The relationship between the degree of collegiality and the utilization of technology in the secondary social science classroom

Douglas S. Newton

Follow this and additional works at: https://digitalcommons.unomaha.edu/studentwork

Part of the Teacher Education and Professional Development Commons

Recommended Citation
THE RELATIONSHIP BETWEEN THE
DEGREE OF COLLEGIALITY
AND THE UTILIZATION OF
TECHNOLOGY IN THE SECONDARY
SOCIAL SCIENCE CLASSROOM

A Thesis
Presented to the
Department of Teacher Education
and the
Faculty of the Graduate College
University of Nebraska

In Partial Fulfillment
Of the Requirements for the Degree
Master of Arts
University of Nebraska at Omaha

by

Douglas S. Newton

May 1998
THESIS ACCEPTANCE

Acceptance for the faculty of the Graduate College, University of Nebraska, in partial fulfillment of the requirements for the degree Master of Arts in Secondary Education, University of Nebraska at Omaha.

Committee

Dr. Elliott Ostler, Chair
Teacher Education

Dr. Neal Grandgenett, Member
Teacher Education

Dr. Blaine Ward, Member
Educational Administration

Dr. Don Grandgenett, Ex Officio
Teacher Education

Date 4-21-78
ABSTRACT

The purpose of this study is to answer the following research questions: 1. Is there a significant difference in technology utilization between secondary Social Studies teachers identified as having high collegiality and those secondary Social Studies teachers identified as having low collegiality? 2. What is the correlation of secondary Social Studies teachers' degree of collegiality with their corresponding perceptions toward the classroom utilization of technology? 3. What is the correlation of secondary Social Studies teachers' age with their corresponding perceptions toward the classroom utilization of technology? 4. What is the correlation of secondary Social Studies teachers' educational achievement with their corresponding perceptions toward the classroom utilization of technology?

The population of this study consists of all currently employed secondary Social Studies teachers in the Omaha Public Schools District. This population will participate in a descriptive based ex post facto research design with an authored designed survey used to measure the research questions. No manipulation of the variables will take place in this study. The final analysis of the data collected from the respondents scores consists of: 1. a relationship measurement based on a .05 Level of significance measured using a one tailed t-test and 2. a correlation measurement using a Spearman Correlation Coefficient.
TABLE OF CONTENTS

CHAPTER I: INTRODUCTION

- Statement of the Problem 4
- Definition of Terms 4
- High Collegiality 4
- Low Collegiality 4
- Perceptions Toward the Utilization of Technology 4
- Research Questions 5
- Research Question One 5
- Research Question Two 5
- Research Question Three 5
- Research Question Four 5
- Background/Significance of the Problem 5
- Limitations 7
- Delimitations 8

CHAPTER II: LITERATURE REVIEW

- Collegiality 9
- Perception Toward the Utilization of Technology 13
- Age and Educational Attainment 16
- Conclusion of Literature Review 17
LIST OF TABLES

Table 1: Upper and Lower Quartiles' Means and t-test Value 28
Table 2: Respondents Raw Collegiality and Technology Scores 29
Table 3: Means for the Upper and Lower Quartiles 30
Chapter 1

Introduction

The National Council for the Social studies suggests that the Social studies discipline includes the following areas: anthropology, archaeology, economics, geography, history, law, philosophy, political science, psychology, religion, and sociology (Stahl & Hartoonian, 1994). Given the great number of subject areas that encompasses the Social studies then, the responsibility of the Social studies curriculum and teacher is to produce students that will become responsible, civic minded and dutiful citizens that are able to function positively in society. “Reflective inquiry and decision making skills are considered essential to the enhancement of citizenship. To achieve civic efficacy, standards movements within the Social studies have embraced efforts to promote students’ exposure to computers as an important technological development that is playing an increasingly pervasive role in American Society” (Berson, 1996). According to the promoters of a technology based Social studies curriculum, the possibility of increasing students’ skills such that they would become responsible, civic minded and dutiful citizens that are able to function positively in society can stem from a technology oriented Social studies classroom. The Social studies teacher plays a crucial role in orienting students toward technology in the classroom. If the teacher does not accept the potential for computer based learning that “facilitates the development of student’s decision-making, problem-solving, data processing and communication skills” (Berson)
then, students may not “gain the expansive knowledge links” (Berson) that can result from the utilization of technology.

Many professionals have promoted the utilization of technology in the Social studies classroom as an effective means to augment student’s subject matter retention. This augmentation is accomplished by allowing for individualized instruction, or cooperative learning through interactive assignments, which results in immediate feedback to the learner. As many professionals make claims such as these school districts are spending tremendous amounts of money implementing technology into their systems. Additionally, they are awaiting the statistics of their expenditures but the preparation of teachers in the practical uses of technology for classroom instruction has been abandoned (Wallinger, 1997).

Frequently the use of technology is decreed without an explanation to instructors of how to utilize technology so it can enhance and improve their instruction. Terminology is spoken and software packages are presented to teachers with the perceived fulmination that, if they do not utilize them, their teaching productiveness is questionable.

For technology to be adopted by instructors, they must have adequate contribution into what is chosen for their schools and classrooms. Often, many teachers leave the decision making to other individuals because they perceive that they do not possess sufficient knowledge to make an intelligent decision. As a result instructors continue to feel like foreigners in the land of technology (Wallinger).
When teachers have a sense of ownership in their respective programs several collegiate results emerge. In one case study, a training session was held for teachers at the University of North Carolina at Charlottesville. In this study, the training given to teachers instilled with them a sense of socialization and increased desire to utilize technology. Johnson reported, "the training session encouraged faculty to discuss teaching and learning via case methods; use of computer technology...discussing critical perspectives...and practice the use of video Quickcams and related software so they could help students interact" (Johnson B., Johnson D., & McNergney, 1997). In fact, as a result of this training session and socialization process the faculty indicated that they had an increased likelihood that they would incorporate technology into their teaching. This case study is indicative of collegiality; the sharing of ideas can increase the desire to make technology applicable in the classroom.

Given the enormous responsibility of the Social studies curriculum and teacher is to prepare students for proper citizenship functioning it follows that teachers may be in need of an increased perception of the utilization of technology. The purpose of this research was to ascertain the applicable value of the aforementioned articles in the Omaha Public School District.
Statement of the Problem

Do secondary Social Studies teachers with a high level of collegiality have a more positive perception about the classroom utilization of technology than secondary Social Studies teachers with a low level of collegiality?

Definition of Terms

High Collegiality: The amount of shared power, ideas and social interaction among colleagues, as indicated by ranking in the upper quartile on the instrument of measurement.

Low Collegiality: The amount of shared power, ideas and social interaction among colleagues, as indicated by ranking in the lower quartile on the instrument of measurement.

Perceptions Toward Utilization of Technology: The positive or negative perception toward the usage of technology as measured by scoring in the upper or lower quartile on the computer utilization perception portion of the measurement instrument.
Research Questions

Research Question One: Is there a significant difference in technology utilization between secondary Social Studies teachers identified as having high collegiality and those secondary Social Studies teachers identified as having low collegiality?

Research Question Two: What is the correlation of secondary Social Studies teachers’ degree of collegiality with their corresponding perceptions toward the classroom utilization of technology?

Research Question Three: What is the correlation of secondary Social Studies teachers’ age with their corresponding perceptions toward the classroom utilization of technology?

Research Question Four: What is the correlation of secondary Social Studies teachers’ postgraduate educational achievement with their corresponding perceptions toward the classroom utilization of technology?

Background/Significance of the Problem

"Teaching has long been called a lonely profession, always in pejorative terms. The professional isolation of teachers can limit access to new ideas and better solutions, drive stress inward to fester and accumulate, fail to recognize and praise success, and permit incompetence to exist and persist to the detriment of students, colleagues, and the teachers themselves. Isolation allows, even if it does not always produce, conservatism and resistance to innovation in teaching." (Mckay & Quinn, 1997) These authors', observations regarding collegiality and the utilization of technology in the Social studies
curriculum stands to be tested. The theory of isolation, as a constituent of resistance to innovation, can be seen when observing or measuring the lack of collegiality amidst the members of various Social studies departments.

The utilization of technology in the school setting has indicated that the Social studies curriculum has not fully embraced the various possibilities derived from technical innovations. This viewpoint is indicated by many professionals but particularly in research done by Ross at the University of Albany, State University of New York. Only one third of the Social Studies teachers surveyed by the University of Albany, indicated having some type of computer in their room but the frequency of usage of the machine was very low. Lack of supervision and instruction were the main indicators for not using computers in secondary Social studies classrooms (Ross, 1991).

This study focuses on the impact of collegiality and the perception toward the utilization of technology in the secondary Social studies classroom. Many learned people have made statements about the effects of the lack of collegiality in relationship to acceptance of new ideas. This observation can be seen in the various school systems. Teachers have the power to infuse the minds of others with knowledge, as such they have an obligation to search out or seek information that will improve the quality of their pupils’ education. One way in which new information is gathered is by speaking with one’s colleagues. A research study between collegiality and the utilization of technology in the Social studies classroom needs to be conducted. The data and findings of this study reveal the impact if any, that collegiality has on technology utilization in the secondary
Social studies classroom. The results provide reliable and verifiable statistical information that if applied can be useful in their respective settings. This usefulness for example, is a benchmark on which to base encouragement of collegiality among secondary Social Studies teachers and therefore increasing the likelihood of technology usage.

If differences are found in perceptions toward the utilization of technology and collegiality levels, then steps can be taken to improve or maintain the interactions between Social Studies teachers. If there is no difference found then the study gives statistical information on the level of collegiality that exists amongst the Omaha Public Schools Social Studies teachers. Also, data is given on perceptions of the Social Studies teachers’ utilization of technology in their classrooms. The data gathered in this research study provides statistical information that the Omaha Public Schools can use as they deem necessary.

Limitations

This study is limited to comparing the effects of the degree of collegiality, age and number of postgraduate years of education with, their corresponding perception toward the utilization of technology among secondary Social Studies teachers. No attempt will be made to make comparisons between genders, ability levels or school districts. Other possible outcomes will not be investigated.
Delimitations

This study only examines the degree of collegiality, age and number of post graduate years of education and the corresponding perception toward the utilization of technology in the secondary Social studies curriculum in a large Midwestern urban school system. No other generalizations should be made to other curriculums, elementary or secondary and types of school systems. The instrument used for measurement was developed specifically for purposes of this research study. The instrument only indicates 1. limited demographic data, 2. the degree of collegiality as defined in Chapter One and 3. the respondent’s corresponding perception toward the utilization of technology in the secondary Social studies classroom.
CHAPTER 2

Literature Review

Collegiality

Collegiality is a word that encompasses multiple vernacular meanings. For purposes of this paper the following definition will be used as a foundation to describe this noun; the promotion of shared authority and knowledge which comes through communication with one’s peers. Collegiality diminishes positional boundaries and creates a team-oriented atmosphere. Isolation, collaboration and professional behavior are examined in this part of the literature review in order to expound on the topic of collegiality.

Isolation is a tremendous boundary to overcome when dealing with change. Scott and Smith have stated, “it is perhaps the greatest irony and the greatest tragedy of teaching that so much is carried on in self-imposed and professionally sanctioned isolation. If teachers perform their work in isolation, neither helping nor being helped by others, then no teacher can benefit from the experience of others” (Scott & Smith, 1987).

Teachers must be encouraged to become less isolated and more involved in the activities of teaching that includes associations with other educators. During these associations with colleagues new ideas and methods are gleaned.

Many teachers are evasive toward change due to considerable external classroom forces. The following quote summarizes the feelings of teachers; “no teacher ever does what he or she thinks is best. We do the best we can in the circumstances. What you think is a good idea from the outside turns out to be impossible in the classroom” (Scott
& Smith). Even though this view exists and "this pragmatic stance may very well be essential to classroom survival, it has its negative side effects. In learning to be practical, teachers resign themselves to accepting the school as it is and place limits on what they expect from themselves and their students" (Scott & Smith).

Collaboration influences structure that will join educators in purposeful ways. An environment that fosters collaboration will have "four specific behaviors: 1. Frequent, continuous and precise talk about practice. 2. Observation of each other[s] engaged in the practice of teaching. 3. Shared engagement in work on curriculum planning, designing, researching, and evaluating. 4. Teaching each other what they know about teaching and learning: revelation, articulation, and sharing of craft knowledge" (McKay & Quinn, 1997). These behaviors "can occur within a department or among other teachers in a school. Communication among teachers can nourish a mutual support and responsibility for effective teaching. It is vital for professionals to be exposed to differing ideas to allow their own ideas to be reframed" (Weasmer & Woods, 1997). This reframing of ones own ideas will lead to broader and more effective teaching practices through exposure to exciting, practical and useful technologies.

Collegiality can be expressed in a variety of ways one of which is through the environment or climate of the school. The "school climate is the relatively stable property of the school environment that is experienced by participants, affects their behavior and is based upon their collective perceptions of behavior in schools. Organizational climate is a general synthesizing concept that is directly influenced by the
principal and supervisor, which in turn affects the motivations and behaviors of the teachers (Sabo, Barnes, & Wayne 1996). Research supports this claim; Sabo, reported that a when an organization encourages behaviors that affect the climate of the school teachers are more likely to be to have a positive perception of making decisions that effect their classrooms (Sabo). This relationship is important in teaching subject matter to students. Just as the principal and supervisor have an affect on the teacher so does the teacher have an affect the student. The instructor actuates a direct influence over students’ perception toward learning. The teacher can demonstrate collegial leadership that is marked by behavior that is cordial, helpful, cooperative and guided by impartiality but at the same time sets the tone for high performance by informing students what is required of them.

By taking ownership of one’s collegial behavior (Chin & Russell, 1996) teachers have stated that they are more open to learning from others. When one is more open to learning from others a cooperative atmosphere is established. Taking ownership of collegial development may be accomplished by attending professional conferences where new ideas abound. These conferences offer an educator an opportunity to associate with other professionals in such a way that ideas are shared and applied. Attendance at various organizational meetings also fosters the opportunity to learn new teaching methods, which in turn will have an affect on the educator’s classroom atmosphere.

Teacher participation in curriculum implementation and decision making can be a vital part in cultivating positive collegial behavior among teachers. The lack of this
function has been reported to have negative effects of isolation and a feeling of a loss of credibility as a professional teacher. A report by the Carnegie Forum (1986) gave serious consideration to the basic premise that those organizational structures and work activities of professional employees must be organized so they can achieve their goals (Sabo, Barnes, & Hoy 1996). Considering that the goal of the Social studies curriculum is to produce students that will become responsible, civic minded and dutiful citizens that are able to function positively in society then, much must be done to ensure teacher professional behavior.

Another type of collegial behavior would be to include one’s colleagues in the sharing of pertinent information. This information sharing could come in the form of mentoring a new teacher, welcoming a transferred staff member to the new position or reaffirming professional behavior among existing colleagues. This sharing of information may be accomplished through supportive networks of committed professional educators that advocates the ongoing practice of professional behavior.

When positive professional collegial behavior influences the classroom learning atmosphere students are more likely to participate in new ideas and with one another. This can lead to greater retention of subject matter and perhaps fulfill the goal of producing students that will become responsible, civic minded and dutiful citizens that are able to function positively in society.
Perception Toward the Utilization of Technology

The utilization of technology can include the usage of any innovations that involve computers, software, the Internet, etc. Application of these items (when they are available) in a classroom are dependent upon the willingness of the instructor to implement these resources into the curriculum. This willingness to utilize technology may be related to the instructor’s perception toward technology, which can be positive or negative. A national survey of Social studies educators conducted in 1990 resulted in eighty-four percent responding that they have access to computers but only fifty-five percent of those with access to computers used them in instructional methods (Northup & Rooze, 1990). Using technology requires firm effort on the teacher’s part to control and effectively teach materials. Mandatory in this process is the development of higher thinking skills (by the teacher) such as critical thinking. For example, teachers using the Internet become the gatekeepers for access to information where, prior to the advent of the Internet, text publishers and editors were the gatekeepers. Joseph Braun Jr. stated, “with the Internet, there are no well-acknowledged gatekeepers, and anyone can publish misinformation without much consequence”. Braun indicates that the need for teachers to help students develop the ability to discover authentic and relevant knowledge to distinguish fact from fiction is greater than ever. Braun, defines this set of skills as critical thinking, and says it “involves judging the authenticity, accuracy, and worthwhileness of information” (Braun, 1997).
The possibilities that exist for the utilization of technology in the Social studies curriculum are vast, in fact a seasoned professional has said, "in some ways, technology in Social Studies education has changed little since I first became involved with educational technology in the early 1980's" (White, 1997). This professor of education, reiterates his claim by pointing out the fact that the "National Council for the Social studies published guidelines for software evaluation in 1984 and, while many of the evaluation criteria are still relevant today, the document is somewhat outdated" (White). These quotes indicate that a change in Social Studies teachers' utilization of technology would have a great impact on the curriculum and classroom. Software companies have published a myriad of titles that are oriented toward a Social studies classroom. But the impression is given that these titles are not being used in mass. Technology has been implemented in some schools that orient themselves as institutions of prestige. For the greater number of schools that are not using technology effectively a dramatic change is needed. This change can begin in the Social studies classroom.

Becker, as cited by Ross, reported that over seventy percent of all Social Studies teachers that responded to a technology utilization survey indicated that their colleagues, "never used microcomputers for instructional purposes" (Ross, 1991). Although the level of instructional microcomputer utilization in secondary Social studies found in this study is higher than indicated in pervious general surveys of computer use in schools. The data from surveys such as this are dated and may need to be updated.
Effectively using technology in a Social studies classroom, “encourages students to function as a learning community. Students work collaboratively to deepen their meaning of content and are exposed to sources of information and varying perspectives on historical and contemporary topics and issues” (Fernlund & Rose, 1997). This process would conflict with a traditional classroom where the teacher is the primary source of information. Implementing a technological instrument in a traditional classroom would be a difficult proposition if the teacher resents the shift of attention from instructor to alternative information sources or interrupts the “teacher’s existing pedagogical style” (Berson, 1996).

The utilization of technology in the Social studies classroom may be influenced by the perception that the instructor has toward technology. Two scholars have stated from their research findings that children’s attitudes toward the utilization of computers are directly related to the teacher’s attitude toward the utilization of computers (Todman & Dick 1993). If implemented, technology could enhance the learning environment and minds of the students as well as the teacher. Many researchers have heralded the positive impact of computer assisted instruction in the Social studies classroom. “Stevens observed students developing their academic confidence when engaged in computer assisted activities…concurrently, students develop their teamwork and problem solving skills…students learn to construct meaning for themselves and integrate concepts” (Berson, 1996). Students that were involved in another Social studies research study conducted at the Teachers College of Columbia University and the Dalton School clearly
showed that the experimental group's (those students that used technology) performance was seventy-three percent higher than that of the non-technology using control group. This performance was measured in the areas of explanation and argumentation with a statistical significance of \(t(38) = 3.34, p < .001 \) (Willis, 1996). In a study done by Roedding (1990) positive gains were reported in students' attitudes and accomplishments concerning subject matter. Students learn from their teachers. If a teacher has a negative perception toward technology certainly integration of such technology will not be welcomed nor used. On the contrary if the teacher has a positive perception toward the utilization of technology then, the opportunity affords itself to implement computer, Internet, software and other hardware packages. Several professionals have claimed that "simply placing microcomputers in school will do little to encourage user acceptance of computers if curricula experiences do not support the development of positive student attitudes toward them and their use" (Proctor & Burnett, 1996). This quote supports the thought of the teacher as the catalyst for technology learning and utilization in the classroom.

Age and Educational Attainment

Boston University School of Education Professor, Charles White says, "teaching is an information-based profession. Teachers must avoid teaching inert knowledge. They must actively engage students in constructing understanding. Technology provides a new set of intellectual construction tools that all Social Studies teachers need in their repertoire" (Hill, 1996). Where do teachers gain this set of construction tools and how
time consuming is the necessary learning process to understand the function and utilization of this tool set? David Morris (1996) has reported on a link between age and educational achievement, he says, those individuals with more education and are younger are more likely to utilize personal computers. In an earlier research study completed in 1988, Morris espoused his findings by stating, “age...is related to years of education achieved, which is directly related with attitudes regarding computers” (Morris, 1988). Those teachers that are younger will have a more positive perception toward the utilization of technology than their counterparts that are older but older teachers may have more education simply for fact that they have had more time to achieve greater educational achievement. Another author has also stated, “national polls tell us that, compared to younger Americans, older Americans are less knowledgeable and comfortable with computers” (Wheeler, 1996). As stated in the prior sections, teachers gain new information through educational achievement and participation in group learning activities that are associated with educational attainment. Through the investment of time (perhaps years) and education, teachers can learn to constructively utilize the tools of technology. Professional researchers suggest that the two variables of age and educational attainment are interconnected.

Conclusion of Literature Review

The literature indicates that collegiality is a force that influences a teacher’s perception toward the utilization of technology in the classroom. In so doing, a call has
been issued for a society that promotes “energetic, goal-directed, intellectually rigorous Social studies” (Wheeler).

The level of collegiality will be useful in determining those individuals that are open to technological ideas from their colleagues. In turn these technological ideas may enhance the classroom if the teacher has a positive perception toward the utilization of technology and this could help accomplish the goals of the Social studies curriculum. Those teachers that are found to have a negative perception toward the utilization of technology may not benefit directly from technology utilization and as a result nor will their students. If the research indicates that there is a relationship between collegiality and the utilization of technology, then steps to ensure and maintain a level of high collegiality and a positive perception toward the utilization of technology can be taken. If there is no significant relationship between the variables, then different activities can be undertaken to encourage the utilization of technology in the secondary Social studies classrooms of the Omaha Public Schools District.
CHAPTER 3
Methodology

Subjects

There was one population for this study. The population consisted of the secondary Social Studies teachers of the Omaha Public School District. The population numbered one hundred thirty teachers, which is one hundred percent of the total number of currently employed secondary Social Studies teachers in the district under review.

Research Design

This study was a descriptive based casual comparative research design to investigate and draw conclusions based on the relationships of collegiality, age, educational attainment and the utilization of technology as indicated in the literature review in Chapter Two. The survey was a researcher prepared measurement instrument derived from the Communicative Adaptability Scale and the Computer Orientation Scale which measured the level of collegiality and the perception toward the utilization of technology in the secondary Social studies classroom. No manipulation of the variables took place in this study.

General Study Procedures

A formal request for research was accurately completed and submitted to the Research Department of the Omaha Public Schools on February 8, 1998.

On February 17, 1998 the Omaha Public Schools District granted approval to conduct the research survey. The required Institutional Review Board request was then
completed and submitted. Approval by the Institutional Review Board was granted on March 2, 1998 to conduct the research survey. The questionnaires were then assigned numbers for tracking purposes. The numbering was done such that only the researcher could identify the respondents’ responses. All members of the studied population were surveyed using the prepared instrument of measurement that was designed to measure their degree of collegiality, age, educational achievement and perception toward the utilization of technology.

The survey was mailed to the study population on March 3, 1998. The requested return date was March 8, 1998. Thirty six percent of the initial surveys were returned by this date. Another four working days was allowed before initiating a second mailing and in so doing garnered an additional thirteen surveys or ten percent. A second mailing was initiated on March 14,1998 to all of the non-respondents with the request that the survey be returned by March 23, 1998. The follow up or second mailing had a return yield of twenty surveys or fifteen percent. Seventy six out of one hundred thirty surveys were returned for a total of fifty eight percent of the return. This percentage was accepted as a sufficiently valid representation for those teachers of the aforementioned population.

In order to score the respondents degree of collegiality and perceptions toward the utilization of technology in the secondary Social studies classroom, a preliminary data analysis was conducted on March 24, 1998. The preliminary data analysis involved scoring the participants’ surveys. The data was then summed to indicate the degree of collegiality and perception toward technology utilization in the secondary Social studies
classroom. The summed scores were then entered into a spreadsheet that was representative of each respondent's degree of collegiality, perception toward the utilization of technology, age, and number of years spent in pursuit of post secondary education. On March 26, 1998 the appropriate statistical procedures were applied to the data.

Instrument

Variables to be examined include levels of collegiality, age, number of years spent in pursuing postgraduate education and perception toward the utilization of technology in the secondary Social studies classroom. These variables were identified to answer the questions in chapter one.

For purposes of this study, a Likert Type survey instrument containing three parts was used to measure the variables. Part One of the instrument was used for gathering demographic information. Part Two consisted of fifteen statements used to measure the degree of collegiality of the studied population. Part Three measured the respondents' perceptions toward the utilization of technology in the secondary Social studies classroom. Each respondent rated each statement as, 5 = strongly agree, 4 = agree, 3 = undecided, 2 = disagree or 1 = strongly disagree. Seven reversed scored questions were used in Part Two and seven reversed scored questions in Part Three. The resulting summed score determined the respondent's degree of collegiality and perception toward the utilization of technology.
Part One of the survey, was developed in order to gain demographic data that may have a correlation with the utilization of technology in the secondary Social studies classroom. The participants indicated the following: 1. Their physical age, 2. The number of completed service years with the Omaha Public Schools District, 3. The number of school related extra curricular activities as well as the number of hours spent on each activity through out the school year and 4. The accumulated number of accredited semester hours spent in postgraduate work at a college or university.

Part two of the instrument was designed to measure the participants’ degree of collegiality. The Communicative Adaptability Scale, written by Robert L. Duran of Bowling Green State University, was used as a basis to measure collegiality. The Communicative Adaptability Scale is a six part, thirty question, Likert scale, self reported survey that was developed to measure communicative adaptability. The measurement is done in the following six parts: 1. Social experience, 2. Social Confirmation, 3. Social Composure, 4. Appropriate Disclosure, 5. Articulation, and 6. Wit. Under advisement from a Social Studies curriculum professional four statements concerning social composure, three statements of social confirmation, four statements about social experience, three statements measuring social articulation and one statement measuring wit were developed and added to the survey. The statements on this section of the survey were chosen to indicate the aforementioned items but respect to the respondents’ privacy was also built into the survey after gaining advisement from the curriculum specialist. Each question was assigned a numerical point indication of one to five, which was used
to determine the final score. A higher total score represented a higher degree of collegiality and a lower total score represented a lower degree of collegiality. These fifteen questions determined the total score and the rank of the participants’ degree of collegiality. Those ranks that are included in the upper quartile or lower quartile determined the placement of individuals into the categories of high collegiality or low collegiality. See Chapter Four for additional information on data analysis.

The Third part of the instrument was adapted from the Computer Orientation Scale. This test is “an eight item scale used measure individuals’ perceptions towards computers. On a five point, Likert-type scale, respondents indicated the degree to which they agree or disagree with statements concerning their personal feelings about using computers and how they feel about computers in general” (Morris, 1988). The existing test of technology perception was expanded upon by including statements relevant to teachers of Secondary Social Studies. Also, the statements were manipulated to reflect a more modern perception of technology. The same procedure as in part two was followed for computing the respondents’ ranks.
Data Collection

The surveys were mailed and returned via the Omaha Public School District's school mail system. The surveys were scored and analyzed by using a spreadsheet to organize and apply the appropriate statistical procedures to the data. The scores on parts Two and parts Three of the instrument were ranked. The comparison of the ranks determined the degree of correlation value of the two variables, collegiality and perception of technology utilization. Further analysis of the data was conducted to determine the relationships between the demographic data and the dependent variable.

Data Analysis

The respondents' responses were analyzed on March 26, 1998 in order to determine the strength of the relationship between the variables of collegiality, postgraduate educational achievement and the utilization of technology. A summary of the results was conducted as well as a comparison of the data for usage in the study. No significant difference was found; therefore the null hypothesis was not rejected. A formal summary of the results has been written such that the influence of the independent variables on the dependent variable can be clearly interpreted. A final report summarizing the results of this study was written and forwarded to the appropriate Omaha Public Schools officials on April 15, 1998.

Research Question One: Those individuals that are in the upper quartile of parts two and three of the survey are considered to have a high degree of collegiality and perception of technology utilization. The respondents in the lowest quartile of parts two and three of
the survey are considered to have a low degree of collegiality and perception of technology utilization. The means were calculated for the upper and lower quartiles and a one-tailed t-test was used to determine if the difference between the means was significant based on a .05 level of significance.

Research Question Two: Using a Spearman rank order correlation coefficient a determination was made as to the strength of the correlation between the variables of secondary Social Studies teachers’ degree of collegiality and their corresponding perceptions toward the classroom utilization of technology.

Research Question Three: Using a Spearman Rank Order Correlation Coefficient a determination was made as to the strength of the relationship between the variables of age and the perception of the utilization of technology by secondary Social Studies teachers.

Research Question Four: Using a Spearman Rank Order Correlation Coefficient a determination was made as to the strength of the relationship between the variables of educational achievement and the utilization of technology by secondary Social Studies teachers.
Chapter IV

Analysis of Data

The purpose of this study was to examine the relationship of secondary Social studies teacher’s degree of collegiality, age, and postgraduate educational achievement with their corresponding perception of the classroom utilization of technology. It was hypothesized that there would be a relationship between the independent variables and the perception toward the utilization of technology in the Secondary Social Studies classroom. The results of the survey are based on seventy-six respondents returning their surveys or fifty-eight percent of the one hundred thirty members of the sampled population. As an initial approach five scores were recorded for each respondent by a summation of the raw data provided from parts one, two and three of the measurement instrument. Secondly, these totals were used to rank the respondents in a descending order. Where two or more scores resulted in equal ranks, tied ranks were assigned. Then the respondents were divided into the upper and lower quartiles based on their collegiality raw scores.

Research Question One: Those individuals that are in the upper quartile of parts two and three of the survey are considered to have a high degree of collegiality and perception of technology utilization. The respondents in the lowest quartile of parts two and three of the survey are considered to have a low degree of collegiality and perception of technology utilization. The means were calculated for the upper and lower quartiles and a one-tailed t-test was used to determine if the difference between the means was
significant based on a .05 level of significance. The mean score for the upper quartile collegiality rank was 64.6 and the mean score for their corresponding technology utilization was 58.5. The lower quartile's mean score for collegiality was 49.1 and their corresponding technology utilization mean score was 53.2. The one tailed t-test value for the two quartiles was .08.

Research Question Two: Using a Spearman Rank Order Correlation Coefficient a determination was made as to the strength of the correlation between the variables of secondary Social Studies teachers’ degree of collegiality and their corresponding perceptions toward the classroom utilization of technology. The Spearman Rank Order Correlation Coefficient yielded a score of .25.

Research Question Three: Using a Spearman Rank Order Correlation Coefficient a determination was made as to the strength of the relationship between the variables of age and the perception of the utilization of technology by secondary Social Studies teachers. The Spearman Rank Order Correlation Coefficient yielded a score of .3.

Research Question Four: Using a Spearman Rank Order Correlation Coefficient a determination was made as to the strength of the relationship between the variables of educational achievement and the utilization of technology by secondary Social Studies teachers. The Spearman Rank Order Correlation Coefficient yielded a score of -0.1.
Table 1 represents the means and results of the one tailed t-test applied to the upper and lower quartiles' scores on the collegiality and technology inventories.

Table 1 Upper and Lower Quartile's Means and t-test Value

<table>
<thead>
<tr>
<th></th>
<th>Collegiality</th>
<th>Technology</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upper Quartile</td>
<td>64.6</td>
<td>58.5</td>
</tr>
<tr>
<td>Lower Quartile</td>
<td>49.1</td>
<td>53.2</td>
</tr>
</tbody>
</table>

When testing the upper and lower quartiles' technology, the t-test calculations produced values that are slightly significant with Alpha set at .05.
Table 2 illustrates the respondents' raw scores on the collegiality part and the technology part of the instrument that was used to statistically define their degree of correlation.

Table 2

Respondents Raw Collegiality Scores and Their Corresponding Raw Technology Scores

The graph indicates the number of respondents and their corresponding raw scores of collegiality and perception of technology utilization as reported on the survey.
Table 3 represents the means of the upper and lower quartiles of the respondents’ raw scores on the collegiality part and the perception of the utilization of technology part of the instrument.

Table 3

The Means for the Upper and Lower Quartile’s Scores on the Test for Collegiality and the Perception of the Utilization of Technology

The graph indicates the means of the upper and lower quartiles as they apply to the variables of collegiality and perception of technology utilization. The mean score for the upper quartile’s collegiality rank was 64.6 and the mean score for their corresponding
technology utilization was 58.5. The lower quartile's mean score for collegiality was 49.1 and their corresponding technology utilization mean score was 53.2.
CHAPTER V
Discussion, Conclusions and Recommendations

Introduction

In this chapter the results of the research study designed to investigate the relationship between the degree of collegiality and the utilization of technology in the secondary Social studies classroom will be discussed. This discussion includes a review of the methodology, analysis of the study results, conclusions and recommendations for further study.

Review of Study Methodology

This study investigated the relationship between the degree of collegiality and the utilization of technology in the secondary Social studies classroom. The study population consisted of all secondary Social Studies teachers in the Omaha Public Schools District. All subjects were surveyed using the same Likert type scale measurement instrument. The survey measured the subjects' degree of collegiality and their perception toward the classroom utilization of technology. All Likert type statements on the survey instrument focused on the goals of obtaining numerical information to measure the respondents' degree of collegiality and their perception toward the classroom utilization of technology. Demographic information was also gathered to investigate the possible correlation with the dependent variable.
Results

Through an analysis of the accumulated data, the following results were obtained:

1. Concerning the relationship between the independent variable collegiality and the dependent variable of perception toward utilization of technology, a score of .08 was obtained using a one tailed t-test with alpha at .05. This represents a slight positive relationship between the variables.

2. Using a Spearman Correlation Coefficient a score of .25 resulted after testing the correlation of the collegiality and technology utilization ranks of the respondents. This represents a low positive relationship between the variables.

3. Using a Spearman Correlation Coefficient a score of .3 resulted after testing the correlation between the ranks of the respondents' age and their corresponding rank of technology utilization. This also represents a low positive relationship between the variables.

4. Using a Spearman Correlation Coefficient a score of -0.1 resulted after testing the correlation between the ranks of the respondents' postgraduate achievement and their corresponding rank of technology utilization. This represents a negative relationship between the variables.

The study results indicate that the dependent variable is slightly influenced by the independent variables. This resulting relationship indicates that a plan to encourage collegial behavior among secondary Social Studies teachers may result in little or no
increase in the likelihood that secondary Social Studies teachers will develop a more positive perception toward the utilization of technology in their perspective classrooms.

The demographic variable of age and the variable of the perception toward the utilization of technology resulted in a Spearman Correlation rho of .30 as found among the Omaha Public Schools' secondary Social Studies teachers. This indicates a low positive relationship but stands in contrast with the results of the literature review in chapter two.

According to the literature review in chapter two, the utilization of technology is greatly increased by educational attainment. This is in sharp contrast with the results of this study's instrument concerning the variables of postgraduate achievement and the perception toward the utilization of the technology as found among the Omaha Public Schools' secondary Social Studies teachers. The Spearman Correlation rho was -0.10 which taken in context with the assumptions and limitations of this study indicates that there is no relationship between the variables of postgraduate educational achievement and the utilization of technology as found among the Omaha Public Schools' secondary Social Studies teachers.

Conclusion

The results of the t-test and the Spearman Correlation Coefficient may have been affected by several factors. The first factor could be that there are other variables that have a greater impact than collegiality on the perception of technology utilization. These could be computer training, funding, local building support for repairs and availability of
equipment. The resulting data of this study is reflective of the instrument that was used to measure the variables. A measurement of collegiality should possibly focus on the classroom empowerment and authority of teachers. For purposes of this research study collegiality was encompassed to mean, the promotion of shared authority and knowledge which comes through communication with one’s peers. This definition may be too broad and should be broken into several distinct variables. The research results of questions three and four stand in direct opposition with the literature review in Chapter Two. This could be due to the low number of returns of the survey or any external factor such as geographic area and technology saturation. Further study could prove useful in indicating the catalysts that improve the perception of technology utilization among secondary Social Studies teachers in the Omaha Public School District.

Recommendations for Further Study

Insight and understanding into the relationship between collegiality, age, educational achievement and perception toward the utilization of technology have been contributed. But, further research needs to be implemented with respect to the topic of the utilization of technology among secondary Social Studies teachers. The areas of recommendation are:

1. Measure the amount of input that secondary Social Studies teachers have in purchasing technology and the corresponding relationship with the utilization of technology in the secondary Social studies classroom. Investigating the relationship that purchasing technology-related items without input from those that are directly
responsible for utilizing those items has on the utilization of those items could prove to be valuable to the school district.

2. Measure the amount of 'in school' technology product support that is readily available to secondary Social Studies teachers and the corresponding relationship with the utilization of technology. Reasonable and timely maintenance support of the technology equipment may have an affect on the teacher's perception of the utilization of technology. If the technology breaks and it is not fixed it cannot be used. Does this situation have an influence on the teachers perception and if so what type of influence?

3. Research the relationship between available equipment and the utilization of technology. Is sufficient equipment available for teachers to reasonably use technology as a proficient learning tool for students? The lack of equipment to utilize technology learning may increase a negative perception toward technology. What effect does encouraging technology utilization have if, equipment access is extremely limited?

4. Research the relationship between available learning time and the utilization of technology among secondary Social Studies teachers. Teachers may not have any incentive to undertake the responsibility of a large time investment that is required to learn technology programs and peripherals. Teachers may be spending their 'out of school hours' employed elsewhere due to the low salaries that teachers earn or perhaps teachers spend their time in an intensive school related extracurricular activity.
Conclusion of Study

The study was successful in measuring the relationship between the variables as indicated in Chapter Two and the results were reported in bulk form to the Omaha Public Schools Research Department with respect to the anonymity of the respondents. The Omaha Public School District will use these results, as they deem appropriate. Although, this study is limited to comparing the effects of the degree of collegiality, age and number of postgraduate years of education with, their corresponding perception toward the utilization of technology among secondary Social Studies teachers other variables, may have an affect on the studied variables.

The combination of research, writing, instrument implementation/design and data analysis has truly been a positive learning experience for the researcher. Throughout this study, learning became the paramount guide due to researcher’s analyzing and synthesizing of data. Precision and diplomacy have taken on new meaning for the researcher; mistakes were made and the researcher learned from them. The researcher leaves this study with a greater respect for the respondents’ time and effort. Educators need to remember that learning new knowledge and skills is only the first half of the transformation process of becoming a professional educator; implementation of the new knowledge and skills is the second half.
References

APPENDIX A

SURVEY
Age: ______________

A. Number of completed teaching service years with the Omaha Public Schools District:

B. Briefly list the school related extra curricular activity(ies) and average number of
hours spent on each throughout the school year for which you are responsible:

1. Activity:

 Hours per year: ______________

2. Activity:

 Hours per year: ______________

3. Activity:

 Hours per year: ______________

C. Accumulated number of accredited semester hours spent in postgraduate work at a
 college or university: Hours: ______________

D. Please indicate the degree to which each statement applies to you by placing the
 appropriate number (according to the scale below) in the space provided.

 5 = always true of me
 4 = often true of me
 3 = sometimes true of me
 2 = rarely true of me
 1 = never true of me

 1. I feel apprehensive in social climates.

 2. In most social environments I feel constrained.
3. When speaking, my posture seems uncoordinated and strained.
4. I am at ease when speaking with others.
5. When speaking with others, I try to make the other person feel important.
6. While I am speaking, I think about how the other person feels.
7. When ideas are being shared publicly, I give verbal and nonverbal support to others.
8. I like to be actively involved in different social organizations.
9. I enjoy mingling with various types of individuals.
10. I find pleasure in meeting with new people.
11. I do not “mingle” well at social gatherings.
12. When speaking I have problems with grammar.
13. At times I use one verbal expression when I mean to use some other.
15. When speaking about an unfamiliar topic, I often become embarrassed.
16. I want to shun computers if feasible.
17. Computer operation is easily learned.
18. Computers are very significant in everyday life, not just specific careers.
19. Some individuals simply can not be taught computer competence.
20. I eagerly await for the time when computers are more expansively utilized.
21. Presently, I feel that there are too many computers in our society.
22. I most likely will never learn to operate a computer.
23. Computers isolate individuals by impeding normal social contact.

24. Learning to use a computer is too time consuming.

25. I find the Internet easy to use.

26. I have a difficult time learning to use a computer without verbal instruction.

27. I feel that computers in the Social studies classroom are useful.

28. I would be willing to learn to use a computer in my classroom, if proper instruction was provided.

29. I would be willing to use computers in my teaching if computers were readily available to me.

30. I would be willing to replace Social studies textbooks with computers.
APPENDIX B

APPENDIX B ILLUSTRATES THE RESPONDENTS’ RANKS BASED ON THEIR PERCEPTION OF TECHNOLOGY UTILIZATION AND THEIR CORRESPONDING AGE THAT, WERE USED TO STATISTICALLY DEFINE THEIR DEGREE OF CORRELATION.
Appendix B

Ranks of Respondents Technology Scores and Their Corresponding Demographic Age

<table>
<thead>
<tr>
<th>I. D.</th>
<th>Technology Score</th>
<th>Technology Score</th>
<th>Age</th>
<th>Age</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Raw</td>
<td>Ranked</td>
<td>Raw</td>
<td>Ranked</td>
</tr>
<tr>
<td>1</td>
<td>58</td>
<td>30</td>
<td>46</td>
<td>34.5</td>
</tr>
<tr>
<td>2</td>
<td>44</td>
<td>69</td>
<td>49</td>
<td>47.5</td>
</tr>
<tr>
<td>3</td>
<td>67</td>
<td>9.5</td>
<td>55</td>
<td>68.5</td>
</tr>
<tr>
<td>4</td>
<td>54</td>
<td>46</td>
<td>28</td>
<td>11</td>
</tr>
<tr>
<td>5</td>
<td>56</td>
<td>39</td>
<td>55</td>
<td>68.5</td>
</tr>
<tr>
<td>7</td>
<td>52</td>
<td>50.5</td>
<td>48</td>
<td>42</td>
</tr>
<tr>
<td>8</td>
<td>62</td>
<td>20</td>
<td>48</td>
<td>42</td>
</tr>
<tr>
<td>9</td>
<td>47</td>
<td>62.5</td>
<td>52</td>
<td>60.5</td>
</tr>
<tr>
<td>11</td>
<td>47</td>
<td>62.5</td>
<td>53</td>
<td>63.5</td>
</tr>
<tr>
<td>14</td>
<td>73</td>
<td>1.5</td>
<td>51</td>
<td>58.5</td>
</tr>
<tr>
<td>15</td>
<td>43</td>
<td>71.5</td>
<td>50</td>
<td>54</td>
</tr>
<tr>
<td>16</td>
<td>57</td>
<td>34</td>
<td>47</td>
<td>39</td>
</tr>
<tr>
<td>17</td>
<td>57</td>
<td>34</td>
<td>29</td>
<td>13.5</td>
</tr>
<tr>
<td>19</td>
<td>51</td>
<td>52</td>
<td>56</td>
<td>71.5</td>
</tr>
<tr>
<td>I. D.</td>
<td>Technology Raw Score</td>
<td>Technology Ranked Score</td>
<td>Age Raw Score</td>
<td>Age Ranked Score</td>
</tr>
<tr>
<td>-------</td>
<td>----------------------</td>
<td>-------------------------</td>
<td>---------------</td>
<td>------------------</td>
</tr>
<tr>
<td>20</td>
<td>43</td>
<td>71.5</td>
<td>49</td>
<td>47.5</td>
</tr>
<tr>
<td>23</td>
<td>54</td>
<td>46</td>
<td>42</td>
<td>24.5</td>
</tr>
<tr>
<td>24</td>
<td>73</td>
<td>1.5</td>
<td>48</td>
<td>42</td>
</tr>
<tr>
<td>25</td>
<td>68</td>
<td>7.5</td>
<td>57</td>
<td>74</td>
</tr>
<tr>
<td>26</td>
<td>58</td>
<td>30</td>
<td>50</td>
<td>54</td>
</tr>
<tr>
<td>27</td>
<td>68</td>
<td>7.5</td>
<td>24</td>
<td>4</td>
</tr>
<tr>
<td>28</td>
<td>48</td>
<td>59</td>
<td>53</td>
<td>63.5</td>
</tr>
<tr>
<td>29</td>
<td>50</td>
<td>53</td>
<td>46</td>
<td>34.5</td>
</tr>
<tr>
<td>30</td>
<td>56</td>
<td>39</td>
<td>51</td>
<td>58.5</td>
</tr>
<tr>
<td>32</td>
<td>52</td>
<td>50.5</td>
<td>53</td>
<td>63.5</td>
</tr>
<tr>
<td>34</td>
<td>55</td>
<td>43</td>
<td>57</td>
<td>74</td>
</tr>
<tr>
<td>35</td>
<td>56</td>
<td>39</td>
<td>28</td>
<td>11</td>
</tr>
<tr>
<td>36</td>
<td>43</td>
<td>71.5</td>
<td>46</td>
<td>34.5</td>
</tr>
<tr>
<td>41</td>
<td>43</td>
<td>71.5</td>
<td>49</td>
<td>47.5</td>
</tr>
<tr>
<td>42</td>
<td>56</td>
<td>39</td>
<td>45</td>
<td>30.5</td>
</tr>
<tr>
<td>43</td>
<td>71</td>
<td>3.5</td>
<td>24</td>
<td>4</td>
</tr>
<tr>
<td>45</td>
<td>49</td>
<td>55.5</td>
<td>55</td>
<td>68.5</td>
</tr>
</tbody>
</table>
Appendix B continued

<table>
<thead>
<tr>
<th>I. D.</th>
<th>Technology Raw Score</th>
<th>Technology Ranked Score</th>
<th>Age Raw Score</th>
<th>Age Ranked Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>47</td>
<td>59</td>
<td>26.5</td>
<td>44</td>
<td>27.5</td>
</tr>
<tr>
<td>50</td>
<td>64</td>
<td>16</td>
<td>40</td>
<td>22</td>
</tr>
<tr>
<td>53</td>
<td>47</td>
<td>62.5</td>
<td>35</td>
<td>18</td>
</tr>
<tr>
<td>54</td>
<td>59</td>
<td>26.5</td>
<td>43</td>
<td>26</td>
</tr>
<tr>
<td>55</td>
<td>49</td>
<td>55.5</td>
<td>50</td>
<td>54</td>
</tr>
<tr>
<td>57</td>
<td>55</td>
<td>43</td>
<td>41</td>
<td>23</td>
</tr>
<tr>
<td>59</td>
<td>49</td>
<td>55.5</td>
<td>50</td>
<td>54</td>
</tr>
<tr>
<td>60</td>
<td>70</td>
<td>5</td>
<td>53</td>
<td>63.5</td>
</tr>
<tr>
<td>61</td>
<td>45</td>
<td>66.5</td>
<td>26</td>
<td>6</td>
</tr>
<tr>
<td>62</td>
<td>57</td>
<td>34</td>
<td>47</td>
<td>39</td>
</tr>
<tr>
<td>65</td>
<td>58</td>
<td>30</td>
<td>44</td>
<td>27.5</td>
</tr>
<tr>
<td>70</td>
<td>53</td>
<td>48.5</td>
<td>27</td>
<td>8</td>
</tr>
<tr>
<td>72</td>
<td>45</td>
<td>66.5</td>
<td>56</td>
<td>71.5</td>
</tr>
<tr>
<td>78</td>
<td>61</td>
<td>23</td>
<td>36</td>
<td>20</td>
</tr>
<tr>
<td>79</td>
<td>49</td>
<td>55.5</td>
<td>55</td>
<td>68.5</td>
</tr>
<tr>
<td>80</td>
<td>63</td>
<td>18</td>
<td>45</td>
<td>30.5</td>
</tr>
<tr>
<td>83</td>
<td>53</td>
<td>48.5</td>
<td>57</td>
<td>74</td>
</tr>
</tbody>
</table>
Appendix B continued

<table>
<thead>
<tr>
<th>I. D.</th>
<th>Technology Raw Score</th>
<th>Technology Ranked Score</th>
<th>Age Raw Score</th>
<th>Age Ranked Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>84</td>
<td>48</td>
<td>59</td>
<td>49</td>
<td>47.5</td>
</tr>
<tr>
<td>88</td>
<td>57</td>
<td>34</td>
<td>46</td>
<td>34.5</td>
</tr>
<tr>
<td>89</td>
<td>71</td>
<td>3.5</td>
<td>24</td>
<td>4</td>
</tr>
<tr>
<td>91</td>
<td>66</td>
<td>11.5</td>
<td>27</td>
<td>8</td>
</tr>
<tr>
<td>93</td>
<td>59</td>
<td>26.5</td>
<td>45</td>
<td>30.5</td>
</tr>
<tr>
<td>96</td>
<td>47</td>
<td>62.5</td>
<td>45</td>
<td>30.5</td>
</tr>
<tr>
<td>100</td>
<td>69</td>
<td>6</td>
<td>31</td>
<td>16</td>
</tr>
<tr>
<td>101</td>
<td>61</td>
<td>23</td>
<td>23</td>
<td>1.5</td>
</tr>
<tr>
<td>102</td>
<td>64</td>
<td>16</td>
<td>47</td>
<td>39</td>
</tr>
<tr>
<td>103</td>
<td>20</td>
<td>76</td>
<td>54</td>
<td>66</td>
</tr>
<tr>
<td>104</td>
<td>45</td>
<td>66.5</td>
<td>50</td>
<td>54</td>
</tr>
<tr>
<td>106</td>
<td>30</td>
<td>74</td>
<td>30</td>
<td>15</td>
</tr>
<tr>
<td>108</td>
<td>55</td>
<td>43</td>
<td>23</td>
<td>1.5</td>
</tr>
<tr>
<td>110</td>
<td>65</td>
<td>13.5</td>
<td>50</td>
<td>54</td>
</tr>
<tr>
<td>111</td>
<td>62</td>
<td>20</td>
<td>42</td>
<td>24.5</td>
</tr>
<tr>
<td>112</td>
<td>67</td>
<td>9.5</td>
<td>49</td>
<td>47.5</td>
</tr>
<tr>
<td>113</td>
<td>62</td>
<td>20</td>
<td>32</td>
<td>17</td>
</tr>
</tbody>
</table>
Appendix B continued

<table>
<thead>
<tr>
<th>I. D.</th>
<th>Technology Age</th>
<th>Technology Age</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Raw Score</td>
<td>Ranked Score</td>
</tr>
<tr>
<td>117</td>
<td>65 13.5</td>
<td>28 11</td>
</tr>
<tr>
<td>118</td>
<td>66 11.5</td>
<td>29 13.5</td>
</tr>
<tr>
<td>119</td>
<td>57 34</td>
<td>36 20</td>
</tr>
<tr>
<td>120</td>
<td>61 23</td>
<td>27 8</td>
</tr>
<tr>
<td>123</td>
<td>48 59</td>
<td>52 60.5</td>
</tr>
<tr>
<td>125</td>
<td>59 26.5</td>
<td>60 76</td>
</tr>
<tr>
<td>126</td>
<td>25 75</td>
<td>49 47.5</td>
</tr>
<tr>
<td>127</td>
<td>45 66.5</td>
<td>50 54</td>
</tr>
<tr>
<td>128</td>
<td>56 39</td>
<td>36 20</td>
</tr>
<tr>
<td>129</td>
<td>54 46</td>
<td>48 42</td>
</tr>
<tr>
<td>130</td>
<td>64 16</td>
<td>48 42</td>
</tr>
<tr>
<td>SUM</td>
<td>4195</td>
<td>3323</td>
</tr>
<tr>
<td>MEAN</td>
<td>55.1</td>
<td>43.7</td>
</tr>
</tbody>
</table>
APPENDIX C

APPENDIX C ILLUSTRATES THE RESPONDENTS’ RANKS BASED ON THEIR PERCEPTION OF TECHNOLOGY UTILIZATION AND THEIR CORRESPONDING NUMBER OF YEARS SPENT IN POSTGRADUATE EDUCATION THAT, WERE USED TO STATISTICALLY DEFINE THEIR DEGREE OF CORRELATION.
Appendix C

Ranks of Respondents Technology Scores and Their Corresponding Number of Years Spent in Postgraduate Education

<table>
<thead>
<tr>
<th>I. D.</th>
<th>Technology Raw Score</th>
<th>Technology Ranked Score</th>
<th>Post Graduate Raw Score</th>
<th>Post Graduate Ranked Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>58</td>
<td>30</td>
<td>0</td>
<td>70</td>
</tr>
<tr>
<td>2</td>
<td>44</td>
<td>69</td>
<td>40</td>
<td>25</td>
</tr>
<tr>
<td>3</td>
<td>67</td>
<td>9.5</td>
<td>30</td>
<td>45.5</td>
</tr>
<tr>
<td>4</td>
<td>54</td>
<td>46</td>
<td>36</td>
<td>33.5</td>
</tr>
<tr>
<td>5</td>
<td>56</td>
<td>39</td>
<td>55</td>
<td>12.5</td>
</tr>
<tr>
<td>7</td>
<td>52</td>
<td>50.5</td>
<td>0</td>
<td>70</td>
</tr>
<tr>
<td>8</td>
<td>62</td>
<td>20</td>
<td>48</td>
<td>20</td>
</tr>
<tr>
<td>9</td>
<td>47</td>
<td>62.5</td>
<td>30</td>
<td>45.5</td>
</tr>
<tr>
<td>11</td>
<td>47</td>
<td>62.5</td>
<td>52</td>
<td>15</td>
</tr>
<tr>
<td>14</td>
<td>73</td>
<td>1.5</td>
<td>50</td>
<td>17</td>
</tr>
<tr>
<td>15</td>
<td>43</td>
<td>71.5</td>
<td>60</td>
<td>9.5</td>
</tr>
<tr>
<td>16</td>
<td>57</td>
<td>34</td>
<td>19</td>
<td>56</td>
</tr>
<tr>
<td>17</td>
<td>57</td>
<td>34</td>
<td>36</td>
<td>33.5</td>
</tr>
<tr>
<td>19</td>
<td>51</td>
<td>52</td>
<td>50</td>
<td>17</td>
</tr>
</tbody>
</table>
Appendix C continued

<table>
<thead>
<tr>
<th>I. D.</th>
<th>Technology Raw Score</th>
<th>Technology Ranked Score</th>
<th>Post Graduate Raw Score</th>
<th>Post Graduate Ranked Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>43</td>
<td>71.5</td>
<td>60</td>
<td>9.5</td>
</tr>
<tr>
<td>23</td>
<td>54</td>
<td>46</td>
<td>36</td>
<td>33.5</td>
</tr>
<tr>
<td>24</td>
<td>73</td>
<td>1.5</td>
<td>100</td>
<td>1</td>
</tr>
<tr>
<td>25</td>
<td>68</td>
<td>7.5</td>
<td>66</td>
<td>6</td>
</tr>
<tr>
<td>26</td>
<td>58</td>
<td>30</td>
<td>0</td>
<td>70</td>
</tr>
<tr>
<td>27</td>
<td>68</td>
<td>7.5</td>
<td>10</td>
<td>58</td>
</tr>
<tr>
<td>28</td>
<td>48</td>
<td>59</td>
<td>26</td>
<td>53</td>
</tr>
<tr>
<td>29</td>
<td>50</td>
<td>53</td>
<td>72</td>
<td>3.5</td>
</tr>
<tr>
<td>30</td>
<td>56</td>
<td>39</td>
<td>75</td>
<td>2</td>
</tr>
<tr>
<td>32</td>
<td>52</td>
<td>50.5</td>
<td>48</td>
<td>20</td>
</tr>
<tr>
<td>34</td>
<td>55</td>
<td>43</td>
<td>50</td>
<td>17</td>
</tr>
<tr>
<td>35</td>
<td>56</td>
<td>39</td>
<td>0</td>
<td>70</td>
</tr>
<tr>
<td>36</td>
<td>43</td>
<td>71.5</td>
<td>40</td>
<td>25</td>
</tr>
<tr>
<td>41</td>
<td>43</td>
<td>71.5</td>
<td>47</td>
<td>22</td>
</tr>
<tr>
<td>42</td>
<td>56</td>
<td>39</td>
<td>34</td>
<td>39.5</td>
</tr>
<tr>
<td>43</td>
<td>71</td>
<td>3.5</td>
<td>6</td>
<td>61.5</td>
</tr>
<tr>
<td>45</td>
<td>49</td>
<td>55.5</td>
<td>36</td>
<td>33.5</td>
</tr>
</tbody>
</table>
Appendix C continued

<table>
<thead>
<tr>
<th>I. D.</th>
<th>Technology Raw Score</th>
<th>Technology Ranked Score</th>
<th>Post Graduate Raw Score</th>
<th>Post Graduate Ranked Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>47</td>
<td>59</td>
<td>26.5</td>
<td>60</td>
<td>9.5</td>
</tr>
<tr>
<td>50</td>
<td>64</td>
<td>16</td>
<td>36</td>
<td>33.5</td>
</tr>
<tr>
<td>53</td>
<td>47</td>
<td>62.5</td>
<td>0</td>
<td>70</td>
</tr>
<tr>
<td>54</td>
<td>59</td>
<td>26.5</td>
<td>27</td>
<td>51.5</td>
</tr>
<tr>
<td>55</td>
<td>49</td>
<td>55.5</td>
<td>66</td>
<td>6</td>
</tr>
<tr>
<td>57</td>
<td>55</td>
<td>43</td>
<td>55</td>
<td>12.5</td>
</tr>
<tr>
<td>59</td>
<td>49</td>
<td>55.5</td>
<td>36</td>
<td>33.5</td>
</tr>
<tr>
<td>60</td>
<td>70</td>
<td>5</td>
<td>48</td>
<td>20</td>
</tr>
<tr>
<td>61</td>
<td>45</td>
<td>66.5</td>
<td>9</td>
<td>59</td>
</tr>
<tr>
<td>62</td>
<td>57</td>
<td>34</td>
<td>34</td>
<td>39.5</td>
</tr>
<tr>
<td>65</td>
<td>58</td>
<td>30</td>
<td>18</td>
<td>57</td>
</tr>
<tr>
<td>70</td>
<td>53</td>
<td>48.5</td>
<td>0</td>
<td>70</td>
</tr>
<tr>
<td>72</td>
<td>45</td>
<td>66.5</td>
<td>0</td>
<td>70</td>
</tr>
<tr>
<td>78</td>
<td>61</td>
<td>23</td>
<td>36</td>
<td>33.5</td>
</tr>
<tr>
<td>79</td>
<td>49</td>
<td>55.5</td>
<td>40</td>
<td>25</td>
</tr>
<tr>
<td>80</td>
<td>63</td>
<td>18</td>
<td>30</td>
<td>45.5</td>
</tr>
<tr>
<td>83</td>
<td>53</td>
<td>48.5</td>
<td>72</td>
<td>3.5</td>
</tr>
</tbody>
</table>
Appendix C continued

<table>
<thead>
<tr>
<th>I. D.</th>
<th>Technology Raw Score</th>
<th>Technology Ranked Score</th>
<th>Post Graduate Raw Score</th>
<th>Post Graduate Ranked Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>84</td>
<td>48</td>
<td>59</td>
<td>30</td>
<td>45.5</td>
</tr>
<tr>
<td>88</td>
<td>57</td>
<td>34</td>
<td>30</td>
<td>45.5</td>
</tr>
<tr>
<td>89</td>
<td>71</td>
<td>3.5</td>
<td>0</td>
<td>70</td>
</tr>
<tr>
<td>91</td>
<td>66</td>
<td>11.5</td>
<td>0</td>
<td>70</td>
</tr>
<tr>
<td>93</td>
<td>59</td>
<td>26.5</td>
<td>30</td>
<td>45.5</td>
</tr>
<tr>
<td>96</td>
<td>47</td>
<td>62.5</td>
<td>30</td>
<td>45.5</td>
</tr>
<tr>
<td>100</td>
<td>69</td>
<td>6</td>
<td>27</td>
<td>51.5</td>
</tr>
<tr>
<td>101</td>
<td>61</td>
<td>23</td>
<td>3</td>
<td>63</td>
</tr>
<tr>
<td>102</td>
<td>64</td>
<td>16</td>
<td>36</td>
<td>33.5</td>
</tr>
<tr>
<td>103</td>
<td>20</td>
<td>76</td>
<td>30</td>
<td>45.5</td>
</tr>
<tr>
<td>104</td>
<td>45</td>
<td>66.5</td>
<td>0</td>
<td>70</td>
</tr>
<tr>
<td>106</td>
<td>30</td>
<td>74</td>
<td>0</td>
<td>70</td>
</tr>
<tr>
<td>108</td>
<td>55</td>
<td>43</td>
<td>0</td>
<td>70</td>
</tr>
<tr>
<td>110</td>
<td>65</td>
<td>13.5</td>
<td>30</td>
<td>45.5</td>
</tr>
<tr>
<td>111</td>
<td>62</td>
<td>20</td>
<td>42</td>
<td>23</td>
</tr>
<tr>
<td>112</td>
<td>67</td>
<td>9.5</td>
<td>39</td>
<td>27.5</td>
</tr>
<tr>
<td>113</td>
<td>62</td>
<td>20</td>
<td>39</td>
<td>27.5</td>
</tr>
</tbody>
</table>
Appendix C continued

<table>
<thead>
<tr>
<th>I. D.</th>
<th>Technology</th>
<th>Technology</th>
<th>Post Graduate</th>
<th>Post Graduate</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Raw Score</td>
<td>Ranked Score</td>
<td>Raw Score</td>
<td>Ranked Score</td>
</tr>
<tr>
<td>117</td>
<td>65</td>
<td>13.5</td>
<td>21</td>
<td>54.5</td>
</tr>
<tr>
<td>118</td>
<td>66</td>
<td>11.5</td>
<td>6</td>
<td>61.5</td>
</tr>
<tr>
<td>119</td>
<td>57</td>
<td>34</td>
<td>21</td>
<td>54.5</td>
</tr>
<tr>
<td>120</td>
<td>61</td>
<td>23</td>
<td>0</td>
<td>70</td>
</tr>
<tr>
<td>123</td>
<td>48</td>
<td>59</td>
<td>66</td>
<td>6</td>
</tr>
<tr>
<td>125</td>
<td>59</td>
<td>26.5</td>
<td>54</td>
<td>14</td>
</tr>
<tr>
<td>126</td>
<td>25</td>
<td>75</td>
<td>60</td>
<td>9.5</td>
</tr>
<tr>
<td>127</td>
<td>45</td>
<td>66.5</td>
<td>30</td>
<td>45.5</td>
</tr>
<tr>
<td>128</td>
<td>56</td>
<td>39</td>
<td>36</td>
<td>33.5</td>
</tr>
<tr>
<td>129</td>
<td>54</td>
<td>46</td>
<td>36</td>
<td>33.5</td>
</tr>
<tr>
<td>130</td>
<td>64</td>
<td>16</td>
<td>7</td>
<td>60</td>
</tr>
</tbody>
</table>

SUM: 4195 | 2482

MEAN: 55.1 | 32.6
APPENDIX D

THESIS APPROVAL DOCUMENTS
February 9, 1998

Dr. Ernest Prentice
Instructional Review Board
Eppley Science Hall 3018
University of Nebraska Medical Center
Omaha, NE 68198-6810

Dear Dr. Prentice,

At the University of Nebraska at Omaha I am seeking to complete the requirements for a Master's Degree with an emphasis in educational technology applications. As part of my requirements I am planning to conduct a research survey involving the degree of collegiality and the utilization of technology of the secondary social teachers of the Omaha Public Schools District.

Please refer to the enclosed IRB Request for Exemption Form to gain greater insight on the proposed study. I believe that the study qualifies as exempt within the IRB guidelines.

If you have any questions please call me at the OPS Career Center, 557-3700 or at my home, 537-0190. Elliott Ostler Ph.D. from the University of Nebraska at Omaha is my thesis committee chair and is working closely with me on this study. If needed, he can be contacted at 554-2212.

Thank you for considering my request. I am looking forward to your response.

Sincerely,

Douglas S. Newton
EXEMPTION FORM

SECTION I: APPLICATION DATA

TITLE OF RESEARCH PROPOSAL: The Relationship Between The Degree of Collegiality and The Utilization of Technology in The Secondary Social Science Classroom

STARTING DATE: February 19, 1998

PRINCIPAL INVESTIGATOR: Douglas Newton

SECONDARY INVESTIGATOR(S):

DEPARTMENT/COLLEGE: Teacher Education/College of Education

ADDRESS: 1120 Delmar St. #4D Papillion, NE 68046

TELEPHONE: Home 537-0190 Work 557-3700

SECTION 2: CERTIFICATION

CERTIFICATION OF PRINCIPAL INVESTIGATOR: Signature certifies that the research project as described will be conducted in full compliance with University of Nebraska Regulations governing human subject research as stated in the IRB Guidelines for the Protection of Human Subjects. It is understood that the IRB will be notified of any proposed changes which may affect the exempt status of the research.

Signature of Principal Investigator 2-19-98 Date

Instructor Multimedia Productions Career Center Position

ADVISOR APPROVAL: Student investigators are required to obtain approval from their advisor. Signature of approval certifies the research proposal has been approved and recommended for submission to the IRB.

Signature of Advisor 2-19-98 Date

Printed Name of Advisor

The IRB requires submission of an original and one (1) copy of the Exemption Form.

Page 1 of 3
SECTION 2: REVIEW INFORMATION

In order to determine whether your proposal qualifies for exempt status under 45 CFR 46:101(b), the IRB requests submission of the following information. Each subpart must be titled as described below and addressed in the listed sequence.

I. PURPOSE OF THE STUDY. State concisely and realistically what the research in this proposal is intended to accomplish.

II. CHARACTERISTICS OF THE SUBJECT POPULATION. Address the following questions in sequence using the listed subheadings.
 a. AGE RANGE. What is the age range of the subjects?
 b. SEX. What is the sex of the subjects?
 c. NUMBER. What is the anticipated number of subjects?
 d. SELECTION CRITERIA. What are the subject selection criteria?

III. METHOD OF SUBJECT SELECTION. Describe the method(s) to be employed in the identification/recruitment of prospective subjects.

IV. STUDY SITE. State the location(s) where the study will be conducted. Attach letters of approval from any non-University of Nebraska study site.

V. DESCRIPTION OF PROCEDURES. Describe all procedures to be applied to subjects. Attach one copy of all surveys, questionnaires, and educational tests.

VI. CONFIDENTIALITY. Describe how and the extent to which confidentiality of data will be maintained.

VII. INFORMED CONSENT. Some technically exempt research projects ethically require informed consent (written or oral). If, in the investigator's opinion, the study requires informed consent, the method used to obtain informed consent should be described and any written consent forms submitted. If the study does not require consent, it should be so stated and justified.

VIII. JUSTIFICATION OF EXEMPTION. The exempt category (1-6) under which the proposal is submitted should be stated and justified.

SECTION 4: CATEGORIES OF RESEARCH THAT QUALIFY FOR EXEMPT STATUS

Research activities in which the only involvement of human subjects will be in one or more of the categories specified by Federal Regulations 45 CFR 46:101(b) are exempt from the requirements of 45 CFR 46. Only an Exemption Form must be submitted and approved by the IRB. The exempt categories do not, however, apply to research involving deception of subjects (the researcher deceives the subject with regard to the purpose of the research and/or the results of the subject's actions in the study), sensitive behavioral research, or to research involving pregnant women, prisoners, mentally incompetent people and other subject populations determined to be vulnerable.

Exempt Categories:

1. Research conducted in established or commonly accepted educational settings, involving normal educational practices, such as: (i) research on regular or special education instructional strategies, or (ii) research on the effectiveness of or the comparison among instructional techniques, curricula, or classroom management methods. Educational research protocols are exempt providing all of the following conditions are met:
 a. All of the research is conducted in a commonly accepted educational setting (e.g., public school).
 b. The research involves normal educational practices (e.g., comparison of instructional techniques).
 c. The study procedures do not represent a significant deviation in time or effort requirements from those educational practices already existent at the study site.
 d. The study procedures involve no increase in the level of risk or discomfort attendant normal, routine educational practices.
 e. The study procedures do not involve sensitive subjects (e.g., sex education).
 f. Provisions are made to ensure the existence of a non-coercive environment for those students who choose not to participate.
 g. The school or other institution grants written approval for the research to be conducted.

 NOTE: When an educational research project meets all of the above-listed conditions the IRB does not require parental consent. The investigator and/or the school system may, however, decide that parental consent should be obtained. Verbal child assent should be obtained. Educational projects that do not meet the above-listed conditions are not exempt and must be reviewed by either the expedited or full Board method.

2. Research involving the use of educational tests (cognitive, diagnostic, aptitude, achievement), survey procedures, interview procedures or observation of public behavior, unless: (i) information obtained is recorded in such a manner that human subjects can be identified, directly or through identifiers linked to the subjects; and (ii) any disclosure of the human subjects' responses outside the research could reasonably place the subjects at risk of criminal or civil liability or be damaging to the subjects' financial standing, employability, or reputation.
NOTE: Sensitive survey research is not exempt. A sensitive survey is one that deals with sensitive or highly personal aspects of the subject's behavior, life experiences or attitudes. Examples include chemical substance abuse, sexual activity or attitudes, sexual abuse, criminal behavior, sensitive demographic data, detailed health history, etc. The principal determination of sensitivity is whether or not the survey research presents a potential risk to the subject in terms of possible precipitation of a negative emotional reaction. An additional risk consideration is, of course, whether or not there is risk associated with a breach of confidentiality should one occur. With respect to potential psychological risk associated with a survey, the presence or absence of subject identifiers is not necessarily a consideration since the risk may be primarily associated with the sensitive nature of the survey as opposed to being dependent upon confidentiality. Subject identifiers do, however, become a factor when confidentiality is an issue.

NOTE: When children are involved as subjects in research using survey or interview procedures, the research is not exempt.

NOTE: When children are involved as subjects in research using observation techniques, the research is not exempt if the investigator participates in the activities being observed.

NOTE: Observation research involving sensitive aspects of a subject's behavior is not exempt.

3. Research involving the use of educational tests (cognitive, diagnostic, aptitude, achievement), survey procedures, interview procedures, or observation of public behavior that is not exempt under paragraph 2 of this section, if: (i) the human subjects are elected or appointed public officials or candidates for public office; or (ii) federal statute(s) require(s) without exception that the confidentiality of the personally identifiable information will be maintained throughout the research and thereafter.

4. Research involving the collection or study of existing data, documents, records, pathological specimens, or diagnostic specimens, if these sources are publicly available or if the information is recorded by the investigator in such a manner that subjects cannot be identified, directly or through identifiers linked to the subjects.

5. Research and demonstration projects which are conducted by or subject to the approval of department or agency heads, and which are designed to study, evaluate, or otherwise examine: (i) public benefit or service programs; (ii) procedures for obtaining benefits or services under those programs; (iii) possible changes in or alternatives to those programs or procedures; or (iv) possible changes in methods or levels of payment for benefits or services under those programs.

6. Taste and food quality evaluation and consumer acceptance studies: (i) if wholesome foods without additives are consumed or (ii) if a food is consumed that contains a food ingredient at or below the level and for a use found to be safe, or agricultural chemical or environmental contaminant at or below the level found to be safe, by the Food and Drug Administration or approved by the Environmental Protection Agency or the Food Safety and Inspection Service of the U.S. Department of Agriculture.
I. Purpose of the Study

The purpose of this survey is to determine if a relationship exists between the degree of collegiality and the utilization of technology of the secondary social science teachers in the Omaha Public Schools District.

II. Characteristics of the Subject Population

a. Age Range: All of the participants will qualify as legal adults.

b. Sex: Both male and female participants will be surveyed.

c. Number: Approximately 160 adults will be surveyed.

d. Selection Criteria: Each individual that will be surveyed must be a current secondary (grades 7 – 12) social science teacher with the Omaha Public Schools District.

III. Method of Subject Selection

A list indicating the names of all current secondary social science teachers in the Omaha Public Schools District will be obtained from the supervisor of the social science curriculum. All instructors that are part of the secondary social science curriculum in the Omaha Public Schools will be eligible to participate in the survey.

IV. Study Site

The survey will be completed at the participant’s school building of employment.

V. Description of Procedures

The participants will receive by way of official school mail the survey and accompanying cover letter. The participants will complete the questionnaire and return it in the provided envelope by way of official school mail to the researcher. The completed surveys will then be analyzed to determine the various factors that are being surveyed.
VI. Confidentiality

Individual names and schools will not be used when reporting the results. All testing material will be kept strictly confidential by the investigator. All results will be reported in bulk form. The participants will only be identified to the researcher by their name and a randomly assigned number.

VII. Informed Consent

A letter will be sent to each participant stating the purpose and reporting methods of the survey.

VIII. Justification of Exemption

1. Research is conducted in an established or commonly accepted educational setting with research on regular or special education instructional strategies and research on the effectiveness and comparison among instructional techniques.

 a. All of the research is conducted in a commonly accepted educational setting in the secondary educational institutions of the Omaha Public Schools District.

 b. The research involves the completion of a survey and the educational practices will not be affected in any way.

 c. The study procedures do not represent a significant deviation in time or effort requirements from those educational practices already existent at the study site. Approximately fifteen minutes will be needed to complete and return the survey.

 d. The study procedures involve no increase in the level of risk or discomfort attendant normal, routine educational practices.

 e. The study procedures do not involve sensitive subjects (e.g., sex education).

 f. Provisions are made to ensure the existence of a non-coercive environment for those individuals who choose not to participate. Since there is no special environment other than the participants’ normal working conditions the non-participants will be able to go about their normal schedule. Participation in the research survey is voluntary.

 g. The Omaha Public Schools District has granted written approval for the research to be conducted.

2. Research involving the use of educational tests and subjects cannot be identified by anyone other than the researcher.
February 18, 1998

Douglas S. Newton
OPS Career Center

Dear Mr. Newton:

We have received your letter requesting to conduct research involving secondary social studies teachers. You indicate your method of data collection will consist of a survey designed to measure teachers' degree of collegiality and use of technology.

We believe your study has merit and permission is granted for you to proceed under the following conditions:

- Teachers agree to your study.
- In the reporting of the results, teachers will not be personally identifiable.
- You will be willing to share results of your study with OPS.

Best wishes.

Sincerely,

Peter Smith
Coordinator of Research

PS/jb
Age: ______________

A. Number of completed teaching service years with the Omaha Public Schools District: ______________

B. Briefly list the school related extra curricular activity(ies) and average number of hours spent on each throughout the school year for which you are responsible:

1. Activity:
 Hours per year: ______________

2. Activity:
 Hours per year: ______________

3. Activity:
 Hours per year: ______________

C. Accumulated number of accredited semester hours spent in postgraduate work at a college or university:
 Hours: ______________

D. Please indicate the degree to which each statement applies to you by placing the appropriate number (according to the scale below) in the space provided.

 5 = always true of me
 4 = often true of me
 3 = sometimes true of me
 2 = rarely true of me
 1 = never true of me

 _____ 1. I feel apprehensive in social climates.
 _____ 2. In most social environments I feel constrained.
 _____ 3. When speaking, my posture seems uncoordinated and strained.
 _____ 4. I am at ease when speaking with others.
 _____ 5. When speaking with others, I try to make the other person feel important.
 _____ 6. While I am speaking, I think about how the other person feels.
 _____ 7. When ideas are being shared publicly, I give verbal and nonverbal support to others.
8. I like to be actively involved in different social organizations.
9. I enjoy mingling with various types of individuals.
10. I find pleasure in meeting with new people.
11. I do not “mingle” well at social gatherings.
12. When speaking I have problems with grammar.
13. At times I use one verbal expression when I mean to use some other.
15. When speaking about an unfamiliar topic, I often become embarrassed.
16. I want to shun computers if feasible.
17. Computer operation is easily learned.
18. Computers are very significant in everyday life, not just specific careers.
19. Some individuals simply can not be taught computer competence.
20. I eagerly await for the time when computers are more expansively utilized.
21. Presently, I feel that there are too many computers in our society.
22. I most likely will never learn to operate a computer.
23. Computers isolate individuals by impeding normal social contact.
24. Learning to use a computer is too time consuming.
25. I find the Internet easy to use.
26. I have a difficult time learning to use a computer without verbal instruction.
27. I feel that computers in the Social Science classroom are useful.
28. I would be willing to learn to use a computer in my classroom, if proper instruction was provided.
29. I would be willing to use computers in my teaching if computers were readily available to me.
30. I would be willing to replace social science textbooks with computers.
Dear Instructor,

My name is Douglas Newton and I am currently a student at the University of Nebraska at Omaha. I am conducting a research survey in order to fulfill part of the requirements necessary to complete a Master's Degree in Secondary Education with an emphasis in Educational Technology Applications. Also, I am a current employee of the Omaha Public Schools District Career Center.

The research involves the participation of all secondary social science teachers in the Omaha Public Schools District. Your anonymity will remain confidential and secure as the results are published and returned in bulk form to the Omaha Public Schools District. Permission to conduct this research study has been granted by the Omaha Public Schools Research Department.

Completion and return of the survey will take approximately ten minutes. Please return the completed survey (via school mail) in the provided envelope. The completed surveys that are received by March 8, 1998 will be used as a basis for a drawing. Two names will be drawn and each will be given two tickets to see the April 16 Aksarben performance of "The Box Tops" with special guests "The Kingsmen".

Thank you for your cooperation and again your survey will be held in strict confidence.

Sincerely,

Douglas S. Newton
Dear Instructor,

My name is Douglas Newton and I am currently a student at the University of Nebraska at Omaha. I am conducting a research survey in order to fulfill part of the requirements necessary to complete a Master’s Degree in Secondary Education with an emphasis in Educational Technology Applications. Also, I am a current employee of the Omaha Public Schools District Career Center.

The research involves the participation of all secondary social science teachers in the Omaha Public Schools District. Your anonymity will remain confidential and secure as the results are published and returned in bulk form to the Omaha Public Schools District. Permission to conduct this research study has been granted by the Omaha Public Schools Research Department.

Completion and return of the survey will take approximately ten minutes. Please return the completed survey (via school mail). The completed surveys that are received by March 23, 1998 will be used as a basis for a drawing. One name will be drawn and that instructor will be given a $10 certificate for Borders Books and Music.

Thank you for your cooperation and valuable time.

Sincerely,

Douglas S. Newton