3.

is seen by PREDICTOR as the following rule:

p(X)← q(X).

while the only variable seen in this rule will be X .

It is important to note that if an aggregate contains variables, it is possible that the length

of a rule expands during grounding processes, where it is understood that the length of a rule

is the number of atoms in a rule. We do not consider this length expansion when computing

the grounding size of a rule.

4.2.3 Disjunctive and Choice Rules

A disjunctive rule is an extended form of ASP logic rule that allows disjunctions in its head.

They are of the form

a0 ∨ ... ∨ ak ← ak+1, ..., am, not am+1, ..., not an.

where n ≥ m ≥ k ≥ 0, and a0, ..., an are atoms.

System PREDICTOR handles a disjunctive rule by replacing it with the set of rules created

in the following way. For each atom a in the head of a disjunctive rule r, PREDICTOR creates

a new rule of the form a← B(r). For computing range and argument size estimates, all of

these newly created rules are used. However, when estimating the grounding size of the

original rule, only one of the rules is used.
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Example 4.18 The disjunctive rule r:

p(1) ∨ p(2)← q(1).

is replaced by the following two rules:

p(1)← q(1).

p(2)← q(1).

Yet, only one of those rules is used for estimating the grounding size of the original rule.

Using these rules is sufficient for estimating grounding information, even though they are

not semantically equivalent to the original disjunctive rule.

A condition is of the form

a0 : a1, ..., am, not am + 1, ..., not an

where n ≥ m ≥ 0, and a0, ..., an are atoms. We refer to a0 as the head of the condition. A

choice atom is of the form l{c1; ...; cn}r, where l is an integer, r is an integer such that r ≥ l,

and c1; ...; cn is a semi-colon separated list of conditions. We now extend the definition of

a rule given by (1) to allow the head to be a choice atom. We refer to rules whose head

contains a choice atom as choice rules.

System PREDICTOR handles a choice rule similarly the case of a disjunctive rule,

replacing it with the set of rules created in the following way. For each atom a in the head

of a condition in the choice atom in rule r, create a new rule of the form a ← B(r). For

computing range and argument size estimates, all of these newly created rules are used.

However, when estimating the grounding size of the original rule, only one of the rules will

be used. Note that, as with aggregates, choice rules can increase the length of a rule.
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Example 4.19 The choice rule:

1{p(X) : q(1); p(Y )}1← r(X, Y ), s(Y ).

is replaced by the following two rules:

p(X)← r(X, Y ), s(Y ).

p(Y )← r(X, Y ), s(Y ).

Yet, only one of those rules is used for estimating the grounding size of the original rule.

4.2.4 Functions

In ASP-Core-2, a term may also be of the form f(t1, ..., tn), where f is a function symbol

and t1, ..., tn (n > 0) are term. We call terms of this form function terms. In order to be

more compliant with ASP-Core-2 features, PREDICTOR is capable of running on programs

containing function terms, however the compatibility of this feature was not a focus of the

system. When a function term is encountered by PREDICTOR, it simply sees the function

term as an object constant.

4.2.5 Binary Operations

The ASP-Core-2 standard also allows binary operation terms. A binary operation term is

of the form t1 op t2, where t1 and t2 are either an integer object constant, a variable, or a

binary operation and op is a valid binary operator2. If an atom contains a binary operation

term, system PREDICTOR handles it in one of three ways. If the binary operation has no

variables, it treats the term as an object constant. If the binary operation contains exactly

one variable, it treats the term as that variable. Otherwise, the atom is treated as if it were

part of the negative body (and therefore not used in estimations).

2http://potassco.sourceforge.net/doc/pyclingo/clingo.ast.html#BinaryOperator
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Example 4.20 In the following rule containing binary operation terms:

← p(1 + 1), q(2 ∗X + 1), r(2 ∗X + Y ), s(Y ).

the atoms are viewed as follows. Atom p(1 + 1) is seen as containing an object constant

term. Atom q(2 ∗X + 1) is seen as the atom q(X). Atom r(2 ∗X + Y ) is seen as being

part of the negative body.

4.3 Language, Libraries, and Usage

We now specify the library and language details of PREDICTOR. System PREDICTOR is

developed using the Python 3 programming language3. System CLINGO is an answer set

programming toolkit that integrates grounder GRINGO (Gebser et al. 2007, 2010) and solver

CLASP (Gebser et al. 2012) as a single system. PREDICTOR utilizes PYCLINGO4 version

5, a Python API sub-system of CLINGO (Gebser et al. 2015). The PYCLINGO API enables

users to easily access and enhance standard ASP features within Python code, including

access to some data in the processing chain. In particular, PREDICTOR uses PYCLINGO to

parse a logic program into an abstract syntax tree (AST) representation. After obtaining the

AST, PREDICTOR is able to process the program step-by-step according to the procedures

described above. System PREDICTOR also uses NETWORKX5 version 2, a Python library that

provides numerous operations for creating, modifying, and utilizing graphs. NETWORKX is

utilized by PREDICTOR to perform all necessary graph operations, such as representing the

dependency graph and simple component graph as well as computing strongly connected

components and performing topological sorts.

System PREDICTOR is designed for integration with other systems processing ASP

programs. It is distributed as a package that can be imported into other systems developed

3https://www.python.org/downloads/
4https://github.com/potassco/clingo
5https://networkx.github.io/
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in Python 3, or it can be accessed through a command line interface. Figure 8 shows a

simple example of how the package can be used within a Python program to generate a

prediction of both the entire program as well as individual rules. Note that individual rules

can also be constructed using Clingo’s abstract syntax tree API 6. Figure 9 shows a simple

example of how PREDICTOR can be used through the command line interface. Here, the

value to the --predict_rules flag, file/with/rules.lp, is a logic program containing rules

whose grounding size is estimated under the assumption that these rules are appended

towards the program path/to/asp/program.lp. The flag --key q/2[0] specifies that q/2[0]

is a key predicate argument (note here we use 0-based indexing). The output is the sum of

estimates for all rules in the file. Source code, system documentation, installation, and usage

instructions for PREDICTOR are available here7.
6http://potassco.sourceforge.net/doc/pyclingo/clingo.ast.html
7https://www.unomaha.edu/college-of-information-science-and-technology/

natural-language-processing-and-knowledge-representation-lab/software/predictor.php
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1 from predictor import Predictor

2 from pd_utils import Key, KeyList

3 from clingo_ast_util import PredicateSymbol

4

5 keys = KeyList([Key(PredicateSymbol(’q’, 2), [0])])

6 predictor = Predictor(keys)

7 predictor.load_program(’path/to/asp/program.lp’)

8 predictor.load_program(’another/path/to/asp/program.lp’)

9 # Both program files above will be used when generating predictions

10

11 # Predict the size of the entire loaded program

12 prog_size = predictor.predict_loaded_program()

13 print(’The size of the loaded program is: %s’ % prog_size)

14

15 rule = ’p(X) :- q(X,Y), r(X).’

16 # Predict the size of an individual rule

17 rule_size = predictor.predict_all(rule)

18 print(’The size of the rule is: %s’ % rule_size)

19

20 # Multiple rules may be used as well

21 multi_rules = ’’’

22 :- r(X), q(X).

23 :- r(X), t(X).

24 ’’’

25 multi_size = predictor.predict_all(multi_rules)

26 print(’The size of all rules is: %s’ % multi_size)

Figure 8: Example of using PREDICTOR as an imported library

predictor path/to/asp/program.lp --predict_rules file/with/rules.lp

--key q/2[0]

Figure 9: Example of using PREDICTOR through the command line interface
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5 System PROJECTOR Integration

In addition to developing PREDICTOR for this thesis, system PROJECTOR has been updated

to interact with PREDICTOR. Figure 10 demonstrates how PREDICTOR is integrated with

system PROJECTOR. We refer to the version of PROJECTOR integrated with PREDICTOR

as PRD-PROJECTOR. Note how PREDICTOR runs entirely independent of and prior to the

grounding step.

Grounded
Program

Rewritten
Logic

Program
GrounderLogic

Program PROJECTOR Answer
SetsASP Solver

PREDICTOR

Rule Rewriting
Predictions

Figure 10: Typical ASP system architecture extended with PROJECTOR using PREDICTOR

Predicting the size of a projection is straightforward using PREDICTOR. We compute the

predicted grounding size of a projection by taking the sum of predictions for the replacement

rule and the projection rule.

System PRD-PROJECTOR uses PREDICTOR to make decisions on which projections, if

any, to perform. In particular, it is used in two ways:

1. When PROJECTOR encounters a tie through its default heuristics for selecting variables

to project, PROJECTOR generates the resulting projections for each of the variables

and use the projection that is predicted to have the smallest grounding size.

2. PRD-PROJECTOR only performs a projection if the prediction for the projection is

smaller than the predicted grounding size for the original rule.

It is important to note that it is possible for projections to occur inside of aggregate expres-

sions. System PREDICTOR is not used to decide if these projections should be performed, so

that these projections always occur in PRD-PROJECTOR.
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6 Experimental Analysis

To effectively evaluate the usefulness of PREDICTOR, two sets of experiments are performed.

First, an intrinsic evaluation over accuracy of the predicted grounding size compared to

the actual grounding size is examined. The goal of this evaluation is to determine how

accurately PREDICTOR estimates the grounding size of rules. Second, an extrinsic evaluation

of PRD-PROJECTOR is conducted. This evaluation examines the relative accuracy of system

PREDICTOR, especially alongside PROJECTOR. In other words, it measures the quality of

PREDICTOR by analyzing the impact it has on PROJECTOR rewritings. All benchmarks are

gathered on Ubuntu 18.04.3 with an Intel R© Xeon R© CPU E5-1620 v3 @ 3.50GHz and 32

GB of RAM. Furthermore, Python version 3.7.3, NETWORKX version 2.3, and PYCLINGO

version 5.4.0 are used to run PREDICTOR. Grounding and solving are also done by CLINGO

version 5.4.0. For all benchmarks, execution was limited to 5 minutes.

Program Information Benchmarks were gathered on multiple programs from two different

sources, and the same programs are used for both the intrinsic and extrinsic evaluation.

First, programs from the Fifth Answer Set Programming Competition (Calimeri et al. 2016)

were used. Of the 26 programs in the competition, 13 were selected for benchmarking.

The selection criteria was simple: if system PROJECTOR performed any projections on the

program, it was selected.

For each program, 20 instances were evaluated. These instances, which are the same

as the instances originally selected for the competition8, were randomly selected for each

program from a larger set of instances and feature varying levels of difficulty. One interesting

thing to note about these encodings is that they are generally already well optimized. As

such, performing projections often leads to an increase in grounding size.

Second, benchmarks were gathered for an application called ASPCCG, an ASP-based

natural language parser (Lierler & Schueller 2011). This program has been extensively

studied by Buddenhagen and Lierler in (Buddenhagen & Lierler 2015) to evaluate the
8See https://www.mat.unical.it/aspcomp2014#Instance_Selection
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impact of various rewritings on performance, of which one type of rewriting was projections.

Program ASPCCG version 0.1 (ASPCCG-0.1) and ASPCCG version 0.2 (ASPCCG-0.2) encode

the same problem, yet vary on how the ASP rules of the problem are specified. Even so,

the difference in performance that accumulated from many rewritings in ASPCCG-0.2 is

substantial over ASPCCG-0.1. Program ASPCCG-0.2 was derived from ASPCCG-0.1 by

manually performing numerous rewritings and evaluating their effects, with grounding size

and solving time being the driving measures behind the selected rewritings. The path from

ASPCCG-0.1 to ASPCCG-0.2 consisted of 20 encodings.

This domain was used to evaulate system PROJECTOR in (Hippen & Lierler 2019). In

their evaluation they considered 3 of the 20 encodings from ASPCCG. In order to continue

these efforts, these same 3 encodings are considered in our evaluation, which we reiterate

here:

• the ENC1 encoding that constitutes ASPCCG-0.1,

• the ENC7 encoding that constitutes one of the improved encodings on the path from

ASPCCG-0.1 to ASPCCG-0.2, and

• the ENC19 encoding that constitutes ASPCCG-0.2.

Encoding ENC1 is demonstrative of a program without any effort put into optimization.

Encoding ENC7 was selected as an encoding that represents a moderately optimized program.

Encoding ENC19 is demonstrative of a program with significant professional optimizations

performed. It is important to note that a significant amount of manual time and effort went

into producing ENC7 and ENC19.

The instances for ASPCCG were gathered using sentences from CCGbank9, a corpus of

real-world sentences annotated with the combinatory categorical grammar (CCG) formalism.

These sentences were separated by word count into five groups restricting sentences to those

containing between 6 and 25 words. An equal number of sentences from each group were

randomly selected to create the set of instances. The experiments for PROJECTOR utilized

9http://groups.inf.ed.ac.uk/ccg/ccgbank.html
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the set of 60 instances that Buddenhagen and Lierler called the held-out set. These same 60

instances have been used in our evaluation.

Table 1 details interesting features in the programs from both domains. The second

column provides information about some features present in the programs. These features are

abbreviated with the meanings as follows (abbreviation letters bolded): non-tight program,

aggregates, binary operation terms, choice rules, and function terms. The competition

benchmarks also consisted of two encodings: a newer 2014 encoding and a 2013 encoding

from the previous year. The third column specifies which encoding was used (in case the

newer encoding consisted of no projections).

Table 1: Feature and version details for benchmark programs

Program Features 2013
Bottle Filling a,b Yes
Hanoi Tower b No
Incremental Scheduling a,b,c No
Knight Tour with Holes n,b No
Labyrinth n No
Minimal Diagnosis n No
Nomystery a,b,c,f No
Permutation Pattern Matching c,b No
Ricochet Robots n,a,b,c No
Solitaire a,b,c No
Stable Marriage - Yes
Valves Location n,a,c,f No
Weighted-Sequence c,b Yes
ASPCCG ENC1 n,a,b,c,f N/A
ASPCCG ENC7 n,a,b,c,f N/A
ASPCCG ENC19 n,a,b,c,f N/A

6.1 System PREDICTOR Accuracy

Let S be the true grounding size of an instance in a program computed by GRINGO. Let S ′

be the grounding size predicted by PREDICTOR of the same instance. The error factor of a

program instance can be computed by S ′/S. The average error factor of a program is the

average of all error factors across the instances of a program.
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Table 2 shows the average error factor for all programs. The second column displays

the average error factor using manually specified keys. The specific keys used are provided

in Appendix A. These keys were identified only for root predicate arguments. The third

column displays the average error factor without specifying keys. The average error factor

shown was rounded to make comparisons easier. An asterisk (∗) next to a program name

indicates that not all 20 instances were grounded. Specifically, the Incremental Scheduling

program was only able to ground 19 instances, while the Permutation Pattern Matching

program could only ground 17 instances before timing out. In both cases we only report the

numbers for instances with real grounding data.

Table 2: Average error factor for benchmark programs, with and without keys

Program Average Error Factor Average Error Factor (Keyless)
Hanoi Tower 1.5 1.5
Nomystery 1.5 1.5
Permutation Pattern Matching∗ 3.8 5.0
Solitaire 4.3 4.3
Stable Marriage 3.7 7.5 ∗ 105

Bottle Filling 4.9 ∗ 109 4.9 ∗ 109

Incremental Scheduling∗ 1.1 ∗ 105 1.1 ∗ 105

Labyrinth∗ 1.3 ∗ 101 1.3 ∗ 101

Minimal Diagnosis 8.2 ∗ 103 8.2 ∗ 103

Valves Location∗ 1.3 ∗ 101 1.6 ∗ 101

ASPCCG ENC1 2.9 ∗ 101 3.1 ∗ 101

ASPCCG ENC7 1.3 ∗ 101 1.4 ∗ 101

ASPCCG ENC19 2.2 ∗ 101 2.2 ∗ 101

Knight Tour with Holes 1.9 ∗ 10−4 1.9 ∗ 10−4

Ricochet Robots 2.0 ∗ 10−1 2.2 ∗ 10−1

Weighted Sequence 6.0 ∗ 10−3 1.1 ∗ 10−2

We partition the results into 3 sets using the average error factor with keys. First, there

are 5 programs where the estimates computed by PREDICTOR are, on average, less than

1 order of magnitude off. These programs are: Hanoi Tower, Nomystery, Permutation

Pattern Matching, Solitaire, and Stable Marriage. Second, there are 8 programs that are,

on average, over 1 order of magnitude off for predictions. These programs are: Bottle

Filling, Incremental Scheduling, Labyrinth, Minimal Diagnosis, Valves Location, and all 3
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encodings from ASPCCG. Finally, 3 programs are predicted to have lower grounding sizes

than reality. These programs are: Knight Tour with Holes, Ricochet Robots, and Weighted

Sequence.

We also note the impact that keys have on certain programs. We especially emphasize

the difference in error between Stable Marriage with and without keys, where the average

error factor is different by 5 orders of magnitude.

Overall, the accuracy of system PREDICTOR could still use improvements. In many

cases the accuracy is drastically erroneous. These results are not necessarily surprising. We

identify six main reasons for the poor accuracy of PREDICTOR:

1. Insufficient data modeling is one weak point of PREDICTOR. Since we do not keep

track what actual constants could be present in the ground extensions of a predicate, it

is often the case that we overestimate argument size due to our inability to identify

repetitive values. Recall Example 4.11. We reiterate our final statements of the

example here. While we were able to estimate that the argument size of q[1] is 2, this

is entirely due to our data distribution handling for numeric data. Had we considered

the object constants in the program as non-numeric, we would have estimated that the

argument size of q[1] is instead 4. Unfortunately, most programs have object constants

that are non-numeric. Even if there are numeric constants, they may not be uniformly

distributed between minimum and maximum values. PREDICTOR is not at this point

able to model this data properly.

2. Since we only identified keys for root predicate arguments, many keys were likely

missed. It is reasonable to believe that some benchmarks could see great benefits from

better key selection.

3. System PREDICTOR has limited support for certain language extensions, which we

discussed in Section 4.2. Programs containing these features may be prone to more

faulty results. Aggregates in particular are a common feature that can noticeably

impact grounding size.



47

4. Non-tight programs are not modeled well at this point in PREDICTOR. While one

might typically expect PREDICTOR to overestimate due to its limited capabilities in

detecting repeated data, the underestimation on Knight Tour with Holes, Ricochet

Robots, and Weighted Sequence programs is not surprising due to the fact that these

programs are non-tight. Consider the following rule from Knight Tour with Holes:

number(X − 1)← number(X), 1 < X.

Rules of this pattern, where a value is recursively updated using an incremental or

decremental binary operation term, are not modeled well with PREDICTOR. Weighted

Sequence and Ricochet Robots features very similar rules to the one above.

5. System PREDICTOR is vulnerable to what is known as error propagation. If our

estimates were computed only from known statistics (i.e. root predicate arguments),

estimates would often not be as erroneous. Unfortunately, almost all programs

will require generating estimates from other estimates. Erroneous argument size

estimates of predicates will make those predicates that depend on them be erroneous,

typically more so, too. This results in exponentially worse argument size estimates

from predicates arguments further from root predicate arguments in the argument

dependency graph. This phenomenon, known as error propagation, has also been

observed with join size estimations in relational database systems when many joins

are used in a query (Ioannidis & Christodoulakis 1991).

6. Finally, we do not account for any built-in rewriting performed by GRINGO when

computing error factor. Most grounders, in addition to performing the necessary

steps for intelligently grounding the program, will internally perform some rewritings

to improve the program. This makes it possible that the grounding size reported

by GRINGO does not necessarily reflect the exact program we used for predictions.

This issue is largely unavoidable, as rewritings performed will vary depending on the
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grounder chosen (e.g. optimized grounding processes in grounder IDLV (Calimeri

et al. 2017)).

6.2 Evaluation of PRD-PROJECTOR

Despite the accuracy of PREDICTOR often being rather poor, demonstrated by the average

error factor on a set of benchmarks, these predictions may still be able to help determine

whether or not a rewriting is worth performing. This can occur because predictions may still

properly determine which of two sets of rules produce a smaller grounding.

Let S be the grounding size of an instance in a program computed by GRINGO. Let S ′

be the grounding size of the same instance in a modified version of the program computed

by GRINGO. In this context, the modified version will either be the logic program outputted

after using PROJECTOR or the logic program outputted after using PRD-PROJECTOR. The

grounding size factor of a program’s instance can be computed by S ′/S. As such, a

grounding size factor greater than 1 indicates that the modification increased the grounding

size, whereas if it is less than 1 it indicates that the modification improved/decreased the

grounding size. Naturally, the average grounding size factor of a program is the average of

all grounding size factors across the instances of a program.

Table 3 displays the average grounding size factor for PROJECTOR (column 2) and

PRD-PROJECTOR (column 3) on all benchmark programs. Like in Table 2, an asterisk

(∗) following a program name indicates that not all 20 instances were grounded. For the

Incremental Scheduling program, only 19 instances were grounded. The same instances

could not be grounded with the rewritten programs. The Permutation Pattern Matching

program was only able to ground 17 instances. It is interesting to note that both the program

rewritten with PROJECTOR and the program rewritten with PRD-PROJECTOR grounded all

20 instances. In these cases, the average grounding size factor was only computed from

instances where all 3 versions of the program (original, PROJECTOR, PRD-PROJECTOR)

completed grounding. A dagger (†) following a program name indicates that there was a
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very slight improvement for PRD-PROJECTOR, however this information was lost for the

precision shown.

Table 3: Average grounding size factor of PROJECTOR and PRD-PROJECTOR

Program PROJECTOR PRD-PROJECTOR

Hanoi Tower 1.41 1.00
Incremental Scheduling∗ 1.14 1.09
Minimal Diagnosis 1.06 1.00
Solitaire 1.41 1.00
Stable Marriage 0.13 0.11
ASPCCG ENC1 0.63 0.52
ASPCCG ENC7 1.40 1.24
ASPCCG ENC19 1.58 0.97
Bottle Filling 1.36 1.36
Labyrinth∗ 1.11 1.11
Permutation Pattern Matching∗ † 0.13 0.13
Valves Location† 1.00 1.00
Weighted Sequence† 1.00 1.00
Knight Tour with Holes 0.80 0.90
Nomystery 0.62 1.00
Ricochet Robots 0.91 1.00

We partition the results into three sets. First, there are 8 programs in which PRD-

PROJECTOR reduces the grounding size noticeably when compared to PROJECTOR. These

programs are: Hanoi Tower, Incremental Scheduling, Minimal Diagnosis, Solitaire, Stable

Marriage, and all 3 encodings of ASPCCG. Next, there are 5 programs in which PRD-

PROJECTOR does not impact the grounding size noticeably when compared to PROJECTOR

(although for three of the programs there are still very slight improvements). These programs

are: Bottle Filling, Labyrinth, Permutation Pattern Matching, Valves Location, and Weighted

Sequence. Finally, there are 3 programs in which PRD-PROJECTOR increased the grounding

size noticeably when compared to PROJECTOR. These programs are: Knight Tour with

Holes, Nomystery, and Ricochet Robots.

There are a couple of interesting takeaways from these results. First, they suggest that

PREDICTOR often does well at comparing the grounding sizes of rules and determining

which rules will produce smaller groundings, regardless of the accuracy of predictions for
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the entire program. Even though the results are mostly positive, they do demonstrate that it

is possible that PREDICTOR can mislead a rewriting system, producing grounding sizes that

are larger than they would have without it.

The execution time of a program is the amount of time it takes to ground and solve a

program. While execution time was not a focus of this thesis, it is still ultimately what is

important to programmers. We present benchmarks related to execution time in Table 5 of

Appendix B and summarize the results here. Of the 8 programs in which PRD-PROJECTOR

reduces the grounding size noticeably when compared to PROJECTOR, only Incremental

Scheduling has a higher execution time compared to PROJECTOR. The 3 programs whose

grounding size slightly improved for PRD-PROJECTOR (indicated by a dagger symbol (†)

on Table 3) also saw an improvement or no perceivable change to their execution time

compared to PROJECTOR. Naturally, programs Bottle Filling and Labyrinth, whose rewritten

program is the same between PROJECTOR and PRD-PROJECTOR, did not have a change in

execution time. Finally, of the three programs whose grounding size increased noticeably

when compared to PROJECTOR, only Nomystery has a lower execution time compared to

PROJECTOR.

Results of ASPCCG We now take a closer look at the benchmarks for ASPCCG as a

continuation to the efforts by Hippen and Lierler in (2019). There, they found that when

PROJECTOR was ran on ENC1, it consistently reduced the grounding size. However, when

PROJECTOR was ran on ENC7, it slightly increased the grounding size for all but two

instances. When PROJECTOR was ran on ENC19, it increased the grounding size noticeably

across all instances. These results are consistent with our findings in Table 3.

For a more detailed view of the grounding size factor at the instance level, we refer the

read to Figures 11, 12, and 13 in Appendix C. These graphs display grounding size factors

for each instance of ENC1, ENC7, and ENC19 respectively. Across all three encodings, there

is only a single instance in ENC19 where PRD-PROJECTOR produces a larger grounding

size than PROJECTOR, and in that case the grounding size was only slightly larger. We also
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see that while PRD-PROJECTOR matches the same narrative as PROJECTOR for ENC1 and

ENC7, PRD-PROJECTOR actually lowers the grounding size or only slightly increases the

grounding size in all but 4 instances for ENC19. Finding optimal rewritings in ENC19 is

especially notable since this encoding is already very well optimized.

7 Conclusions and Future Work

While many automated rewriting systems for non-ground ASP logic programs exist, not

all of these systems provide a guarantee that their rewritings will produce a better program.

One thing that many of these systems share, however, is that they typically attempt to reduce

the grounding size of a program. Indeed, grounding size often correlates with solving time

(Gebser et al. 2011). Even so, grounding a program is an expensive task by itself, making it

non-viable to use the real grounding size as a guiding metric for solving time in automated

rewriting systems.

In this thesis we explore a solution to this issue. We introduce a new system, called

PREDICTOR, meant to estimate grounding sizes for ASP logic programs. To achieve

this we utilized methods from join-order size estimations in relational databases. System

PREDICTOR can run independent of the chosen grounding and solving system. Furthermore,

PREDICTOR is capable of running on many real programs following ASP-Core-2 standards,

including both tight and non-tight programs.

We also extend the automated ASP rewriting system called PROJECTOR to utilize the

estimations generated by PREDICTOR as a guide for rewriting decisions. Our evaluation

consists of two methodologies. First, we conduct an intrinsic assessment of PREDICTOR by

measuring the accuracy of our estimations compared to the real grounding size produced by

ASP grounder GRINGO. Here we find that PREDICTOR estimations are often very inaccurate,

although it is capable of producing reasonable estimations for certain programs. We then

perform an extrinsic evaluation where we use the extended PROJECTOR system to measure

the grounding sizes of programs compared to original PROJECTOR. The results from this
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evaluation suggest that PREDICTOR is useful as a guide for automated rewriting systems.

The results of this thesis open up several areas of direction for future work:

• Improve data modeling The data modeling in PREDICTOR is only useful for numeric

object constants that are distributed mostly incrementally between the minimum and

maximum values. Improving support for non-numeric data may lead to more accurate

estimations.

• Automatically identify keys Currently, the user must manually specify keys for PRE-

DICTOR. This is somewhat contradictory to the goal of many automated rewriting

systems, where one of the goals may be to ensure the user does not need to perform

any extra work. Furthermore, manual identification of keys are prone to human error.

Automatically determining which indices are a primary key of the predicate will fix

this issue.

• Improve language support While PREDICTOR is capable of running on many ASP-

Core-2 compliant programs, there are still programs that PREDICTOR cannot run well

on, detailed in Section 4.2. For example, function terms are seen as object constants

which can lead to missing variables in the rule.

• Improve non-tight program support Currently the non-tight program argument size

estimations in PREDICTOR can lead to drastic underestimations. Improving the

estimations so that it accounts for the potential number of cycles that could occur

before a fixed point in the grounded program is reached during normal grounding

processing will help eliminate this issue.

• Expand grounding size meaning beyond the number of rules As explained in Sec-

tion 4.2, aggregate and choice rules can lead to the length of a rule expanding during

grounding. It may be useful to measure this expansion as well.

Overall, we believe that this work sets a strong foundation for developing future methods

in estimating grounding sizes prior to any grounding processes.
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A Key Information

Table 4 shows the keys used for each benchmark program. The key naming is formatted

as predicateName/arity[indices] where predicateName is the name of the predicate on

which we are creating a key, arity is the arity of the predicate, and indices is a comma

separated list of indices to include as part of the key.

Table 4: Key information for benchmark programs

Program Keys
Bottle Filling -
Hanoi Tower -
Incremental Scheduling precedes/2[0], importance/2[0], job_device/2[0],

job_len/2[0], deadline/2[0], curr_job_start/2[0],
curr_on_instance/2[0], instances/2[0]

Knight Tour with Holes -
Labyrinth -
Minimal Diagnosis obs_elabel/3[0, 1]
Nomystery at/2[0], fuel/2[0], goal/2[0]
Permutation Pattern Matching t/2[0], p/2[0]
Ricochet Robots amo/2[0], d1/2[0], dir/2[0]
Solitaire -
Stable Marriage manAssignsScore/3[0, 1], womanAssignsScore/3[0, 1]
Valves Location dem/3[0, 1]
Weighted-Sequence leafWeightCardinality/3[0]
ASPCCG ENC1 word_at/2[1], category_tag_nofeatures/3[0],

category_tag/3[0], adjacent/2[0]
ASPCCG ENC7 word_at/2[1], category_tag_nofeatures/3[0],

category_tag/3[0], adjacent/2[0]
ASPCCG ENC19 word_at/2[1], category_tag_nofeatures/3[0],

category_tag/3[0], adjacent/2[0]

B Execution Times

Let S be the execution time of an instance in a program computed by CLINGO. Let S ′ be

the execution time of the same instance in a modified version of the program computed by

CLINGO. In this context, the modified version will either be the logic program outputted

after using PROJECTOR or the logic program outputted after using PRD-PROJECTOR. The
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execution time factor of a program’s instance can be computed by S ′/S. The average

grounding size factor of a program is the average of all grounding size factors across the

instances of a program. Table 5 shows the average execution time factor of programs

rewritten with PROJECTOR and PRD-PROJECTOR. Unlike Table 3, an additional column

is present that indicates the minimum number of instances solved for all 3 versions of the

program (original, PROJECTOR, PRD-PROJECTOR). The average execution time is only

computed from instances with solve times for all 3 versions of the program.

Table 5: Average execution time factor of PROJECTOR and PRD-PROJECTOR

Program Solved PROJECTOR PRD-PROJECTOR

Hanoi Tower 20 1.67 1.00
Incremental Scheduling 13 1.06 1.10
Minimal Diagnosis 20 1.04 1.00
Solitaire 19 1.32 0.99
Stable Marriage 19 0.18 0.17
ASPCCG ENC1 54 0.57 0.52
ASPCCG ENC7 57 1.37 1.28
ASPCCG ENC19 59 1.93 1.16
Bottle Filling 20 1.44 1.43
Labyrinth 16 5.26 5.27
Permutation Pattern Matching 16 0.14 0.14
Valves Location 3 1.03 0.93
Weighted Sequence 16 3.05 1.59
Knight Tour with Holes 1 0.50 2.45
Nomystery 7 1.23 1.00
Ricochet Robots 20 0.85 1.00

We direct the reader to Table 3 for benchmarks on the grounding size factor of PRO-

JECTOR and PRD-PROJECTOR. Of the 8 programs in which PRD-PROJECTOR reduces the

grounding size noticeably when compared to PROJECTOR, only Incremental Scheduling has

a higher execution time compared to PROJECTOR. The 3 programs whose grounding size

slightly improved for PRD-PROJECTOR (indicated by a dagger symbol (†) on Table 3) also

saw an improvement or no perceivable change to their execution time compared to PRO-

JECTOR. Naturally, programs Bottle Filling and Labyrinth, whose rewritten program is the

same between PROJECTOR and PRD-PROJECTOR, did not have a change in execution time.
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Finally, of the three programs whose grounding size increased noticeably when compared to

PROJECTOR, only Nomystery has a lower execution time compared to PROJECTOR.

C Full ASPCCG Benchmarks
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Figure 11: Grounding size factor for instances of ENC1
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Figure 12: Grounding size factor for instances of ENC7
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