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Abstract

The availability of large fragments of genomic DNA makes it possible to apply
comparative genomics for identification of protein-coding regions. We have
conducted a comparative analysis of homologous genomic sequences of organisms
with different evolutionary distances and found the conservation of the non-coding
regions between closely related organisms. In contrast, more distance shows much
less intron similarity but less conservation on the exon structures. We sought to
illuminate the impact of evolutionary distances on the performance of our gene-
finding program based on the cross-species sequence comparison. Base on our
finding and training of data sets, we proposed a model by which coding sequence
could be identified by comparing sequences of multiple species, both close and
approximately distant. The reliability of the proposed method is evaluated in terms of
sensitivity and specificity, and results are compared to those obtained by other

popular gene prediction programs. Provided sequences can be found from other



species at appropriate evolutionary distances, this approach could be applied in newly

sequenced organisms where no species-dependent statistical models are available.

Keywords: Gene Prediction, Genomic Annotation, Sequence Comparison, Multiple-
species, Genomic DNA, Exon, Intron, Dynamic Programming, Alignment, LZ

Complexity, Evolutionary Distance
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Chapter 1 Biological Overview — The Flow of Genetic Information

1.1 Central Dogma of Molecular Biology

The flow of genetic information in normal cells is from DNA to RNA to protein. The
synthesis of RNA from a DNA template is called transcription, whereas the synthesis
of a protein from an RNA template is termed translation. The genetic code is the
relation between the sequence of bases in DNA (or its RNA transcript) and the
sequence of amino acids in proteins. The flow of genetic information is summarized
in the central dogma in molecular biology, as shown in Figure 1. This rule was
dubbed the "central dogma", because it was thought that the same principle would

apply to all organisms [1].

DNA -transcription> RNA -translation> Protein

Figure 1. The central dogma of molecular biology, showing the path of

flow of genetic information

1.2 Gene, Genome and DNA Library

1.2.1 Genome
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Genome is the total genetic material of an organism, contained in a set of
chromosomes (in eukaryotes), in a single chromosome (in bacterial), or in a DNA or
RNA molecule (in viruses) [2]. Unless specified otherwise, the genome size in
eukaryotes usually means the haploid genome size. That is, only one set of
chromosomes is counted. Table 1 shows the genome size and gene number of some

organisms.

Table 1. The genomes of prominent organisms.

Organism Genome Size (Mb) Gene Number
Hepatitis D virus 0.0017
Hepatitis B virus 0.0032 4
HIV-1 0.0092 9
Bacteriophage 1 0.0485 80
Escherichia coli 4.6392 4400
S. cerevisiae (yeast) 12.155 6300
C. elegans (nematode) 97 19000
D. melanogaster (fruit fly) 137 13600
Mus musculus (mouse) 3000 ?
Homo sapiens (human) 3000 30000(?7)**

* 1 Mb = 1 million base pairs (for double-stranded DNA or RNA) or 1
million bases (for single-stranded DNA or RNA).

** The total number of human genes is still quite controversial. It could be
as high as 75,000.

1.2.2 The structure of eukaryotic genes
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prediction, whereas similarity information has been used routinely only in recent
years. One of the reasons that the accuracy of gene-prediction programs has improved
in the last few years is the enormous increase in the number of examples of known
coding sequences. This much larger sample size allows for more reliable statistical
measures to be developed, as well as a much greater likelihood of encountering a gene

that is related to one that has been identified previously [8].

2.2.1.1 Signals

The basic and natural approach to finding a signal that may represent the presence of
a functional site is to search for a match with a consensus sequence, the consensus
being determined from a multiple alignment of functionally related documented
sequences. This type of method is used, for instance, for splice sites prediction in

some gene-finding programs [7].

The splice junctions—the donor and acceptor sites—are the most important features to
identify. If these could be reliably detected from the genomic DNA, the difficulty in
identifying the coding regions would be greatly reduced because most genes could be
recognized simply by finding the long open reading frames (ORFs). It would still be
somewhat more difficult than for prokaryotes simply because genes are much less
dense in eukaryotes, but a high degree of accuracy could be obtained easily.
Unfortunately, splice junctions are not reliably detectable in the genomic sequence.

The most common method for predicting them has been the PWMs, which are
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separate weight matrices for acceptor and donor sites, and the scores for each base
depend on the frequencies of each base at each position in the known sites, which
employ various methods including simply using the logarithm of the frequency, or
using a log-odds ratio between the frequency of each base in the collection of sites

and the expected frequency ot that base in the genome [8].

Using weight matrices to identify donor and acceptor sites is much more reliable than
a consensus sequence but still predicts a large excess over the correct sites; that is,
there are many false positives for every true positive prediction. More complicated
site descriptors have also been tried. For example, "weight array matrix,"” which has a
score for each dinucleotide and thereby takes into account the non-independence of
adjacent positions in the sites, is a maximal dependence decomposition (MDD)
method by Burge and Karlin [9] for representing splice sites. In addition, neural
networks have been employed to detect splice sites. Neural networks are a pattern
recognition technique that takes as input positive and negative examples (i.e., true
splice sites and similar sites that are not functional splice sites) and discover the
features that distinguish the two sets. The essential distinguishing features may
include correlations in the positions of the sites [8]. Study shows that if one can
narrow the region in which a splice site is expected to occur, then the accuracy
increases significantly. This means that the unreliable splice site prediction methods
can be combined with methods for identifying exons based on content measures and

increase the exon prediction accuracies significantly [9].
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Other signals can also be useful in predicting exons. The start and stop codons are
essential in predicting the correct gene. Unfortunately, they are fairly uninformative
without knowledge of the reading frame. But they are essential in categorizing exons
into four classes: single exon genes that begin with a start codon and end with a stop
codon; initial exons that begin with a start codon and end with a dunor site; terminal
exons that begin with an acceptor site and end with a termination codon; and internal
exons that begin with an acceptor site and end with a donor site [9]. Initial and
terminal exons tend to be the most difficult to identify, both because the signals are
less informative and because they are often much shorter than internal exons and

therefore harder to identify by content measures [8].

Some programs also look for sites associated with promoters, such as TATA boxes,
transcription factor binding sites, and CpG islands. Identifying promoters can
sometimes add information that is useful for predicting genes. Poly A addition signals
are also used sometimes to aid in identifying the proper carboxyl terminus of the
gene. In general, the use of these other types of signals provides a marginal

improvement over methods that do not use them [8].

2.2.1.2 Content Measures

Coding regions have statistical properties that can help to distinguish them from non-
coding regions. In prokaryotes, the length of most coding ORFs is statistically

significant. In eukaryotes, the lengths of typical exons are not especially significant,
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but they have other properties that are useful. For example, every species employs a
bias in its choice of codons, such that synonymous codons are not used with the same
frequency. So knowing the codon bias for a species can help to identify the genes
from the DNA sequence. Other statistical tests have also been applied to the problem
of distinguishing coding from noncoding sequences based on their sequences, such as
nucleotide composition and especially (G+C) content (introns being more A/T-rich
than exons, especially in plants), codon composition, hexamer frequency, base
occurrence periodicity, etc [7]. Neural networks have also been used to distinguish
coding from noncoding sequences. The network was trained to classify whether a
particular nucleotide was coding or not based on the surrounding nucleotides, using
regions of 100-400 bases [8]. In general, the strengths of these content measures
increases with the length of the exons, so that long exons are fairly easy to identify

whereas short ones remain difficult even after applying these tests [7].

2.2.1.3 Similarity Measures

A region of genomic DNA that is significantly similar to a known sequence will
usually have the same, or very similar, function [8]. This can be used as both positive
and negative evidence about the coding likelihood of the region. For example, if the

region matches well to a known repetitive sequence it is unlikely to be protein coding.

If a region of DNA is similar, after translation, to a known protein or protein family,

that is strong evidence that the region codes for a protein, and even gives you
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information about its likely function. This information has been used for a long time
to compare the predicted genes with protein databases and provide added confidence
for predictions with matches [7, 8]. When a region of genomic DNA matches a
sequenced cDNA, that is very strong evidence that it is transcribed and likely to be
part of a coding region. The same can be said of expressed sequence tags (ESTs)
databases, which are one-shot sequences from a whole cDNA, although they tend to
contain more artifacts that can be misleading. In general, similarities between
genomic DNA and sequences that correspond to genes, whether from protein, cDNA,
or EST databases, can provide useful evidence for the occurrence of protein coding

regions [8].

2.2.2 Combing the evidence to predict gene structures

Given a sequence and using signal sensors, one can accumulate evidence on the
occurrence of signals: translation starts and stops and splice sites are the most
important ones since they define the boundaries of coding regions. In theory, each
consistent pair of detected signals defines a potential gene region (intron, exon or
coding part of an exon). If one considers that all these potential gene regions can be
used to build a gene model, the number of potential gene models grows exponentially
with the number of predicted exons. In practice, this is slightly reduced by the fact

that ‘correct’ gene structures must satisty a set of properties [7]:

1) there are no overlapping exons;
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(i1) coding exons must be frame compatible;
(i1i))  Merging two successive coding exons will not generate an in-frame stop at

the junction.

The number of candidates remains, however, exponential. In almost all existing
approaches, such an exponential number is coped with in reasonable time by using

dynamic programming techniques.

Until recently, prediction methods that try to determine the whole gene structure, i.e.
to assemble all the pieces, could be separated into two classes depending on whether
the content of exon/intron regions was assessed using extrinsic or intrinsic content

Sensors.

2.2.2.1 Extrinsic approaches

Much software based on similarity searches has emerged during the last few years.
One of the main weaknesses of the pure similarity-based content sensors is that the
limits of similarities are never accurately defined. The principle of most of these
programs is to combine similarity information with signal information obtained by
signal sensors. This information will be used to refine the region boundaries [8].

These programs inherit all the strengths and weaknesses of the sensors used.
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All the programs in this class may be seen as sophistications of the traditional Smith-
Waterman local alignment algorithm where the existence of a signal allows for the
opening (donor) or closure (acceptor) of a gap with an essentially free extension cost.
They are often referred to as ‘spliced alignment’ programs [8]. Existing software may
be further divided according to the type of similarity exploited: genomic
DNA/protein, genomic DNA/cDNA or genomic DNA/genomic DNA [7]. Some of
these methods are able to deal with more than one type and to take into account

possible frame shifts in the genomic DNA or cDNA sequences.

In the methods that align a genomic sequence with a protein such as Procrustes, the
selection of the target protein may be retrieved from a BLASTX search. One can
consider all potential exons from the query DNA sequence, initially with the only
constraint that they must be bordered by donor and acceptor sites. All possible exon
assemblies are explored by translating the exons and aligning them with the target
protein, using the PAM120 matrix for scoring mismatches. This is done in a time
proportional to the product of the lengths of the query and target sequences. As a
result, it produces an assembly with the highest similarity score to the target protein

[6, 8].

Other available programs including AAT, GeneSeqer, SIM4 and Spidey, perform an
alignment of the genomic DNA sequence against a cDNA database. This is a very

reliable way of identifying exons, independently of their coding status, especially
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when the genomic sequence is aligned against a cDNA from the same (or a close)
organism [7]. Difficulties may, however, be encountered when trying to delineate the

UTR part of the genes, and thus the correct translation initiator and stop codons [7, 8].

The approach adopted is rather different for programs which try to elucidate the gene
structure from EST matches, like EbEST, Est2genome, TAP and PAGAN. The
reason for this comes from the specific nature of an EST. A first characteristic of
ESTs is that they are very redundant and a large number of them may be retrieved
when performing a BLAST search against dbEST. EbEST faces this problem in its
first step by clustering ESTs into non-overlapping groups and then by selecting the
most informative ESTs within each group. A second characteristic of ESTs is that
they are naturally error prone since they are generated from single-read sequences.
The Smith-Waterman algorithm used in EbEST tolerates the presence of such errors.
Another characteristic of ESTs is that most of them are 3' ESTs generated from
oligo(dT)-primed cDNA libraries and are therefore useful for detecting the 3'-UTRs
in long sequences. This last point is an important added value for the EST-driven
gene modeling approaches, as it leads to a rather confident prediction of a gene 3'-
end. This importance may be somewhat weakened by the fact that ESTs represent
only partial mRNA sequences and even clusters of ESTs may not lead to the complete

identification of the gene structure [6, 7, 8].
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In all cases, an important strength of similarity-based approaches is that predictions
rely on accumulated pre-existing biological data (with the caveat, mentioned later, of
possible poor database quality). They should thus produce biologically relevant

predictions (even if only partial) [7].

2.2.2.2 Intrinsic approaches

Unlike most of the “spliced alignment” approaches described in the previous section,
which aim at producing a gene structure based on similarities to known sequences,
intrinsic gene finders aim at locating all the gene elements that occur in a genomic

sequence, including possible partial gene structures at the border of the sequence.

To efficiently deal with the exponential number of possible gene structures defined by
potential signals, almost all intrinsic gene finders use dynamic programming to
identify the most likely gene structures according to the evidence defined by both

content and signal sensors [8].

The problem of having too many models to exhaustively enumerate and analyze was
solved by the application of dynamic programming methods. These are recursive
optimization techniques that are guaranteed to find the highest scoring prediction
without examining all possible ones. In the context of gene prediction it uses the
grammatical rules of gene structure. These are the constraints on the order in which

different segments can occur. For example, an initial exon must occur before any
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introns, an internal exon is bounded on both sides by introns, and a terminal exon is
preceded by an intron but not followed by one. Given these constraints and a
collection of potential exons and introns, each with an associated score, it is possible
to scan across the sequence once and determine the highest scoring predicted gene
structure. For example, when considering some particular internal exon candidate, one
has to account only for the highest scoring solution that ends with an intron preceding
it, and not all possible solutions. So by starting at one end and keeping track of the
best solutions ending with each potential exon or intron, the most preferable solution
is guaranteed to be found quickly. Most of the previously mentioned gene-finding
methods added a dynamic programming step to combine features and determine the
optimum predictions based on their own scoring systems. While these methods are
guaranteed to find the highest scoring predictions, they do not always find the correct
predictions. In the earliest adaptation of dynamic programming methods the overall
prediction accuracy was not much improved over the previous methods [9]. But
because that approach was guaranteed to efficiently find the highest scoring
prediction given the scoring system and the information used, researchers could focus
their efforts on identifying more useful types of information and improving the scores

assigned to them [8].

In the signal-based methods, the gene assembly is produced directly from the set of
detected signals. In the simplest signal-based methods, there is an implicit assumption

that the ‘content’ score of a segment is defined as the sum of the local (nucleotide-
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based) content scores and therefore does not depend on the globél characteristics of

the segment. This is, for instance, the case in basic Hidden Markov Models (HMMs)

[7].

An HMM has several "states,” and in gene prediction these correspond to exons,
introns, and any other classes of sequences desired (such as 5' and 3' UTRs, promoter
regions, intergenic regions, repetitive DNA, etc.). There are probabilities for
transitions between the different states that correspond to the allowed changes in state,
for example, an intron can only be followed by an internal exon or a terminal exon.
The probability of changing from an intron to an exon depends on the local sequence
such that it is high only at plausible splice junctions. While the HMM is in any
particular state, it "emits" a DNA sequence, which is visible. The "hidden" in HMMs
denotes the fact that we see only the DNA sequence directly, and the state that
generated the sequence (exon, intron, etc) is not Visiblc. But the different states emit
DNA with different characteristics. For example, exons emit DNA that must have an
OREF, tends to have a certain codon bias, tends to have a certain length distribution,

etc. DNA emitted by intron states has different characteristics.

All parameters of the model are probabilities. There are transition probabilities
between the states, and emission probabilities from the states. Any "parse" of a
sequence (i.e., assignment of its bases to specific states) has an associated probability.

The probabilities of any two, or more, parses can be compared directly. Most
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importantly, there are efficient methods, usually dynamic programming, to perform
all of the essential tasks. Given a collection of known correct parses, that is, examples
where we know both the genomic DNA and the correct assignment of each nucleotide
to its proper class (state), we can find the set of parameters (the probabilities of the
model) that maximize the probability of those example sequences. So a "training set”
of correct examples is sufficient (but the more examples the better) to find the optimal
values of the parameters. Then those parameters are sufficient to determine the

optimum (highest probability) parse of any new sequence [7].
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Chapter 3 Comparative Genomics and Its Application in Gene

Prediction

Comparative genomics is the analysis and comparison of genomes from different
species. The purpose is to gain a better understanding of how species have evolved
and to determine the function of genes and noncoding regions of the genome. For
instance, researchers have learned a great deal about the function of human genes by
examining their counterparts in simpler model organisms such as the mouse. Genome
researchers look at many different features when comparing genomes: sequence
similarity, gene location, the length and number of coding regions (called exons)
within genes, the amount of noncoding DNA in each genome, and highly conserved
regions maintained in organisms as simple as bacteria and as complex as humans

[10].

Comparative genomics involves the use of computer programs that can line up
multiple genomes and look for regions of similarity among them. This research will
focus on the application of comparative genomics in the identification of protein-

coding regions.

3.1 Idea of gene reorganization by comparative genomics
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The similarity-based and statistical gene-finding methods are useful, but each of them
has its limitations. Although the specificity and sensitivity of individual predictions
by statistical methods has increased, especially due to the appearance of hidden
Markov model algorithms such as GenScan [8], their reliability is yet insufficient,
especially in the context of genome projects generating long multi-gene fragments.
Similarity-based methods are the most reliable if a sufficiently close protein is
available, but they cannot be used for genes encoding new proteins. EST-based
algorithms have problems with artifactual ESTs and they cannot help in analysis of
genes not represented in clone libraries because of narrow stage and tissue specificity

of these genes [11].

Sequencing of large fragments of genomic DNA, and even complete eukaryotic
chromosomes, makes it possible to apply comparison of genomic sequences for
identification of protein-coding regions [11]. This approach is based on the
assumption that coding sequences are more conserved than non-coding ones,
similarity with genomic DNA can also be a valuable source of information on
exon/intron location. Two approaches are possible: intra-genomic comparisons can
provide data for multi-genic families, apparently representing a large percentage of
the existing genes (e.g. 80% for Arabidopsis); inter-genomic (cross-species)
comparisons can allow the identification of orthologous genes, even without any
preliminary knowledge of them. In this case, candidate exons are seen as islands of

similarity in alignment of genomic sequences harboring homologous genes [7].
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3.2 Related work

Several programs tried to retrieve information on conservation or synteny between
organisms from genomic alignments, as, for example, MUMmer, WABA, PipMaker
and DIALIGN [7]. Recently, & fcw algorithms havc appcared that focus more
specifically on the gene recognition problem by comparison of two genomic
sequences based on the hypothesis that coding DNA sequences are more conserved
than non-coding sequences (intronic and intergenic). Comparing two homologous
genomic sequences (cross- or intra-species) should thus help to reveal conserved

exons and allow the prediction of genes simultaneously on both sequences.

3.2.1 ROSETTA [12]

ROSETTA is the first program for gene recognition based on cross-species
comparison of genomic DNA from two organisms. It developed algorithms for cross-
species gene recognition, consisting of GLASS, a new alignment program designed to
provide good global alignments of large genomic regions by using a hierarchical
alignment approach, and ROSETTA, a program that identifies coding exons in both
species based on coincidence of genomic structure (splice sites, exon number, exon
length, coding frame, and sequence similarity). ROSETTA had 95% sensitivity and

97% specificity at the nucleotide level.
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ROSETTA is specifically designed for the comparison of closely related species. In
particular, it make the hypothesis of conserved exon-intron structure in the two
sequences and the further (very strong) hypothesis that the corresponding exons in the

two genes have roughly the same length.

3.2.2 SGP (Syntenic Gene Prediction) [14]

SGP-1 is a similarity-based gene-prediction program. Given two genomic DNA
sequences it post-processes the pair-wise local alignment to predict single or multiple
gene models of protein coding genes in forward and reverse strands. In contrast to
ROSETTA, the accuracy of SGP-1 depends little on species-specific properties such
as codon usage or the nucleotide distribution. SGP-1 may therefore be applied to
nonstandard model organisms in»vertebrates as well as in plants, without the need for

extensive parameter training.

3.2.3 Pro-Gen [13]

Pro-gen finds in each sequence an exon chain with the maximum similarity on the
protein level. Unlike other algorithms, Pro-Gen does not assume conservation of the
exon-intron structure and thus can be applied to analysis of relatively distant
homologs. Amino acid sequences obtained by the formal translation of candidate
exons are aligned instead of nucleotide sequences, which allows for distant

comparisons.
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When the algorithm was tested on a sample of human-mammal (mouse), human-
vertebrate (Xenopus) and human-invertebrate (Drosophila) gene pairs, the best
results, 97-98% correlation between the actual and predicted genes, were obtained for
more distant comparisons, whereas the correlation on the human-mouse sample was
only 93%. The latter value increases to 95% if conservation of the exon-intron
structure is assumed. This is caused by a large amount of sequence conservation in
non-coding regions of the human and mouse genes probably due to regulatory

elements.

3.2.4 AgenDA [11]

They use a new version of the DIALIGN alignment program to get a pair of syntenic
sequences from evolutionary related organisms. This program integrates local and
global features by assembling pair-wise and multiple alignments from gap-free local
segment alignments (so-called fragments). They compare these and identify a chain
of local sequence similarities. Then, it searches for conserved splice signals and start
or stop codons near the boundaries of the identified sequence similarities. Finally,
local homologies that are bounded by conserved splice signals are chained together in

a biologically consistent way.

3.3 Challenging problems in this gene-finding approach
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All the comparative genomic methods have, theoretically, the advantage of not being
species-specific. In practice, performance will depend on the evolutionary distance
between the compared sequences. Previous results show that the relationship is not
straightforward. Indeed, a greater evolutionary distance allows some algorithms to
more accurately discriminate between coding and non-coding sequence conservation.
Such programs are often computer intensive and consequently much work remains to
be done. In particular, a major challenge that could considerably improve the
performance of gene-finding programs would be to introduce multiple comparisons

into these methods [7].

Moreover, the similarity might not cover entire coding exons but might be limited to
the most conserved part of them. Alternatively, it may sometimes extend to introns
and/or to the UTRs and promoter elements. This will be the case when genomes are
evolutionarily close or when genome duplications are recent events. In both cases,
exactly discriminating between coding and non-coding sequences is not an obvious
task [7]. It is therefore necessary to take more information into account to identify

conserved gene structures in syntenic genome sequences [8].

In this work, the following research is done on the gene prediction by cross-species

comparative sequence analysis:

1) To conduct a comparative analysis of homologous genomic sequences of

organisms with different evolutionary distances to find the conservation of the



2)

3)

4)
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coding regions as well as the non-coding regions between organisms with

different distances.

To create a model by which protein-coding regions could be identified by
comparison of gcnomic scquences of two species, using uew sequence

comparison method combining local alignment and LZ complexity.

To find the impact of evolutionary distance on the performance of the gene-

finding program based on the two-species sequence comparison.

To propose a model by introducing the third species, with less close distance,
and by which coding sequence could be identified by comparing sequences of

multiple species, leading to better performance of prediction.
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Chapter 4 Comparison of Genomic Structures with Different

Evolutionary Distances

4.1 Data Resource

4.1.1 The selection of organisms

It is critical to find out the extent of conservation of genomic structures of different
species before implementation any gene-finding methods based on sequence
comparison of organisms. mus musculus (mouse), gallus gallus (chicken), xenopus
laevis (frog) and drosophila melanogaster (fruit fly) are chosen for analysis of
relationship with homo sapiens (human). The selection of species is based on the
consideration of each organism’s evolutionary distance with homo sapiens, the

genome sequence availability and the results of previous work.

mus musculus is most frequently used as a “model organism” in functional genomics
research. Mice and humans (indeed, most or all mammals including dogs, cats,
rabbits, monkeys, and apes) have roughly the same number of nucleotides in their
genomes — about 3 billion base pairs. This comparable DNA content implies that all
mammals contain more or less the same number of genes, and previous work has

provided evidence to confirm that notion [10]. Mouse is also the organism many
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authors used to develop their approaches to gene-finding by comparative sequence

analysis, as described in the last chapter.

Fruit fly drosophila melanogaster was a crucial model organism in research in
developmental biology and genctics in the early tweuticth century. The fruit fly
genome was completed in 2000. As an invertebrate, the genome of drosophila is
different from that of the human in size, number of genes, and gene intensity.
However, research shows that drosophila contains similar kind of genes and gene
expression mechanisms existed in vertebrate [4]. Thus, in this work, drosophila is

selected as an example of long-distance with human.

Unlike drosophila and mus musculus, the genomes of chicken gallus gallus and frog
xenopus laevis are still incomplete. However, many sequences homologous to genes
of other organisms including human and mouse genes have been identified. These
two vertebrates, whose evolutionary distances with human genes are closer than
drosophila but more distance than mus musculus, are analyzed to illuminate the
relationship between conservation of gene structure among organisms and

evolutionary distances.

4.1.2 Compiling of data set

In the work of Batzoglou et al. [12], they compiled 117 orthologous human-mouse

gene pairs. According to the authors, these sequences are carefully annotated so they
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can be considered as a standard of truth [11, 12]. The gene pairs are listed in Table 8
of Appendix. This set of data was also used by Rinner et al. in testing their AgenDA
program [11]. This data set will be used in this work, because it will be helpful in
comparing the results to other authors’. Furthermore, this set of data is expanded to
include the homologous sequences from the other species (gallus, xenopus and
drosophila), by TBLASTX, which compares the six-frame translations of a
nucleotide query sequence against the six-frame translations of a nucleotide sequence

database. GenBank release 137.0 was searched against to get the complete data set.

GenBank is the NIH genetic sequence database, an annotated collection of all
publicly available DNA sequences. There are approximately 28,507,990,166 bases in
22,318,883 sequence records as of January 2003. A new release is made every two
months. GenBank is part of the International Nucleotide Sequence Database
Collaboration, which comprises the DNA DataBank of Japan (DDBJ), the European
Molecular Biology Laboratory (EMBL), and GenBank at NCBI. These three
organizations exchange data on a daily basis. TBLASTX searches data from all the
non-redundant databases of GenBank, RefSeq Nucleotides, EMBL, DDBJ and PDB
(sequences derived from the 3-dimensional structure from Brookhaven Protein Data

Bank), but no EST, STS, GSS, or phase 0, 1 or 2 HTGS sequences [15].

The original BLAST program was developed at NCBI. The BLAST (Basic Local

Alignment Search Tool) program uses a strategy based on matching sequence
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fragments by employing a powerful statistical model, developed by Samuel Karlin
and Stephen Altschul [16], to find the local alignments. BLAST does not necessarily

find the best local alignment, but the algorithm does find reasonable answers quickly.

In summary, the following arc the steps of the BLAST algorithm [15]:

o Split the query sequence into all possible words of length w. Compile a list of
each word that, relative to a w-mer from the query sequence, has a score
greater than or equal to a certain threshold parameter 7 according to some

PAM (Point Accepted Mutations) scoring matrix.

e Scan the database for seeds, or matches with words from the list of the

previous step.

o Extend each of the seeds in both directions until reaching a maximum score
according to a PAM matrix. Report all segment pairs with scores above some

threshold S.

TBLASTX is the NCBI BLAST program for comparing a 6-frame translated
nucleotide query sequence to a 6-frame translated nucleotide database. BLOSUMG62
matrix is used in search against gallus, xenopus and drosophila databases (The
BLOSUM matrix assigns a probability score for each position in an alignment that is

based on the frequency with which that substitution is known to occur among
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consensus blocks within related proteins). The word size is set to 3, cost for gap

existence is 11, for gap extension is 1.

4.2 Comparative studies of gene structures

To compare the sequences of human vs. its homologs in each of the other species,
dynamic programming is implemented to find the global alignment of each pair of
homologous genes. The scores for column scores as alignment are defined as
following: +1 for a match, -1 for a mismatch, -2 for a space in one of the

corresponding positions. The similarity matrix is computed as:

alil[j] = max {ali — I1[j — 11 + p(s[il, t[j]),
ali - 11[7] + (-2),
alilj - 11+ (-2) }

where

p(slil, t[j]) = +1, if s{i] = #j]

-1, if s[i] # t[j]

The method and all remaining work are implemented in Visual C++ 6.0.

4.2.1 The comparison of exon structures

4.2.1.1 Exon number

The number of exons in human and mouse are well conserved. Results are not totally

the same as reported by Batzoglou et al. on the same data. Among all of the human-
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mouse gene pairs, 96% have the same number of exons. Only five gene pairs have

different exon numbers, instead of six as Batzoglou ez al. reported [12].

In two cases (genes 30 and 85), a single internal coding exon in mouse corresponds to
two internal coding exons in human, with the total exonic lengths agreeing perfectly
or differing in a multiply of 3. In the other three cases, the correspondence broke
down for terminal exons. In genes 40 and 67, at the 3'-end one organism has an extra
exon. In gene 46, the extra human exon shows striking sequence similarity to a

portion of the 3'-untranslated region (UTR) in the mouse.

For human-chicken gene pairs, 77% are identical in exon number. Only 30% of
human-frog gene pairs and 28% of human-fruit fly gene pairs have identical exon
numbers. Among the gene pairs with different exon numbers, about half (56%) have

difference of length greater than 1.

4.2.1.2 Exon length

The length of corresponding exons was strongly conserved in human and mouse
genes. The lengths were identical in 74% of pairs. Those differences that did occur
were quite small: the mean ratio of the larger to smaller length was 1.05. Moreover,
the differences were a multiple of three in most exons (except three cases) with

difference in length. The biological meaning under this phenomenon is that length
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differences other than divisible by three would alter the translational reading frame

and would thus be less likely under the effects of evolutionary selection.

The number and length of exons are more divergent in human-frog and human-fruit
fly gene pairs. 45% of human exons cannot find the aligned regivus in [rog
sequences, for another 20% exons, only a small portion (<50%) align with part or

whole frog exon.

Most human and fruit fly exons are totally differently organized, with many cases of

multiple human exons corresponding to single fruit fly exons.

4.2.1.3 Exon sequence similarity

In human and mouse gene pairs, coding regions showed strong sequence similarity,
with approximately 85% identity. For chicken, frog and fruit fly, although the number
and length of exons are much divergent, among the conserved exon regions, no
explicit difference exists in the sequence analysis. The nucleotide level similarity is
ranged from 80-85%, while the protein level similarity is above 90%. This provides

the evidence that sequence conservation indicates the functional inheritance.

4.2.2 The comparison of intron structures
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While exon lengths tended to be preserved in different degree among sequences of
various distance, intron lengths varied considerably. Even in human and mouse gene
pairs, the mean ratio of the larger to the small length was 1.5. Moreover, there is no

tendency forintron lengths to differ by a multiple of three.

Human and mouse introns overall showed only weak sequence similarity with
approximately 35% sequence identity, which is not much higher than the background
rate of sequence identity in gapped alignments of random sequences. However, some
cases exhibited a striking degree of similarity (up to 75%) in conserved intron areas
of human and mouse sequences, in non-coding exons (UTR), intergenic intron and
internal intron regions. In section 4.3, further global view of conservation of gene

structure will be illustrated through a multiple alignment.

The non-coding regions of chicken, frog and fruit fly genes show little conservation
compared to human non-coding regions. The total intron similarity is around 30%

(Table 2), which is just a background rate of sequence identity.

4.2.3 Summary

Human-mouse gene pairs have the strongest conservation in exon structure. However,
also non-coding regions are found conserved in many cases. Therefore, further

species could be used together to discriminate coding and non-coding regions.
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Table 2. The comparison of gene structures of species with different evolutionary distances

Percentage of pairs Percentage of

. . .o . s . Conserved Exon Intron
Species compared identical in exon pairs identical in milari R
numbers exon length similarity (%) similarity(%)
homo-mus 96 75 85 Upto 75
homo-gallus 77 52 81 33
homo-xenopus 30 45 79 29
homo- drosophila 28 34 79 32

Human and chicken still keep relatively strong conservation in exon structures,
although less than that of human and mouse. Compared to the strong conservation of
exon-intron structure in human-mouse and chicken, evolutionary distances greater

than chicken and human show much less conservation in exon structure.

4.3 The conservation of gene structures among species

Multiple alignment of the data set was done with VISTA, a global alignment tool
which is based on moving a user-specified window over the entire alignment, thus
allowing for easy identification of conserved regions in the global perspective. The
VISTA plot (Figure 7) is based on moving a user-specified window over the entire
alignment and calculating the percent identity over the window at each base pair. The

X-axis represents the base sequence; the y-axis represents the percent identity [17].

It is found that most conserved regions (85%) correspond to the coding regions. With

the evolutionary distance increasing, especially greater than homo sapiens and gallus,
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Table 3. VISTA output for alignment of homologous gene in five species, Criteria: 75%

identity over 100 bp

exon: homo (mus)

1680
1915
2367
2608
2886
3146

(1785) to
(2012) to
(2477) 10
(2732) to
(3056) to
(3312) to

1808
2239
2528
2799
3067
3289

129bp
325bp
162bp
192bp
182bp
144bp

€xon
€xon
exon
exon
exon
€xon

sk sk ok e ok sk sk ok ok ke ok ok ke sk sk CODSCrVed RegiOnS - homo (muS) e 3k 3k sk Sk ek e ok ok ok ke sk sk

473

1680
1915
2367
2608
2886
3146
3423

(518) to
(1785) to
(2012) to
(2477) to
(2732) to
(3056) to
(3312) to
(3575) to

692
1808
2239
2528
2799
3067
3289
3549

Total 1495bp at 87.5%

ok ok sk o sk 3k ok sk sk >k ke ke 3k ok Conserved Regions - hOmO (ga_llus) sk sk 3k ok 3 s 3fe sk sk ok ook sk sk

1680
1915
2369
2608
2886
3146

(841) to
(1802) to
(2754) to
(3026) to
(4216) to
(4757) to

1808
2237
2528
2797
3067
3288

Total 1127bp at 82.5%

Sk Sk 3k k¢ 3k 3k 3k 3k ok 3k ok ok ok ok ok COnSCrVCd Regions - hOmO (Xenopus) Sfe sk 3k 3k 2k 3k Sk 3k 3¢ e ke ke ok ke >k

1680
1915
2369
2608
2886
3146

(2462) to
(3543) to
(3978) to
(4653) to
(4946) to
(5531) to

1808
2237
2528
2797
3067
3288

Total 1127bp at 81.5%

sk kol Conserved Regions - homo (drosophila) ##sskkokskoksbokokockok

1915
2369
2610
2888
3146

Total 917bp at 85.9%

(2879) to
(3206) to
(3368) to
(3560) to
(3801) to

2228
2526
2797
3001
3288

(738)

(969) =

(3192)
(3363)
(3555)
(3673)
(3943)

227bp
129bp
325bp
162bp
192bp
182bp
144bp
134bp

at 77.1%
at 89.9%
at 89.2%
at 90.1%
at 90.6%
at 92.9%
at 93.8%
at 76.9%

noncoding
exon
exon
exon
exon
exon
exon
noncoding

129bp at 84.5% exon

323bp
160bp
190bp
182bp
143bp

129bp
323bp
160bp
190bp
182bp
143bp

314bp
158bp
188bp
114bp
143bp

at 83.6%
at 84.4%
at 77.9%
at 82.4%
at 82.5%

at 77.5%
at 84.2%
at 80.0%
at 81.1%
at 82.4%
at 79.7%

at 88.2%
at 84.2%
at 86.7%
at 79.8%
at 86.7%

€xon
€xon
exon
€xon
cexon

exon
exon
exon
cxon
exon
exon

exon
exon
€xon
exon
€xon
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fly. In mouse, there are two more conserved regions other than CDs. One is in

3’UTR, the other is upstream to the initial exon (there is no evidence it is in 5’UTR).

4.4 Sequence similarity vs. sequence distance

Furthermore, a study on the phylogeny is done on the organisms data on hand.
Phylogeny is the study of the evolution of life forms. Distances between species are
essential concepts in phylogeny. If two species have a small distance between them
(as measured by the number of differences in their character sequences), then they
have a recent common ancestor; but if they are far apart, then their common ancestor
is in the remote past. The distance between the species can be used as a measure of
the distance in time since the species diverged. These two distances, the number of
character differences and the time since divergence, will be approximately

proportional when they're relatively small.

A phylogenetic tree, also called a cladogram or a dendrogram, is a tree of several life
forms and their relations. When two lines converge to a point, that should be
interpreted as the point when the two species diverged from a common ancestral

species, the point being the common ancestral species.

Clustal W [18], a multiple alignment algorithm based on hierarchical clustering, is
used to get an alignment of each group of homologous sequences from five species,

and nearest-neighbor joining algorithm is used to draw the dendrogram [28]. This is a
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form of cluster analysis and the end result produces something that looks like a tree.

It represents the similarity of the sequences as a hierarchy.

Figure 8 is the dendrogram obtained from the sequences of homologous muscle
action genes. Eighty-five pcrcent of genc data scts in this work have the sunilar
dendrogram, with homo-mus having closest relation, drosophila most distant with
homo. This study verifies that the similarities between species in the global level

decreases with the increase of the sequence distances.

Homo
Mus
Gallus
Xenopus

Drosophila

Figure 8. The dendrogram based on the multiple alignment of the

homologous muscle a-actin genes of five species
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Chapter 5 A Gene Recognition Approach Based on Cross-Species
Sequence Comparison and the Impact of Evolutionary Distance on

the Performance

5.1 Methods

5.1.1 Overall Approach

A gene-finding model is proposed by which the protein-coding regions can be

identified by comparing genomic sequences of two species.

Firstly, given the sequences containing orthologous genes from two related organisms
(obtained from TBLASTX search against GenBank), a new method for measuring the
similarities among sequences is employed to get the most conserved fragments of two

species, termed high-scoring fragments (HSFs).

HSFs are further processed to get the candidate exons. The conserved splice junctions
and start/stop codons are identified using Salzberg’s detecting procedures [20]. A
candidate exon starts with a start codon or an acceptor signal and ends with a donor

signal or a stop codon.
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5.1.2 Sequence Comparison

The most important step in comparative genomics is sequence comparison.
Alignment is the most frequently used method in comparative analysis. Most standard
alignment methods are either global methods that try to align scquences over their
entire length or local methods that return only the most highly conserved region of
local similarity. These methods are not appropriate for alignment of large genomic
sequences where local homologies may be separated by large stretches of unrelated
‘junk DNA’ [11]. For example, standard dynamic programming methods (i.e.
Needleman-Wunsch (1970) or Smith-Waterman (1981) algorithms) are not sensitive
to finding short regions of good alignment (such as a 50-base exon) flanked by much
longer regions of poor alignment (such as long introns) [10]. Global alignment
methods would try to align even completely unrelated parts of the sequences. Local
methods, especially the faster heuristic local alignment methods (such as BLAST) are
better suited, but still insufficient. They would identify high-scoring local similarities,
but would not give an overall picture of the homologies among the input sequences
[11]. Moreover, BLAST detects alignments by looking for perfect matches of a
predetermined length (e.g., 11 bases) and thereby may miss important conserved

regions.
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Thus, in this work, both BLAST engine and Limpel-Ziv (LZ) complexity [21, 22, 24],
an original distance-measurement method are utilized to define sequence similarity.

In the following section, some basic concepts of LZ complexity will be introduced.

5.1.2.1 LZ complexity [19]

LZ complexity of a finite sequence S is related to the number of steps required by a

production process that builds S.

Reproduction and Production

Let S, Q and R be sequences defined over an alphabet A, [(S) be the length of S, S(i)
denote the i element of S and S(i,j) define the substring of S composed of the
elements of S between positions i and j (inclusive). An extension R = SQ of § is
reproducible from S (denoted S - R) if there exists an integer p < [(S) such that O(k)
= R(p+k-1) for k=1, ..., [(Q). For example AACGT 2 AACGTCGTCG with p =3 and

AACGT 2 AACGTAC withp = 2.

Another way of looking at this is to say that R can be obtained from S by copying
elements from the p” location on in S to the end of S. As each copy extends the length
of the new sequence beyond [(S), the number of elements copied can be greater than
[(S) — p. Thus, this is a simple copying procedure of S starting from position p, which

can carry over the added part, Q.
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A sequence S is producible from its prefix S (1,j) (denoted S(1,j) =2 S), if S(1,j) =
S(1, I(S )- 1). For example AACGT 2 AACGTAC and AACGT =2 AACGTACC both
with pointers p = 2. Note that production allows for an extra “different” symbol at the
end of the copying process which is not permitted in reproduction. Therefore an
extension which is reproducible is always producible but the reverse may not always

be true.

Exhaustive History

Any sequence S can be built using a production process where at its i step S(1, hi.1)
= 5(1,h;) (note that € = S(1,0) = S(1,1)). An m-step production process of S results
in a parsing of S in which H(S) = S(1,h;)/S(hi+1,h3), ..., S(hpu.1+1, hy) is called the
history of S and H{(S)=S(h;.;+1, h;) is called the i" component of H(S). For example
for S = AACGTACC, A/A/C/G/T/A/C/C, A/TAC/G/T/A/C/C, A/AC/G/T/ACC are three

different (production) histories of S.

If we cannot get S(1, hi.;) = S(1,h;), then Hy(S) is called exhaustive. In other words,
for Hy(S) to be exhaustive the i step in the production process must be a production
only meaning that the copying process cannot be continued and the component should
be halted with a single letter innovation. A history is called exhaustive if each of its
components (except maybe the last one) is exhaustive. For example, the third history
given in the preceding paragraph is an exhaustive history of S = AACGTACC.

Moreover, every sequence S has a unique exhaustive history.
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Let cu(S) be the number of components in a history of S. Then the LZ complexity of
S is ¢(S) = min{cy(S)} over all histories of S. It can be shown that ¢(S) = cg(S) where
ce(S) is the number of components in the exhaustive history of S. This is quite
intuitive as an exhaustive component is the longest possible at a given step of a

production process.

Distance measurement by LZ complexity

Given two sequences Q and S, consider the sequence SQ, and its exhaustive history.
By definition, the number of components needed to build Q when appended to S is
c(SQ) - ¢(S). This number will be less than or equal to ¢(Q) because at any given step
of the production process of Q (in building the sequence SQ) we will be using a larger
search space due to the existence of S. Therefore the copying process can only be
longer which in turn would reduce the number of exhaustive components. This can
also be seen from the subadditivity of LZ complexity [100]: ¢(SQ) < ¢(S) + ¢(Q).
How much ¢(SQ) - ¢(S) is less than ¢(Q) will depend on the degree of similarity

between S and 0.
For example, let S = AACGTACCATIG, R = CTAGGGACTTAT and Q =
ACGGTCACCAA. The exhaustive histories of these sequences would be:

Hr(S) = A/AC/G/T/ACC/AT/TG

C/T/A/G/GGA/CTT/AT

HEg(R)
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He(0) = A/C/G/GT/CA/CC/AA

Yielding ¢(S) = ¢(R) = ¢(Q) = 7. The exhaustive histories of the sequences SQ, and

RQ would be:

He (SQ) = A/AC/G/T/ACC/AT/TG/ACGG/TC/ACCAA

He(RQ) = C/T/A/G/GGA/CTT/AT/ACG/GT/CA/CC/AA

Note that it took 3 steps to build Q in the production process of SQ. On the other
hand, we used 5 steps to generate Q in the production process of RQ. The reason it
took more steps in the second case is because Q is “closer” to S than R. In this
example we can observe this by looking at the patterns ACG and ACC which Q and S
share. We can formulate the number of steps it takes to generate a sequence Q from a
sequence S by ¢(SQ) - ¢(S). Thus, if S is closer to Q than R then we would expect

c(SQ)-c(S) to be smaller than ¢(RQ) - ¢(R) as is the case in the above example.

Given two sequences S and Q, the distance function distance (S, Q) is defined as the

following formulas:

d (S,Q) =max { ¢(5Q) - ¢(S), ¢(QS) - c(Q) } 1)
d (S,0)= max { c(SQ)-c(S), c(QS)-c(Q) } / max { <(S), c(Q) } ()
d; (5,0) = ¢(5Q) - ¢(S) + c(QOS) - c(Q) 3)
di’ (S,Q)= [ c(SQ)-¢(S) + c(QS)-c(Q) 1/ ¢(SQ) 4)

di” (8,0)= [ c(SQ)-¢(S) + c(QS)-c(Q)/ Y2l ¢(SQ) + c(QS)] &)
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All of the above functions have been verified as distance metric. That is, a distance

metric, D (S, Q) should satisfy the following conditions:

1. D (S, Q)> 0 where the equality is satisfied iff S = Q (identity).
2. D(S, Q)=D(Q, S) (symmetry).

3. D(S, Q)<D (S, R)+ D (R, Q) (triangle inequality).

In this work, function (3) is used to determine the distance between two sequences

and the value of one parameter in the scoring function in the model (section 5.1.4).

5.1.2.2 Sequence comparison by BLAST and LZ complexity

The algorithm of LZ complexity [19] is implemented to get the exhaustive history.
Although LZ complexity is an efficient approach to determine the distance between
long genomic sequences, it is not enough to get a view of conservation feature of
gene structure. One reason is that there exist many short components that come from
“randomly repeated” and no gap extension; the other reason is that no corresponding
similarity structure is established as in alignment. However, these feature could just
be complementary with alignment, i.e. they could find some short regions that
BLAST misses due to the fixed word size; Moreover, the LZ complexity gives the
overall features of similarities, while the local alignment would not give an overall

picture of the homologies among the input sequences.
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Thus, in this model, BLAST is used to get local high-score alignment regions, and LZ

complexity is used to find regions with intense similarity above some threshold (the

number of exhaustive history components smaller than 4 over a 50bp window). The

results from two methods are united to get total HSFs. The method includes the

following parts:

1)

2)

3)

4)

Given two sequences Q and S, build the exhaustive history of QS and SQ,
represented as Hg (QS) and Hg (SQ). Then, put all the “halting points” in Hg

(0OS) and only in S to HgList (S). HgList (Q) is got in similar way.

Find regions in Q and S, with “more intensive” repeated sequences, in the
term of number of exhaustive history components smaller than some threshold
T over a specified length bp window ( 4 components over 50 bp in our
program), update the HgList (S), HgList (Q) to include only high intensity

groups.

Align Q and S with BLAST tool (Blast 2 Sequences, reward for a match is 1,
penalty for a mismatch, open gap and extension gap is 2, 5, 2, respectively,
word size is 11). Put the boundary points of each high score pair to BlastList

(include the information of both sequences)

Parse and combine BlastList, HgList (S) and HgList (Q). If the region in

HgList (S) and HgList (Q) is overlapping with BLAST results, extend the high
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score pairs of BLAST to include them. If the region in HgList (S) and HgList

(Q) is outside BLAST results, treat it as an additional HSF.

The implementation of the proposed method demonstrates that most high-intensity
regions by LZ complexity overlapped with BLAST alignment rcgions. But the
calculation of exhaustive history provides another way to view the sequence
similarity in somewhat global aspect, and it is helpful to combine some short local
alignments of BLAST together. There are three cases in the 117 human-mouse
sequences in which short weakly conserved regions are missed by BLAST but

detected by LZ complexity.

5.1.3 Splicing Signals

5.1.3.1 The Consensus Sequences around Splicing Sites and Identification

Many studies have attempted to characterize the sequences around the start, donor,
and acceptor sites in eukaryotic organisms. The consensus sequences have been found
as matrices containing the probabilities of the four bases in the positions immediately

surrounding the sites [20].

Proper identification of sequence signals (both splice junctions and translation start
sites) is a critical componerit in gene identification systems. Specific computational

systems for identifying splice junctions have been developed by many previous
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researchers. The approaches include neural network for positional frequencies,

dinuclotide frequencies, triplet counts, octamer frequencies, etc. [25]

To identify the consensus sequences that signal the start of translation and the
boundaries between exons and introns (donor and acceptor sites), the conditional
probability (CP) matrices proposed by Salzberg [20] are used. This method takes into
account the dependencies between adjacent bases, in contrast to the usual technique
of considering each position independently. The consensus sequence information is
summarized in conditional probability matrices which, in Salzberg’s study, when
used to locate signals in uncharacterized genomic DNA, have greater sensitivity and

specificity than conventional matrices.

5.1.3.2 Conditional Probability (CP) Matrices for Splice Sites and Translational

Start Sites by Salzberg [20]

The basis of the method is the computation of conditional probabilities for each of the
four bases that comprise DNA in a fixed set of positions around each site. The
standard method, by contrast, computes the probabilities of the bases in each position
as if they were independent of adjacent bases. Instead, the new method by Salzberg is
to compute, for each position, the probability of each base given the base in the
previous position, where "previous" is defined as the adjacent base in the 5' direction.
In the consensus pattern that emerges, the identity of each base is dependent on its

neighbors.
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The resulting conditional probability (CP) matrices indicate that for several positions
in all three types of sites (start of translation, donor, and acceptor sites) the probability
of a base occurring in a given position is sometimes strongly dependent on the
previous base. This has a natural biological explanation, in that the mechanisms
responsible for translation and splicing involve molecules that recognize and bind to

sets of adjacent bases in the mRNA [20].

5.1.3.3 Detecting Signals with CP Matrices

Consensus matrices can be used for signal detection in the following manner. For any
pattern of anonymous DNA, one must compute a score based on its probability of
being a true instance of a start, donor, or acceptor site. This score can be compared to
the scores of known true sites to determine if the anonymous pattern is also a true

site.

Salzberg proposed three conditional probability matrix for start sites, donor sites and

acceptor sites, respectively (Table 4, 5, and 6).

For conditional probability matrices, the score in the CP matrix is really a 1-state
Markov chain model, computed by multiplying the conditional probabilities of each
successive base, given the previous base in the sequence. Thus the CP matrix takes

into account the dependencies between adjacent bases in the sequence.
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These CP matrices are based to compute P (S | 7); i.e., the probability of a sequence S

= (87, 82, ..., Sn ) given that it is a true site. Then compute P (S | T) as

P(s;)II P(si|si) (i=2,3,...n) (6)

~ The probability can be obtained from the CP matrix. This score (called splicing
weight score after modification; see section 5.1.4) is used as one parameter in the

scoring function for identifying candidate exons.

Table 4. Conditional probability matrix for vertebrate start sites. Each column after the
first contains the probability of a base in that position given the base in the

previous position, as indicated at the end of each row.

-12-11-10-9 -8 -7 6 -5-4 -3-2 -10 +1 4243 +4 +5 +6

.23 .24 .42 27 .16 .30 .16 .20 .16 .44 .28 .29 1.0 0.0 0.0 0.0 .38 .11 .37 P (a; | ai.1)
.23 .27 .24 .32 .57 .29 .08 .22 .67 .06 .45 .17 0.0 0.0 0.0 0.0 .14 .19 .27 P (c¢; | ai.1)
.23 .45 .24 .28 .23 .30 .68 .45 .14 .47 .15 .50 0.0 0.0 0.0 0.0 .40 .59 .27 P (g; | ai.1)
.23.05.10.14 .04 .11 .08 .13 .03 .03 .13 .05 0.0 1.0 0.0 0.0 .08 .11 .08 P (#; | ai.;)

.40 .35 .30 .25 .15 .33 .29 .08 .32 .78 .48 .08 1.0 0.0 0.0 0.0 .32 .18 .38 P (a; |ci.1)

.40 .26 .33 .26 .47 .29 .28 .47 .46 .04 .41 .800.0 0.0 0.0 0.0 .29 .29 .28 P (¢; | ¢i.1)
.40 .09 .11 .20 .10.07 .21 .05 .13.17 .10 .05 0.0 0.0 0.0 0.0 .01 .17 .13 P (g; | ¢i.1)
.40 .30 .26 .29 .28 .31 .21 .40 .10 .01 0.0.07 0.0 0.0 0.0 0.0 .38 .37 .22 P (¢; | ¢i.1)

17 .17 .45 22 .24 .29 .29 .41 .21 .59.19.19 1.0 0.0 0.0 .28 .17 .09 .22 P (a; | g:.1)
.17 .35 .19 .37 .40 .36 .33 .30 .55 .03 .67 .35 0.0 0.0 0.0 .15 .35 .28 .47 P (c; | gi1)
.17 .33 .15 .30 .21.17 .29 .16 .21 .34 .06 .44 0.0 0.0 0.0 .48 .14 .39 .23 P (g; | g:.1)
.17 .15.21.11.16 .17 .09 .14 .03 .03 .07 .01 0.0 0.0 0.0 .09 .34 .21 .07 P (¢; | g:.1)

.19.10.11.11 .07 .20 .05 .06 .14 .47 .30 .11 1.0 0.0 0.0 0.0 .04 .03 .13 P (a; | 1)

.19 .47 .37 .51 .48 .32..20 .40 .59 .12 .20 .82 0.0 0.0 0.0 0.0 .44 .17 .46 P (c; | t.1)

.19 .26 .24 .22 .23 .24 .60 .27 .20 .38 .10 .03 0.0 0.0 1.0 0.0 .30 .69 .25 P (g; | ta..;)
.19.17 .28 .16 .23 .25.15 .27 .06 .03 .40 .03 0.0 0.0 0.0 0.0 .22 .12 .16 P (1; | ;1)




Table S. Conditional probability matrix for vertebrate donor sites.
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35
35
35
35
35
35
35
35
.19
.19
.19
.19
11
11
11
11

.60
.09
18
14
.69
11
.07
13
.65
15
A1
.09
.16
24
31
.29

.10
13
13
70
.05
.07
.18
.83
.06
.09
.03
.19
.08
.63
.10

.07 0.0 0.0 0.0 .64 .06
.020.00.00.0
.86 1.00.00.0
.06 0.00.00.0
.170.00.00.0
.060.00.00.0
.611.00.00.0
.16 0.00.00.0
.110.00.00.0
.010.00.00.0
.801.00.00.0
.080.01.00.0
.020.00.0.51
.030.00.0.03
.86 1.0 0.0 .43
.080.00.0.03

.03
.89
.03
.19
21
41
20
.05
.05
.87
.03
.05
11
g7
.06

.20
A1
.39
.30
25
27
.09
.39
A5
15
.15
.55
11
12
43
33

24
22
37
17
.35
.26
13
.26
.28
.29
.28
15
24
.19
.36
.20

.19
.28
.23
.29
20
.38
.06
37
21
.26
34
.20
15
.30
28
27

.26
.24

.20
27
31
11
31
.18
.30
37
14
.15
28
31
25

.16
.19
30.
27
27
.33
11
29
21
24
.39
15
15
21
.37
.26

38

.29
18
.33
.19
.30
.33
1
27
.20
23
43
.14
.18
18
40
24

.23
.20
37
.20
22
34
.10
33
24
.26
32
.18
.16
25
25
.34

25
.20
.30
25
26
35
11
28
19
25
42
15
.10
24
32
35

.28
25
31
.16
24
.33
.10
.33
24
21
.36
.19
13
25
27
35

24
24
31
21
22
.36
.09
33
17
.30
35
17
15
22
.30
.33

.26
21
30.
23
21
37.
.10
32
.20
25
.39
15
.16
.26
31
.26

Table 6. Conditional probability matrix for vertebrate acceptor sites.

-14-13-12 -11 -10

9

87 -6

5

4

3

2

-1

0

25
.24

27

24
.29

30

A1
31
.19
22
43
.16
15
21
32
32

24 P (a,- | a,'_])
.18 P(C,' | a,‘_])
34 P(gi|ais)
23 P(t;] ais)
27 P (a,‘ |Ci-])
31P (C,‘ | C,‘.].)
.09 P (g, | C,‘.])
34 P(t,‘ I C,‘_])
20 P (a;| gi.1)
20 P(C,' I gi-l)
39 P(g‘ I g,'_j)
21 P(t;] gi1)
.15 P(Cl,' | t,‘.])
23 P (c;| t1)
34 P (g:| tai)
29 P (| t:1)

.09
.09
.09
.09
34
34
34
.34
13
13
13
13
44
44
44
44

.18
27
.03
52
.09
32
.06
52
.08
27
11
54
.06
32
18
44

22
.33
.02
43
.09
32
.03
57
.09
.33
A2
46
.06
.30
18
46

.10
.29
.04
.56
.09
32
.03
56
.03
24
15
.58
.03
32
15
.50

13.14
.36 .40
02.02
.50 .44
10.12
37 .41
.04 .02
.50 .45
.10 .06
.32.33
.16 .10
42 .50
.05 .07
40 .32
.14 .20
42 41.

01.
50.
13
.38
.07
42
.06
.38
12
43
.06
41
17

36.

.14.11 .09 .18
35.

41 .40 .34
020.00.0

47

.09
42
.03
47
.04
42
14
40
.06
40
A2

42

S1
.08
Sl
.02
40
.06
.30
.08
55
.05
41
.09
45

48
.10
.48
.02
41
.07
27
.19
47
.06
.28
.08
58

58
28
.04.010.01.00.0 P (g: | ais)
.09
36.041.00.00.0 P (a; |ci.1)
31
090.00.00.00.0 P (g; | ci1)
23.270.00.00.0 P (#; | ci.1)
24 .02 1.0 0.0 .25 P (a; | gi1)
21.850.00.0.16 P (c; | g..1)
450.00.00.0.50 P (g; | g:-1)
.10.130.00.0.09 P (#; | gi.1)
.16.04 1.0 0.0 0.0 P (a; | t..1)
26.680.00.00.0 P (c; | t:1)
310.00.00.00.0 P (g; | t.1)
26.280.00.00.0 P (t; | t..1)

.061.00.00.0 P (a; | a.;)
.760.00.00.0 P (c; | ai.1)

18 0.00.0 0.0 P (¢, | a..y)

.68 0.00.00.0 P (c; | ci1)
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To reduce the noise generated by false positive splice signals, only those splice
signals and start/stop codons that occur in both respective segments at the same

relative position are accepted.

Candidate exons (CEs) are obtained by elongating or shortening HSFs such that they
start with a conserved start codon or acceptor site and end with a conserved stop

codon or donor site.

5.1.4 A dynamic-programming procedure for finding optimal chains of

candidate genes

5.1.4.1 Necessary definitions, functions and conditions

A dynamic programming procedure is implemented to find a chain of candidate genes
that is most likely to correspond to the real genes in the input sequences. Some

definitions:

1) Scoring Function (sc):

Given a set of candidate exons, for every possible chain of candidate genes, a quality

score is calculated by the scoring function. The scoring function is defined based on:
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i) the degree of similarity among the respective segments of the candidate
exons sequences, as measured by the alignment weight scores, reward for a
match is 1, penalty for a mismatch, open gap and extension gap is 2, 5, 2,
respectively, and the LZ distance of two segments calculated by function (2)

in section 5.1.2;

i7) the quality of the splice signals, obtained based on Salzberg’s consensus
matrices, the scores are justified by multiplication of 10°, 10'®, 10’ for start,

donor and acceptor sites.

Consider a candidate exon E, w(E) is defined as the weight score from alignment,
Iz(E) as the LZ distance between two segments, sc(splice) as the score of the splice

signals by which E is bounded. k is constant. The score sc(E) of E is then defined as

sc(E)=w(E) + k/Iz(E) + sc(splice) @)

2) open reading frame index (orfi): it is requested that all candidate exons are open
reading frames (ORFs), i.e. they are not allowed to contain internal stop codons.
Each candidate exon CE is associated with exactly one reading frame orfi (E) €
{0,1,2}, thus, a region of local sequence similarity flanked by conserved splice
signals or start/stop codons can respond to up to three distinct CEs, depending on

how many ORFs it comprises.
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3) remainder of a candidate exon CE (re(E) ): the length of the last (possibly

truncated) codon of E, so we have re(E) €{1, 2, 3} for all candidate exons E.

With these definitions, the requirement that a chain C = (£j, ... , Ey) of candidate
exons represents a biologically consistent chain of candidule genes is equivalent to

the following conditions

1) if (E; is on the plus strand)
then E; starts with a start codon;
else if (E; is on the mius strand)
then E; starts with a stop codon;

2) if (Ex is on the plus strand)
then E} starts with a start codon;
else if (Ey is on the mius strand)
then Ey starts with a stop codon;

3) if ((E1 is on the plus strand) and

(Ei ends with a donor splice site))
then Ei.; is on the plus strand;

E;. starts with an acceptor splice site;

re(Ey) + orfi(Eir1) = 3;
else if ((ET7 1s on the minus strand) and

(Ei ends with an acceptor splice site))
then E;.; is on the minus strand;

E;.; starts with a donor splice site;

re(E;) + orfi(E;+j) = 3;
else if ((Ei is on the plus strand) and

(Ei ends with a stop codon))

OR
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((E7 is on the minus strand) and
(Ei ends with an start codon))
then E;.1 1s on the plus strand;
E;,; starts with a start codon;
OR
E;,; is on the minus strand;

E;;; starts with a stop codon;

Given a set of candidate exons EX= {Ej, ... , Ex}, and a scoring function sc (as
function (7)) assigning a score sc(E) to every E € EX, a standard one-dimensional
interval chaining dynamic algorithm with modification [11, 23] is implemented. The
algorithm returns a chain of candidate exons ( E Iy oo ,E K> E ; € EX, satisfying

conditions described above with maximal total score.

5.1.4.2 Pseudo code

Input data are a set EX = {E}, ..., Ey} and a score sc (E; ) for each E; € EX. BList 1s
a list containing the starting and end points of all E; € EX. After sorting the list
BList the algorithm calculates for each E; € EX the total score SC(E; ) of an optimal
chain ending in E; together with the predecessor PR(E; ) of E in this chain. max;" is
the maximal total score so far of a chain ending with a CE E; on the plus strand
with a remainder re(Ej ) = i, pr; is the last CE E; in this chain; max; and pr;are
defined accordingly. max* is the maximal total score so far of an optimal chain

ending with a start or stop codon, pr* is the last CE in this chain.



Step 1: Initialization:
Sort the list BList of end points of candidate exons in EX
max ~=0; pr =NIL
fori=1to3do
max;" = -oo;
max; = -0,
pri" = NIL;
pri =NIL;
for i=1 to N do
SC(E) = -

Step 2: Recursion:
fori=1to 2 x N (number of candidate exons) do
if (BList[i] is the left end point of some Ej € EX )
then
if ((EJj is on the plus strand) and
(Ej starts with an acceptor site))
then SC (Ej) € sc(Ej) + maxs-omsE) s
PR (Ej) € pri-omep
if ((Ej is on the minus strand) and
(EJj starts with a donor site))
then SC (Ej) € sc(Ej) + maxs.ofE) s
PR (Ej) € pri.om@) s

if (Ej starts with a start or stop codon)
then SC (Ej) € sc(Ej) + max;
PR (Ej) < pr;

if (BList [i] is the right end point of some Ej € EX )
then
if ((Ej is on the plus strand) and



then
if
then
if
then
Step 3: Trace Back:
E=pr,i=1
while £,;%# NIL do
B =PR (&)
i=i+1;

5.2 Testing and Evaluation

.

’

(Ej starts with a donor site))

it (SC(Ej) > max rezp’)

then max re(Ej)+ < SC(E));
pr re(Ej)+(_ Ej;

((Ej is on the minus strand) and

(Ej starts with an acceptor site))

if (SC(E)) > max rej) )

then max reEj) < SC(E));,
prreE) € Ej;

(Ej ends with a start or stop codon)

if (SC(Ej) > max ")
then max €& SC(E));,

pr € Ej;

66
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The current program is tested with Batzoglous’s 117 human and mouse DNA
sequences; eight pairs of genes are selected as training set (gene 12, 23, 29, 45, 51,

72, 82 and 96), and the other 109 gene pairs are tested.

The accuracy of predictions is measured by comparing predicted and true exons
(because the data set is well annotated according to Batzoglou’s [10], the annotation
can be regarded as the right answer). The set of correct and predicted exons can be
classified into the following four types: Exons predicted correctly (true positives
(TP)), exons not predicted (Totally Missing Exons (ME)), predicted exons with
overlapping true exons '(OV), and incorrectly predicted exons (false positive(FP))
[26]. The performance of prediction is evaluated at exon level; thus, an overlapping
prediction is considered incorrect. The performance is evaluated in two

measurements, Sensitivity and Specificity.

Sensitivity (Sn) = TP /(TP + OV + ME)
Specificity (Sp) = TP /(TP + FP + OV)

The 109 pairs of human and mouse genes contain a total of 924 exons. This program
returns a prediction of 953 exons as a result, among which, 829 are true positives, 75
are overlapping with true exons, and 43 are false positive. 25 true exons are totally
missing. The prediction results of each gene are listed in Table 9, 10 in Appendix.
Figure 10 shows the fraction of TP, OV and FP in the predicted exons. OV and FP

represents 13% of predicted exons. All of the FP exons and the parts of OV are
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in species as far back as 450Myrs, and Novichkov [13] obtained the best result by
comparison of human and fruit fly sequences, in this work, sequence analysis
(Chapter 3) and performance study with the proposed program support that for

pairwise comparison, human-mouse pairs are still the best for gene identification.
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Chapter 6 Gene Recognition by Multiple Comparisons

The next question is: although comparison of human and mouse sequence leads to
good sensitivity and specificity in coding-region identification, is it possible to get
improved performance further by introducing one more species sequence? In
multiple-species model, the homolog of the third sequence is introduced for
comparison, to filter out the conserved non-coding regions. The homologous
sequence in Gallus Gallus is obtained by TBLASTX. The scoring function (7) is

modified to:

sc(E) =3 [Wi(E) + k/ Iz (E)] + sc(splice) (8)

> wi(E) means the sum of the weight scores of alignments of one candidate exon to
other two species. If the alignment cannot be found in either one, the value is zero. )’
k / lz,(E) is similarly defined. The candidate exons with new sc(E) below some
threshold T enter a filter system, which is essentially the dynamic programming
procedure in Chapter 5 finding the optimal chain of candidate exons without or, with

one or more low sc(E) candidate exons excluded.

While the current aim is to exclude the conserved non-coding regions, we are taking a
risk as it seems possible that the less conserved exon region in human and chicken

would be missed. The weight score of human/mouse and chicken is amplified by 3 to
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Figure 14 shows the comparison of results of two-species and three-species models,
on predication of 246 exons of human and mouse. The three-species method increases
the specificity from 85% to 95%. Interestingly, the sensitivity is improved very

slightly.

Table 7. Comparison of predicted exons by two-species and three-species

total # of true totally false
predicated  positive overlapping missing positive
Two-Species 256 218 24 6 12
Three-Species 231 219 6 20 6

Table 7 and Figure 14 list the difference in the results of two models. The overlapping
and false positive exons were decreased by 75% and 50% respectively by the three-
species method. Interestingly, the three-species method increases one true positive.
This case is in gene 57, where, human found one homologous exon in chicken, while

not in mouse.

The result obtained from human-mouse-chicken model shows greater specificity than
from human-mouse. Thus, this method demonstrated improved accuracy in gene
prediction by applying multiple species comparison of different distances, taking
advantage both of the strong conservation of coding region between close species,

and divergence of non-coding region between farther species.
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Chapter 7 Summary and Conclusion

This work is the first one that considers comparisons of sequences from multiple
organisms for identification of protein-coding regions. The sequence analysis
shows that the conservation of gene structure decreases with the increase in the
evolutionary distance. Conservation in non-coding regions is found in close
species, i.e., in human-mouse gene pairs. In contrast, distant species have far

fewer conservative features in non-coding regions.

A new sequence comparison method is developed, employing both local
alignment and I.Z complexity. Based on this method, together with a dynamic
programming procedure, a program for identifying coding regions by pair-wise
comparison is designed. Unlike the work of other authors, this program does not
rely on the species-specific features, thus it is applicable in study with a wide

range of species.

In the study of the impact of evolutionary distance on the performanée of gene-
finding by this approach, it is found that among the species in this work, the

human-mouse is the best.

For the first time, a system for gene-finding with comparison of sequences of

three species is proposed. The results demonstrate that introducing an appropriate
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distant species can lead to improved specificity while retaining the sensitivity of a

system with two close species.

This method could be a valuable addition to current gene-prediction tools. Since it
not species-specific, it could be applied to predict ncwly sequenced organisius
which have no much known knowledge, provided the syntenic sequence group
from organisms with appropriate evolutionary distances can be found. And this
method will be more applicable with the increasing number of completed genome

sequencing projects.



Table 8. 117 pairs of human and mouse homologous gene.
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Group#  Name of gene in human homolog Homo Loci  Mus Loci
1 casein kinase II subunit beta HSCKIIBE MMGMCK2B
2 skeletal alpha-actin gene HUMSAACT MUSACASA
3 H4/e gene tor H4 histone HSH4EHIS MMHIS412

4 ribosomal protein S24 (rps24) gene HSU12202 MMMRPS24
5 histone H4 gene HUMHIS4 MUSHIST4

6 histone H3 gene HSHISH3 MMHIST31

7 hsc70 gene for 71 kd heat shock cognate protein HSHSC70 MMU73744

8 POU-domain transcription factor HUMNOCT MUSPOUDOMB
9 slow twitch skeletal muscle/cardiac muscle troponin C HUMTROC MUSCTNC
10 int-1 mammary oncogene HSINT1G MUSINTIA
11 somatostatin receptor isoform 1 gene HUMSRI1A MUSSRITA
12 M1 gene for muscarinic acetylcholine receptor HSMIMAR MUSACHRMI1
13 fau 1 gene HSFAU1 MUSFAUA
14 alpha-B-crystallin gene, 5' end HUMCRYABA MUSALPBCRY
15 ENO3 gene for muscle specific enolase HSENO3 MMENO3G
16 21 kDa protein gene HUMPPIB MUSPPIA

17 voltage-gated potassium channel (HGKS5) gene HUMKCHN MUSMK3A
18 proliferating cell nuclear antigen (PCNA) gene HUMPCNA MMPCNAG
19 CBI1 cannabinoid receptor (CNR1) gene HSU73304 MMU22948
20 Na,K-ATPase beta 2 subunit gene AF007876 MMATPB2
21 neurotrophin-3 gene HUMNT3A MMNT3

22 gene for creatine kinase B HSCKBG MUSCRKNB
23 m4 muscarinic acetylcholine receptor gene HUMACHRM4 MMM4ACHR
24 MHC class III HSP70-2 gene (HLA) HUMMHHSP2 MUSHSP7A2
25 APX gene encoding APEX nuclease HUMAPEXN MUSAPEX
26 Human gadd45 gene HUMGAD45A MUSGADA45
27 MHC class III HSP70-HOM gene (HLLA) HUMMHHSPHO  MUSHSC70T
28 HOX 5.1 gene for HOX 5.1 protein HSHOXS51 MMU77364
20 histone H1 (H1F4) gene HUMHISAC MUSHI1EH2B
30 spermidine synthase gene HUMSPERSYN MMSPERSYN
31 gene for histone H1(0) HSHIS10G MMU18295
32 cellular oncogene c-fos HSCFOS MMCFOS

33 gene for serotonin 1B receptor HUMHGCR MUS5HT1B
34 MGAT gene HUMUDPCNA MUSGLCNACT
35 gene for ornithine decarboxylase ODC HSODCG MIISONCC
36 galactose-1-phosphate uridyl transferase (GALT) gene HUMGALTB MMU41282
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Group#  Name of gene in human homolog Homo Loci  Mus Loci
37 prion protein (P1P) gene HSU29185 MUSPRNPA
38 olfactory marker protein (OMP) gene HSU01212 MMUO01213
30 macrophage migration inhibitory factor (MIF) gene HUMMIE MMU20156
40 keratin 13 gene AF049259 MMU13921
41 H1.2 gene for histone H1 HSH12 MUSHIS1A
42 ACTH-R gene for adrenocorticotropic hormone receptor ~ HSACTHR MUSACTHR
43 myogenic determining factor 3 (MYOD1) gene AF027148 MMMYOD1
44 keratin 18 (K18) gene HUMKERI18 MUSENDOBA
45 platelet alpha-2-adrenergic receptor gene HUMADRA MUSALP2ADB
46 gene for MHC encoded proteasome subunit LMP2 HSMHCPU15 MUSLMP2A
47 alpha2-C4-adrenergic receptor gene HSU72648 MUSADRA
48 midkine gene HUMMK MUSMKPG
49 myf4 for skeletal muscle-specific transcription factor HSMYF4G MUSMYOGEN
50 histone H1 (H1F3) gene HUMHISAB MMHISTH1
51 prepro-oxytocin-neurophysin I (OXT) gene HUMOTNPI MUSOXYNEUI
52 thymidine kinase gene HUMTKRA MUSTKM

53 beta-2-adrenergic receptor gene HUMADRBRA MMB2ARG
54 metallothionein-III gene HUMMETIII MUSMETIII
55 XRCC1 DNA repair gene HUMXRCCIG MUSXRCCIG
56 zinc finger transcriptional regulator (GOS24) gene HUMGO0S24B MUSZPF36G
57 alpha-globin germ line gene HSAGLI MUSHBA

58 testis-specific PGK-2 gene for phosphoglycerate kinase HSPGK2G MUSPGK2

59 fatty acid binding protein FABP gene HSU57623 MMU02884
60 DNA for arylsulphatase A HSARYLA MMDNAASFA
61 CCAAT/enhancer-binding protein delta $63168 MUSCRP3A
62 gene for 27kDa heat shock protein (hsp 27) HSHSP27 MUSHSP25A
63 rod outer segment membrane protein 1 (ROM1) gene HUMRODI1X MUSROM1X
64 somatostatin receptor subtype 3 (SSTR3) gene HUMSSTR3X MUSSSTR3A
65 gene for phenylethanolamine N-methylase (PNMT) HSPNMTB MUSPNMT
66 gene for insulin-like growth factor II HSIGF2G MMU71085
67 adenosine deaminase (ADA) gene HUMADAG MMU73107
68 acid sphingomyelinase (SMPD1) gene HUMSMPDI1G MMASMI1G
69 cytochrome ¢ oxidase subunit Vb (COXSB) gene HUMCOXSB MUSCYTCOVB
70 nucleolin gene HUMNUCLEO MMNUCLEO
71 erythropoietin receptor 545332 MMERYPR
72 alpha-type insulin and 5' flanking polymorphic region HUMINSPR MMINSTIG
73 transforming protein (hst) gene HUMHST MMKFGF

74 pulmonary surfactant protein C (SP-C) and SP-C1 genes =~ HUMPLPSPC MUSPSPC

75 coseg gene for vasopressin-neurophysin precursor HSCOSEG MUSVASNEU
76 gene for beta-3-adrenergic receptor HSB3A MMB3A

77 loricrin gene exons 1 and 2 HUMLORI MMU09189
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Group #  Name of gene in human homolog Homo Loci  Mus Loci
78 hepatocyte growth factor-like protein gene HSU37055 MUSHEPGFA
79 H1.1 gene for histone H1 HSH11 MUSH1X
80 cytochrome oxidase subunit VIa heart HSUG687S MMUG3716
isoformrecursor(COX6AH) gene
81 int-2 proto-oncogene HSINT2 MMINT2
82 germ line gene for beta-globin HSBGL3 MUSHBBMAJ
83 leukemia inhibitory factor (LIF) gene HUMALIFA MUSALIFA
84 intestinal fatty acid binding protein gene HUMFABP MUSFABPI
85 lymphotoxin-beta gene HUMLYTOXBB  MMU16984
86 LYL-1 protein gene HUMLYLIB MMLYLI1
87 atrial natriuretic factor (PND) gene HUMANFA MUSANF
88 encoding alpha subunit of murine cytokine(MIP1/SCI) HUMGOS19A MMSCIMIP
89 intestinal alkaline phosphatase (ALPI) gene HUMALPI MUSIAP
90 N-formyl peptide receptor (FPR1) gene HUMFPR1A MUSNFORREC
91 S-protein gene HSSPRO MMVITRO
92 gene for granulocyte colony-stimulating factor (G-CSF) HSGCSFG MMGCSFG
93 tumor necrosis factor-beta (TNFB) gene HUMTNFBA MMTNFBG
94 interleukin 10 (IL10) gene HSU16720 MUSIL10Z
95 21-hydroxylase B gene HUMCP210H MUS210HA1
96 Mullerian inhibiting substance gene HUMMIS MMAMH
97 apolipoprotein E (epsilon-4 allele) gene HUMAPOE4 MUSAPE
98 regenerating protein (reg) gene HUMREGB MUSREGI
99 cathepsin L gene HUMPROLA MUSPROL
100 FIt3 ligand and Flt3 ligand alternatively spliced isoform  HSU29874 MMU44024
101 UHS KerA gene HSA6693 MUSSER1
102 IL2RG gene HUMIL2RGA MMU21795
103 C-reactive protein gene HUMCRPGA MMCRPG
104 gene for B cell differentiation factor I HSBCDIFFI MMIL5G
105 Thy-1 glycoprotein gene HUMTHY1A MUSTHY1GC
106 uPA gene HSUPA MUSUPAA
107 gene for serum amyloid P component HUMSAPO1 MUSSAPRB
108 pancreatits-associated protein (PAP) gene HUMPAP D63360
109 interleukin 1-beta (IL1B) HUMILIB MMIL1BG
110 cathepsin G gene HUMCAPG MUSCATHG
111 cytotoxic T-lymphocyte-associated serine esterase 1 HUMCTLA1 MUSSPCTLS
112 alpha-lactalbumin gene HSLACTG MUSALCALB
113 DNA for osteopontin HUMOSTP MMOESTEOP
114 gene for CD14 differentiation antigen HSCD14G MMCD14
115 gap-I gene HSGAPIGNA MMU60528
116 gene [or bone gla protein (BGP) HSBGPG MUSOGC
117 fetal gene for apolipoprotein Al precursor HSAPOAIA MUSAICHIA
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Table 9. The results of prediction of human genes by two-species method
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Table 10. The results of prediction of mouse genes by two-species method
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Table 11 The identified exons of human and mouse with the method based on two-species
comparison (for those gene pairs which have homologs in chicken’s sequence)
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Table 12. The identified exons of human and mouse with the method based on three-species

comparsion
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