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ABSTRACT

5-Fluorouracil (FUra), a chemotherapeutic agent, affects the growth of several 

kinds of tumor cells. It is known to affect DNA as well as RNA. Using 

Escherichia coii, this study has shown that FUra interferes with the synthesis 

and assembly of ribosomes. Cells treated in FUra concentrations between 

25 ug/ml and 50 ug/ml gave severely retarded growth rates. Sucrose density 

gradient absorbance profiles of ribosomes from FUra-treated cells indicated 

altered structural and functional properties. These profiles showed large pools 

of free ribosomal subunits and few completely associated ribosomes or 

polyribosomes. The 23S rRNA from FUra-treated ribosomes showed an 

increased amount pf degradation, consistent with previous studies. However, 

the 16S rRNA of the 30S ribosomal fraction showed no evidence of breakdown 

products. Composite gel electrophoresis of FUra-treated samples indicated a 

decrease in S1 protein, a factor which is vital for translation. Analysis of 

ribosomal proteins revealed that most proteins were present in normal 

stoichiometries. However, some non-ribosomal proteins associated with 

unfolded ribosomal particles were present in samples with higher

concentrations of FUra. Incorporation studies, showed that 3H-FUra was 

efficiently incorporated into cells and ribosomes. Incorporation into 30S and 

50S subunits was equivalent, but with increased exposure, increasing amounts 

were incorporated into the translating pool of ribosomes (70S and 

polyribosomes). The absorbance profiles also showed more assembled 

ribosomes and polyribosomes with increasing exposure, suggesting that a 

transient effect on some cellular factor, may have been overcome.
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INTRO DUCTIO N

1

5-fluorouracil (FUra) is a drug that has been used extensively as a 

chemotherapeutic agent in the treatment of adult cancers and solid tumors 

including colorectal (Mandel, 1979), breast (Ansfield et al., 1969) and liver 

carcinomas. While the drug is effective in treating cancer, it is also toxic when 

given in high doses. The mechanism of action of FUra has been studied for 

over 30 years to understand why it is an effective chemotherapeutic drug. 

Despite these studies, information concerning the specific cellular targets of the 

compound remains fragmentary.

Early investigations into nucleotide metabolism indicated that cancer 

cells utilized more uracil than did normal cells. Specifically, chemically induced 

rat hepatoma cells incorporated greater quantities of uracil than did normal rat 

liver cells (Rutman et. al., 1954). Since rapidly dividing cells showed an 

enhanced incorporation of uracil into nucleic acids, it was suggested that an 

antimetabolite similar to uracil in structure, but different in function could be 

utilized as a specific tumor cell inhibitor (Heidelberger, 1975). Among the 

potential uracil analogs, the substitution of fluorine, an atom more 

electronegative than hydrogen (but similar in size), at position 5 within the uracil 

molecule was found to be very stable, amenable to chemical synthesis 

(Wempen and Fox, 1964) and did not interfere with the utilization of the base, 

nucleoside, or nucleotide in cellular metabolism. Thus, FUra was manufactured 

for study as a chemotherapeutic agent.

FUra is a fluorinated analog of uracil (Figure 1). Several cellular targets
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U r a c i l  

H = 1 . 2 0  A 

V K a = 9.  45

H

5 -F lu o ro u ra c i l  

F = 1 . 35  A

p K a = 8 . 1 5

Figure 1. Structural and physical similarities between 5-fluorouracil and the 
natural pyrimidine uracil. Substitution of hydrogen at position 5 of the uracil 
molecule for fluorine, a more electronegative atom, produced a stable 
structurally similar to uracil, stable, and amenable to chemical sythesis 
(Heidelberger, 1975).
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have been suggested for the drug. These include the metabolic pathways of 

thymidine synthesis, cellular targets such as messenger RNA (mRNA), 

ribosomal RNA (rRNA), transfer RNA (tRNA), small nuclear RNAs (snRNA) and 

deoxyuridine and thymidine nucleotides in DNA.

FUra METABOLISM

The structural similarity of FUra to the natural pyrimidine, uracil, allows 

the drug to enter the nucleotide biosynthesis pathways (Mandel et. al., 1979). 

The metabolic pathway of FUra has been studied extensively (Parker and 

Cheng, 1990) (Fig. 2). It can be metabolized to 5-Fluorouridine (FUrd), FUrd

5'-triphosphate (FUTP), S -F luoro^’-deoxyuridine-S’-monophosphate (FdUMP), 

and S -F luoro^’-deoxyuridine-S'-triphosphate (FdUTP) compounds which have 

different mechanisms of action depending on their metabolism in different cell 

lines. One very important part of the metabolic pathway of FUra is the 

conversion of 5-Fiuoro-2’-deoxyuridine (FdUrd), a compound similar to FUra, to 

FdUMP by the action of thymidine kinase. This results in DNA-directed 

cytotoxicity of fluoropyrimidines. Little or no incorporation into RNA occurs via 

this pathway. Effects on RNA can only be observed when FUra is converted to 

FUrd or when FdUrd is converted back to FUra by cellular phosphorylases. In 

whole animals, FUrd and FdUrd are converted to FUra by uridine and thymidine 

phosphrylases respectively. Hence, treatment of whole animals with either 

FdUrd or FUrd is the same as treatment with FUra and both RNA- and DNA- 

directed cytotoxicity are observed.
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EFFECTS OF FUra ON THYMIDYLATE SYNTHASE AND DNA 

S Y N T H E S IS

In DNA, thymine (5-methyluracil) replaces the uracil found in RNA. The 

synthesis of thymidine monophosphate (dTMP or thymidylate) is essential to 

provide the thymidine triphosphate (dTTP) needed for DNA replication. 

Thymidylate is synthesized from dUMP by two pathways. One pathway involves 

the conversion of dCMP by deoxycytidylate deaminase, an enzyme that is 

widely distributed in animal tissue, to dUMP (Zubay, 3rd edition).

dCMP + H20  ~> dUMP + NH3

The other pathway involves the phosphorylation of dUDP to dUTP which then 

becomes hydrolyzed to dUMP. This route to dUMP is more widely utilized 

because ribonucleotide reductase, an enzyme that catalyzes the reduction of 

the ribose ring of ribonucleotides in eukaryotic and some prokaryotic cells, only 

acts on ribonucleoside diphosphates. This aids in the regulation of nucleotide 

metabolism in most cells. In addition, cells contain deoxyuridine triphosphate 

diphosphohydrolase (dUTPase) which prevents the incorporation of dUTP into 

DNA by keeping dUTP levels within the cell low (Figure 2). Once dUMP is

dUTP + H20  ~> dUMP + PPi

produced, it is methylated by utilizing 5,10-methylenetetrahydrofolate to give 

thymidylate (dTMP). The enzyme thymidylate synthase (TS) catalyzes the



6

reaction. This is a unique reaction because the folate derivatives acts as both 

the donor and the reductant using the pteridine ring as its source of the 

reducing potential (Zubay, 3rd edition).

Studies have shown that FUra and other fluorinated pyrimidines enter 

these pathways and become incorporated into DNA. Once incorporated, the 

fluorinated compounds cause DNA fragmentation, (Caradonna et al., 1980), 

lead to mutation (Aebersold, 1979), and also inhibit DNA replication 

(Fernandes et al., 1986).

Since DNA synthesis is not continuous throughout the cell cycle, effects 

on DNA are dependent in part, upon the phase of cell cycle. In E. coli cells, 

DNA replication occurs only once during its 30 min cell cycle. In eukaryotic 

cells, DNA synthesis occurs during one phase of the cell cycle, the S phase 

(Fig. 3a). A gap of time (G2) occurs after DNA synthesis but before cell division 

(M). Another gap of time (G1) occurs before DNA synthesis after mitosis. Many 

cells rest after mitosis and exit the cycle into the GO state and become 

quiescent. In most eukaryotic cells, growth is a carefully regulated process. 

The duration of the entire cell cycle varies from cell type to cell type. A single 

decision made in the cell cycle dictates when a cell leaves G1 and becomes 

committed to DNA replication in the S phase. Once this decision has been 

made, many events occur, causing the cell to enlarge, duplicate DNA, 

segregate each DNA molecule to separate nuclei and finally divide into two 

daughter cells (mitosis).

Normal cells going through the cell cycle have kinases and other 

regulatory molecules that control the timing of events of the cell cycle. These
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factors regulate the level and activity of nucleotide metabolism enzymes like 

thymidylate synthase and ribonucleotide reductase. The levels and activity of 

these enzymes must increase when the cell prepares to enter the S phase of 

the cell cycle. This occurs under three different circumstances; when the cell 

prepares to leave the resting phase (GO) of the cell cycle, when it performs 

extensive repair after DNA damage, and after an infection by a virus or any 

other mitogen that would cause quiescent cells to proceed into the S phase. 

These two enzymes subsequently decrease in activity once DNA synthesis is 

completed (Zubay, 3rd edition).

To arrest normal cel l growth,  removal  of one or more 

deoxyribonucleotides is necessary. The removal of thymidine or very low 

concentrations of thymidine causes cells to go into arrest. Complex allosteric 

effects on ribonucleotide reductase can help to explain the role of nucleotide 

levels on cell cycle. Accumulating dTTP binds to the specificity sites of 

ribonucleotide reductase causing dCTP levels to decrease while the 

concentration levels of dATP, dGTP and dTTP increase. Since ribonucleotide 

reductase is controlled in both activity and specificity, this enzyme can maintain 

a balanced pool of DNA precursors (Figure 3b). If ATP is bound to the active 

site, catalytic activity on ribonucleotides increases. The opposite occurs when 

dATP is bound. Nucleotides bound to the specificity sites of the enzyme cause it 

to maintain a balanced rate of the production of all four dNTPs. Tumor cells lack 

this effective control on cell growth by nucleotide biosynthesis enzymes. 

Consequently, thym idylate synthase and ribonucleotide reductase are 

continually active, allowing cell growth and DNA synthesis to continue
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Figure 4. The effects of FUra on DNA synthesis. FUra is metabolized to FdUMP 
which blocks the action of thymidylate synthase in the presence of 5, 10- 
methylentetrahydrofolate, It inhibits the action of thymidylate synthase (TS) to 
methylate dUMP to dTMP, necessary for DNA synthesis (H. Mandel e t al., 
1978).
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uncontrollably.

One mechanism by which FUra inhibits tumors involves the inhibition of 

thymidylate synthase (TS). By inhibiting TS, 5-fluorouracil blocks DNA 

synthesis (Figure 4). In the presence of the methyl donor 5, 10- 

methylenetetrahydrofolate, FUra inhibits the reaction catalyzed by thymidylate 

synthase, which converts dUMP to dTMP (Takimoto et al., 1993). Since folate 

derivatives are maintained at very low levels in cells, continuous regeneration 

of 5, 10- methylenetetrahydrofolate is necessary for continuous synthesis of 

thymidylate. Thus, DNA synthesis can be inhibited either by blocking 

thymidylate synthase or dihydrofolate reductase. The metabolite that is most 

likely responsible for the effects of FUra on DNA synthesis is 5- 

fluorodeoxyuridine 5'-monophosphate (FdUMP). Once synthesized, FdUMP 

binds covalently to thymidylate synthase and blocks thymidine formation. In this 

way, DNA synthesis is inhibited in normal cells and in tumor cells. This leads to 

undesirable cell death in normal cells growth control and / or death in cancer 

cells.

Given the activity of FdUMP on TS, it was widely accepted that FUra 

mediated cytotoxicity in tumor cells was through the inhibition of DNA synthesis. 

Recently however, studies have shown that this is not the sole mechanism 

(Greenhalgh and Parish, 1989; Akazawa et. al., 1986). Administration of 

thymidine (TdR) to FUra-treated cells to revert the cytotoxic effects of FUra on 

DNA synthesis enhanced rather than decreased the cytotoxicity of the drug. At 

the same time, incorporation of FUra into RNA was markedly increased. This 

was explained by the assumption that FUra metabolized to FdUTP as a result of
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the action of ribonucleotide reductase. Then the addition of TdR to revert the 

action of FdUMP on thymidylate synthase suppressed FdUTP production 

(Figure 4) (Akazawa et. al., 1986). It also led to an increased amount of dTTP in 

these cells causing a feedback inhibition of ribonucleotide reductase and 

consequently inhibition of normal cell growth (Speigelman et. al., 1980). The 

high dTTP levels in these cells may have repressed the anabolic conversion of 

FUra into deoxyderivatives, thus allowing the drug to become incorporated into 

RNA more readily (Ghosal and Jacob, 1994, Speigelman et. al., 1980). 

Interestingly, Greenhalgh and Parish (1989) found that addition of TdR not only 

enhanced the incorporation of FUra into total cellular RNA, but it also disrupted 

rRNA processing.

As a result of this and similar studies showing that FUra cytotoxicity is 

RNA-mediated, several investigators have turned their focus to analyzing the 

effects of FUra on cellular RNA molecules. Ultimately, understanding the 

mechanism of FUra treatment on both RNA and DNA, and its effectiveness as a 

chemotherapuetic agent will enhance the clinical management of various solid 

tumors.

RNA SPECIES

Three kinds of cellular RNA are involved in protein synthesis. 

Messenger RNA (mRNA) carries the information transcribed from DNA for 

polypeptide synthesis. Transfer RNA (tRNA) carries amino acids to the mRNA 

template for protein synthesis. Ribosomal RNA (rRNA) is a structural and 

functional component of ribosomes. Of the three kinds of RNA involved in
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protein synthesis, this present study has considered the effects of FUra on 

rRNA.

EFFECTS OF FUra ON RNA SPECIES

FUra and FUrd are metabolized into different uracil triphosphate (UTP) 

pools leading to their incorporation into several different RNA species (Takimoto 

et.al., 1986; Shani and Dannenberg, 1984). Over the past 1 0 - 1 5  years, 

several hypotheses have attempted to explain the RNA-mediated cytotoxicity of 

FUra (Glazer et al., 1979, 1980; Tseng et al., 1978; Wilkinson et al., 1975). 

While a correlation between the ability of FUra to become incorporated into 

RNA and the FUra-directed cytotoxicity has been observed in many cases 

(Cadman et al., 1979; Spiegelman et al., 1980), the mechanism by which this 

occurs is still a mystery.

FUra EFFECTS ON MESSENGER RNA (mRNA)

FUra substitutes for uracil in all types of RNA to cause changes in RNA 

metabolism (Wilkinson et al., 1973; Takimoto et al., 1987). Takimoto et. al., 

(1993) showed that FUra-substituted mRNA produced identical levels of active 

protein as those produced by the control mRNA. Their results showed that the 

in vitro translational products of FUra-substituted and control mRNAs were 

identical. There was no evidence of miscoding due to FUra incorporation into 

mRNA. Similar results were produced earlier by Grunberg-Manago et. al. 

(1964). Since FUra has been shown to have no effect on the translational 

products of mRNA, any effects on mRNA must occur at the the level of nuclear



mRNA processing (Takimoto et. a!., 1993).
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FUra EFFECTS ON SMALL NUCLEAR RNA (snRNA) AND SPLICING

Incorporation of FUra has been shown to produce alterations in certain 

small nuclear RNAs (snRNAs) and may contribute to alterations in mRNA 

processing, or localization of mRNA in nuclear compartments (Cohen et al., 

1985; Berget, 1984). Small nuclear RNAs (snRNA) are molecules that 

participate in splicing reactions of mRNA. Splicing involves the removal of 

introns within the mRNA molecule and sealing together the ends of the exons. 

RNA splicing has been studied intensely in yeast (Figure 5) (Konarska and 

Sharp, 1987).

There are six prominent snRNAs, U1 - U6. They all associate in the 

nucleus along with 6-10 ribonucleoproteins to form spliceosomes (snRNPs) 

(Steitz et. al., 1988). Armstrong et. al. (1986), demonstrated that the 

incorporation of a 10 uM concentration of another fluoropyrimidine, FUrd, 

affected three different snRNAs. FUrd was the most potent fluoropyrimidine 

capable of producing RNA-mediated cytotoxicity related to snRNA metabolism 

in murine tumor cells. The results suggested that FUra incorporation altered the 

secondary structural properties of U4 and U6 snRNAs and reduced the turnover 

rate of the U1 snRNA. For U4 and U6, a high percentage of FUrd substitution in 

a hairpin loop of these snRNAs caused the disruption of the secondary structure 

and subsequently inhibited cellular mRNA processing. However, these 

changes were only observed at very high FUrd concentration (10 uM) 

suggesting that the//? vitro effects on snRNA cannot account for in vivo
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Branch site

L.SX1 I. £X2 1

Figure 5. Pathway of spliceosome assembly as studied in yeast (Darnell e t al 
1990).
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cytotoxicity. To minimize the in vitro effects, high concentrations of FUrd would 

have to be maintained for a long period of time.

In the case of the reduced turnover of U1 in these cells, normal 

processing of nuclear mRNA could indeed be hampered. Without U1, the 5’ 

splice site of the mRNA is not cleaved and the 5’ splice site of exon 1 cannot be 

brought into position to become ligated to the 3’ splice site of exon 2 (Figure 5). 

Thus, reduced turnover of the U1 snRNA leads to reduced mRNA processing. 

All of these changes correlate well with the cell viability of FUra-treated cells 

suggesting that changes in snRNA metabolism may suppress the normal 

relocation of mRNA from the nucleus to the cytoplasm (Berget, 1984). It may 

also contribute to the altered molecular weight of RNA in fluoropyrimidine- 

treated cells (Armstrong et. al., 1986).

Similar studies in cells depleted of the U2 and U6 snRNAs showed that 

splicing activities were decreased in cells using FU2 and FU6 (Heinz-Josef 

Lenz et. al., 1994). In this particular study, the U2 snRNA was more sensitive 

than U6 to FUra treatment. FUra substitution in U2 snRNA altered protein 

recognition sites and as a result, lowered the stability of the base pairing in a 

stem loop structure of this snRNA. The weakened binding of splicing factors 

promoted the formation of an uncharacterized complex that increased the 

degradation observed in the pre-mRNA molecule. Normally, splicing factors 

such as SnRNPs are bound to U2 precursor mRNA molecule thereby protecting 

them from hydrolysis. Thus, the complex formed by FU2 was not on the normal 

pathway of spliceosome assembly. In the case of U6, high concentrations of 

FU6 were necessary to restore full splicing activities to the U6-depleted cell
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Figure 6. Mechanism of self-splicing pre-rRNA sequence in Tetrahymena 
thermophilia. The rRNA has two exons and a 408 bp intron. Splicing of the 
rRNA occurs by the removal of the intron by the cleavage at the 5’ exon-intron 
junction in the presence of a guanosine (GOH) nucleotide. Once it is cut, the 
free 3* hydroxyl of the guanosine molecule becomes linked to the 5’ phosphate 
of the nucleotide at the 5’ phosphate of the nucleotide at the 5’ end of the intron 
Transesterification (tranfer of a phosphate linkage from one nucleotide to 
another) occurs at both ends of the intron. The second cleavage (at the 3' end) 
occurs during transesterification that links the end nucleotides in a 5'-3' 
phosphodiester linkage. Linkage is provided by the final UMP of the 3' exon 
(Danenberg et. al., 1990).
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extracts. Overall, the study suggested that FUra incorporation into U6 resulted 

in a lower stability in the FUra=A base pairing which may facilitate a 

dissociation of FU6 from U4. This would inhibit catalytic steps involved in 

spliceosome assembly (Figure 5). However, a recent study done by Gmeiner et. 

al., (1994) shows that the FUra=A base pairs are more stable than U=A base 

pairs.

Another splicing mechanism in Tetrahymena thermophila, was also 

examined in the presence of FUra. In this case, the transcribed pre-rRNA 

molecule undergoes a splicing reaction in the absence of cellular proteins, but 

in the presence of guanosine which donates the chemical activity of a 2’ 

hydroxyl group (Darnell et. al., 1990) (Figure 6). The formation of splicing 

products in this reaction was monitored in the rRNA of FUra treated cells. 

Danenberg et. al. (1990) showed that FUra inhibits the self splicing process in 

Tetrahymena rRNA even though no abnormal splicing products were observed. 

The inhibition was explained again by the lower stability of base pairing 

between FUra=A pairs compared with normal U=A pairs (Takimoto et al., 1993). 

Taken together, there is ample evidence to suspect that FUra can block 

processes involved in mRNA processing.

FUra EFFECTS ON TRANSFER RNA (tRNA)

The tRNA molecule decodes the information on the mRNA so that the 

appropriate amino acid is added to the polypeptide chain. Each kind of tRNA 

molecule is recognized by a particular amino acyl tRNA transferase. There are 

more than 20 tRNA’s but only 20 tRNA amino acyl transferase. Within the
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primary structure of the tRNA molecule are modified bases such as 

dihydrouridine (D), inosine (I), thymine (T), pseudouridine (l(J) and methylated 

bases (M) (Figure 7).

Transfer RNA structure has also been investigated in the presence of 

FUra to address whether FUra substituted tRNA contributes to altered cell 

growth. Data of Tseng et. al. (1978) indicate that FUra decreases the activity of 

tRNA uracil-5-methyltransferase in the liver and in tumor cells of FUra-treated 

mice in vitro. Tumor cells generally show increased activity of tRNA 

methyltransferase compared to normal cells (Wilkinson and Crumley, 1977). 

Tseng’s data indicate that the activity of tRNA uracil-5-methyltransferase

(U5MeU) was reduced. This effect is similar to the inhibition of thymidylate 

synthase (TS) by FdUMP (Figure 4). As previously mentioned, FdUMP binds 

covalently to TS. Tseng et. al, believes that there may be an unidentified drug 

metabolite that binds tightly or covalently to the tRNA uracil-5-methyltransferase.

In vitro assays of tRNA U5MeU in the presence of 2 mM FUra showed that FUra 

was a much weaker inhibitor than uracil itself, suggesting that a metabolite 

other than FUra is the inhibitor of U5MeU. The study also showed that FUra 

exhibited a preferential inhibitory effect on tumor cell tRNA. This may partially 

contribute to the anti neoplastic actions of FUra.

FUra is also known to specifically inhibit m5U formation in tRNA, without 

interfering with other methylated bases within the molecule. Tseng et. al., 

(1978) also found that there was a reduction in the synthesis of pseudouridine 

(U) and dihydrouridine (D) bases due to FUra incorporation. When these
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Figure 7. The primary structure of yeast alanin tRNA (tRNA A,a) is a cloverleaf. It 
is synthesized from the usual nucleotide bases A,C,G,U. The modified bases 
are D = dihydrouridine, I = Inosone, T= thymine, l|l = pseudouridine, and m = 
methyl group. It has four base pair stems; the anticodon loop, the D loop, the 
TlJJCG loop (for thymidylate, pseudouridylate, cytidylate and guanylate which 
are present almost all the time in this loop) (Darnell et. al., 1990).
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reviewed by Heidelberger et. al., (1983), it was suggested that incorporation 

into tRNA does not play a major role in RNA-mediated cytotoxicity of FUra since 

protein synthesis is not affected (Dolnick and Pink, 1985).

RIBOSOMAL RNA AND PROTEINS

Ribosomal RNA is part of the machinery that is associated with protein 

synthesis. The 70S ribosome of prokaryotes is made up of two subunits, the 

50S and the 30S subunits (Figure 8). They are both composed of RNA and 

protein. The 50S subunit contains the 23S and 5S rRNAs, which contains 2904 

and 120 nucleotides respectively. They are complexed with 33 proteins (L1 - 

L33). The 30S subunit is composed of the 16S rRNA containing 1542 

nucleotides and 21 proteins (S1 - S21) (Zubay, 3rd Ed.). Eukaryotic ribosomes 

are constructed in a similar manner, but the RNA molecules are larger and they 

have more proteins.

The primary function of ribosomal proteins is to bind and assemble 

individual domains of rRNA into their appropriate positions (Zubay, 3rd Ed.). 

Studies have determined a pathway by which individual proteins bind to rRNA 

in an orderly sequence. The assembly maps for both 30S and 50S subunits 

show that the assembling ribosome undergoes conformational changes at 

specific points along the pathway (Figure 9). Once assembled into mature 

subunits, rRNA participates in all stages of protein synthesis; initiation, 

elongation and termination (Figure 10).
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Figure 8. Composition of E. coli ribosomes. The 70S complex is made up of 
the 50S and 30S subunits which become associated during translation. Each 
subunit contains ribosomal protein and RNA molecules (Zubay, 3rd Ed.).
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FUra EFFECTS ON RIBOSOMAL RNA (rRNA)

The effects of FUra on ribosomal RNA have been investigated for over 30 

years. Early work showed that FUra interferes with the maturation and 

metabolism of the ribosome (Gros et al, 1962; Hignett, 1966; Takimoto et al., 

1986). But overall, little information is known concerning the effects of FUra on 

rRNA structure and function. One sketchy study showed that the 23S RNA in 

the 50S subunit of bacterial ribosomes was more susceptible to ribonuclease 

degradation in FUra-treated cells, thereby altering the physical properties of the 

particles (Hahn and Mandel, 1971). The ratio of RNA to protein was greatly 

reduced in the 70S ribosomal fraction of FUra-treated cells, but was increased 

in the soluble fraction of the cells. This may be interpreted as a deficiency in the 

rRNA or as an excess of protein in the 70S ribosomal fraction of cells treated 

with the drug.

Incorporation of FUra into the 45S pre-rRNA, the precursor to the mature 

RNA molecules found in mammalian ribosomes, disrupts the secondary 

structure of the molecule and leads to an inhibition of rRNA processing (Weiss 

et al., 1974, Ghoshal et. al., 1994). The nuclear RNA (45S) is a precursor for 

the 28S, 18S, and 5.8S rRNAs. After methylation and conversion to a 41S 

molecule, the precursor is cleaved to 32S and 20S rRNAs. These molecules 

are further processed and assembled into 40S and 60S ribosomal subunits 

(eukaryotic cells) (Figure 11). Recent work has shown that maturation of 

FUra-containing rRNA is severely inhibited between the 45S and 32S stages of 

eukaryotic ribosome assembly pathway. The nucleotide analogue also 

inhibited the production of mature 18S and 28S rRNAs (Wilkinson et. al., 1973;
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Sedimentation
coefficient

16S

Figure 9. Assembly map of the 30S ribosomal subunit. Of the 21 proteins 
present in the subunit only 5 are directly associated to the rRNA. Assembly of 
the other proteins occurs only after these initial proteins have bound to the 
rRNA. These proteins make contact with the ribosomal RNA and the initially 
bound proteins (Darnell e t al., 1990).
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Cohen and Glazer, 1985). The recognition sites involved in processing appear 

to be altered, suggesting that incorporation of FUra into preribosomal RNA is 

responsible for an altered processing mechanism (Herrick and Kufe, 1984). 

Kanamaru et. al. (1986) disputed these results by showing that the inhibition of 

the processing of the pre-rRNA is not due to the accumulation or incorporation 

of FUra-particles. In Kanamaru’s study, the 18S rRNA was intact at high 

concentrations of FUra. Cells incubated in a 10 '5 M FUra for 24 hours 

displayed inhibited processing of 18S rRNA as well as processing to lower 

amounts of 32S preribosomal RNA and 28S rRNA. Assays of cells labeled with

14C-UR (labeled uridine) following a 24 hour exposure to 3H-FUra gave no 

processed 28S rRNA, instead newly synthesized RNA accumulated in the 

regions of 45S and 32S preribosomal rRNA. The conclusion of the study was 

that the processing of pre-rRNA to 28S RNA is due to some suggested unknown 

mechanism, and not to the accumulation of FUra-particles. However, the 

mechanism to explain FUra cytotoxicity is still not fully understood.

In that same year, Takimoto et al.., (1986) showed that different precursors 

of FUTP do not produce the same type of incorporation into RNA. Two 

precursors of FUra were used to determine FUra distribution into RNA under 

cytotoxic and non-cytotoxic conditions. The results showed that high doses of 

FdUrd on a time dependent basis gave very little RNA mediated cytotoxicity. On 

the other hand, high levels of cytoxicity and incorporation into RNAs resulted 

when small concentrations of FUrd were used. This was explained by the fact 

that 5’-deoxyfluorouridine (5'-dFUrd) incorporation into nuclear RNA is equally 

distributed between the nucleoplasmic RNA and nucleolar RNA giving non-toxic



40S 60S
ribosomal ribosomal

subunit subunit

Figure 11. Processing of mammalian 45S pre-rRNA into ribosomal subunits. 
Processing begins in the nucleolus. The 45S pre-rRNA is processed into a 32S 
and 20S rRNA before they are transported to the cytoplasm where they get 
synthesized into the 40S and 60S ribosomal subunits (Darnell et. al., 1990).
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doses of FUra in the cell. In contrast, FUra incorporation from a FUrd precursor 

was high because it targeted nucleolar RNA. In addition, the rapid conversion 

of FUrd to FUTP explains the high incorporation of FUra in newly synthesized 

RNA and induces physiological changes that prevent these RNA molecules 

from reaching maturity.

Studies done within the last five years indicate that there are still some 

unanswered questions about the cytotoxicity of FUra (Takimoto et. al., 1993). In 

spite of the amount of work done, very little information on FUra effects on the 

structure and function of rRNA exists. To provide additional information on the 

effects of FUra on the metabolism of cells, this research project has addressed 

some specific structural and functional effects of FUra on rRNA in the ribosomal 

system of E. coli.

EXPERIM ENTAL DESIGN

The focus of this research project was to identify and observe the effects 

of FUra on protein translation, specifically the effects of FUra on the structure 

and function of the ribosome. Initially, growth rate experiments using a range of 

concentrations of FUra were used to define those FUra concentrations which 

inhibit cell growth or significantly retard growth. Concentrations of FUra 

between 1ug/ml and 200 ug/ml were utilized in this study. The growth rates of 

E. coli cells treated with these range of FUra concentrations were done to 

observe the effects of the drug during cell growth. Using FUra concentrations 

between 1 ug/ml and 50 ug/ml, whole ribosomes and polyribosomes were 

prepared and the absorbancy profiles of each sample was produced. RNA
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derived from these FUra-treated cells was also analyzed on a polyacrylamide 

gel for evidence of degradation due to the drug. The effects of FUra on 

ribosomal proteins were studied by sodium dodecyl sulphate polyacrylamide 

gel electrophoresis (SDS-PAGE).

The structure and conformation of ribosomes from FUra-treated cells was 

characterized on composite gels. An incorporation assay was also carried out 

to determine if the drug was being incorporated into the cells and also to identify 

the specific portion of the ribosomal pool most affected by FUra. The results of 

this study expand on previous findings concerning the effects of FUra on the 

structure and function of the ribosome. The results also support the notion that 

the ability of FUra to effectively reduce growth in tumor cells depends upon its 

ability to alter the functional capabilities of the ribosome.
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GROWTH RATE EXPERIMENTS

To observe the effects of 5-fluorouracil (FUra) on the growth of E. coli 

cells, cultures were monitored by measuring turbidity of media over time. An 

aliquot containing 500 ul of an overnight culture of E. coli DH1 strain was used 

to inoculate 50 ml of Luria-Bertani (LB) media (10 g tryptone, 5 g yeast extract, 

10 g NaCI in 1 L H20 ) containing the following FUra drug concentrations;

0 ug/ml, 1 ug/ml, 10 ug/ml, 25 ug/ml and 50 ug/ml. The drug was added from a

stock solution. The cultures were allowed to grow at 37°C in a shaking water

bath for about eight hours. Using a Klett-Sommerson colorimeter, the turbidity 

of the growing cultures was monitored every 30 min.

To determine the effects of FUra on cells that were already growing, 

another growth rate experiment was carried out using 200 ug/ml of FUra. In one 

experiment, 200 ug/ml of FUra was added to the media before the cells were 

inoculated (an experiment similar to that described above). In a parallel 

experiment, 200 ug/ml of FUra was added to a culture that contained cells that 

had been growing for about 3 hours. Both cultures were left to grow for about 

six-and-a-half hours. Turbidity readings were monitored as in the previous 

experiment (every 30 min) using the Klett-Sommerson colorimeter. The results 

of the growth experiments were used to determine the level of FUra to be used 

in subsequent experiments.
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PREPARATION OF RIBOSOMES

The preparation of ribosomes was carried out according to the protocol 

provided by Tapprich & Dahlberg (1990). It involved growing E. coli cells in 

500 ml of LB nutrient medium until they reach mid-logarithmic growth phase 

( A 6 o o  n m  = °-6) a^ er which the cells were harvested. Ribosomes were isolated 

from cells grown in 9 different FUra concentrations; 10 ug/ml, 20 ug/ml,

30 ug/ml, 40 ug/ml, 42.5 ug/ml, 45 ug/ml, 47.5 ug/ml, and 50 ug/ml. In each 

case, the drug was added before the fresh cultures were inoculated with an 

overnight culture. The cells were harvested by first cooling them in two GSA 

centrifuge tubes (two tubes per 500 ml culture) on ice for 5 min and then

centrifuging in a GSA rotor at 4°C for 10 min at 5000 rpm. The medium was

poured off and the pellet was washed by resuspending it in 7.5 ml of Buffer A 

(25 mM Tris-HCL / pH 7.6, 10 mM MgCI2, and 150 mM KCI, and 1 mM DTT). 

The washed samples were then transferred into prechilled SS34 tubes and

centrifuged again at 4°C  for 10 min at 5000 rpm. The supernatant was poured

off and the pelleted samples were kept overnight in a -70°C freezer.

To extract ribosomes, the frozen pellets were scraped into a precooled 

mortar on ice. An aliquot containing 3.4 g of baked alumina was added and the 

cells were ground with a prechilled pestle until the cells formed a slightly thick 

paste. As the cells were broken open, the paste became smoother in 

consistency. An aliquot containing 50 units of RNase-free DNase I (Worthington 

Biochemicals) was added to the paste and then 6 ml of Buffer A was added to 

the paste gradually so that it could be poured into a prechilled SS34 tube. An
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additional 6.5 ml of Buffer A was added to the samples to have a total volume of 

12.5 ml. The cells were then centrifuged in the SS34 rotor at 4°C for 10 min at

12.000 rpm to remove the alumina and other large cellular debris from the cell 

lysate. The supernatant was placed into a clean, prechilled SS34 tube and

centrifuged again to remove any more cellular debris at 4°C  for 1 hour at

16.000 rpm. Following centrifugation, the supernatant was transferred into 

prechilled Ti-70 tubes, filled to the top with Buffer A, and centrifuged in a

Beckman Ti-70 rotor for 3 hours at 60,000 rpm (4°C), the supernatant was

removed and the ribosomal pellet was resuspended in 10 ml of Buffer B (10 mM 

Tris-HCI / pH 7.6, 15 mM MgCI2 and 500 mM NH4CI in 1 mM DTT) and left on a

tilt table at 4°C overnight.

The resuspended pellets were transferred into prechilled SS34 tubes

and centrifuged for 1hour at 16,000 rpm in a Sorvall centrifuge at 4°C  after

which the supernatant was decanted into prechilled Ti-70 tubes. These tubes 

were again filled to the top, this time, with Buffer B, and centrifuged in a Ti-70

Beckman rotor for 3 hours at 60,000 rpm also at 4°C. The supernatant was

removed again and the pellet was resuspended in 500 ul of TC70S buffer (20 

mM Tri-HGI / pH 7.6, 6 mM MgCI2, and 60 mM KCI). As before, the samples 

were kept on a tilt table overnight in the cold room. The dissolved pellets were 

centrifuged in a microcentrifuge in the cold room for 10 min at 15,000 rpm to 

separate the ribosomes from insoluble cellular materials. The dissolved pellet 

(supernatant) was put into clean eppendorf tubes and ribosomal concentrations
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were measured using a spectrophotometer.

An absorbance reading at 260 nm of a 1:250 diluted sample was made 

using an extinction coefficient of 14.5. Based on the calculated concentrations 

of the extracted ribosomes, 6 mg of each sample was loaded onto a previously 

prepared (thawed) 38 ml sucrose gradient (22% sucrose in Tight Couple70S 

buffer (TC70S) containing 1 mM DTT). The loaded gradients were centrifuged

at 4°C  for 18 hours at 20,000 rpm in a Beckman SW28 rotor. Acceleration-

decceleration parameters were set so that the rotor changed speeds gradually 

at low speeds; 3 min between the rates of 0 and 500 rpm. The resulting 

g ra d ie n ts  were pum ped th rough  an Isco A ppa ra tus  UA-5 

Absorbance/Fluorescence detector at a pump speed of 70, a sensitivity of 1 and 

a chart speed of 60 cm/hr. Each fraction of ribosomal 30S, 50S and 70S 

particles was collected in RNase-free SS34 tubes. A profile for each subunit 

(30S, 50S, and 70S) was generated as each fraction was collected. The 30S, 

50S and 70S fractions were then put into Ti-70 tubes, filled to the top with 

TC70S buffer and centrifuged again in the Beckman Ti-70 rotor for another 18

hours at 40,000 rpm at 4°C. The pelleted ribosomal fractions were then

resuspended in 500 ul of TC70S buffer. The 70S fractions were kept in the

freezer (-70°C) for further studies. The entire procedure was done at 4°C and

in RNase-free conditions. RNase-free conditions were accomplished by using 

purified buffers made with sterilized water and filtered before using, glass 

apparatus, mortars, pestle and spatulas were baked to inactivate RNase 

enzymes. The plastic tubes used were also exclusively for RNA work.
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POLYACRYLAMIDE GEL ELECTROPHORESIS

To observe any degradative effects of the drug on the RNA derived from 

the 30S and 50S ribosomal subunits, the ribosomal RNA was isolated from 

previously prepared subunits and was analyzed by polyacrylamide gel 

electrophoresis. The purification of rRNA involved phenol extraction. First, an 

equal volume of a buffer-equilibrated phenol was added to the ribosomal 

fractions, vortexed for 15 sec, and then centrifuged for 2 min in a microfuge at

15,000 rpm at room temperature to separate the phases. The upper aqueous 

layer was retained and treated with an equal volume of buffer-equilibrated 

phenol-chloroform solution (phenol : chloroform: isoamyl alcohol, 25:24:1). The 

samples were vortexed again for 15 seconds and centrifuged at the same 

speed for another 2 min. The upper, aqueous phase was retained and 

precipitated with 1/10 volume of a 3 M sodium acetate pH 5.2 and 2.5 volumes

of cold 95% ethanol, mixed well and kept in the -70°C freezer for about 20 min.

The samples were centrifuged at 15,000 rpm for 10 min at 4°C  to pellet the

RNA. The supernatant was discarded and 0.5 volumes of cold 70% ethanol

was added before it was centrifuged for 5 min at 15,000 rpm at 4°C . The

supernatant was discarded carefully and the RNA pellet was dried in the speed- 

vac for 3 min before it was resuspended in 50 ul of Tris-EDTA (TE contained 10 

mM Tris /  pH 7.6,1 mM EDTA). Absorbance values at 260 nm were determined 

and the concentration of each sample was calculated using an extinction factor 

of 25. An aliquot containing 10 ug of each sample was loaded onto a 3.75% 

polyacrylamide gel.
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The polyacrylamide gel contained 8 M urea (26.4 g), 3.75% acrylamide 

(19:1 acrylamide : bisacrylamide), and 1 X TBE (0.09 M Tris-Borate 0.002 M 

EDTA). The solution was stirred on a hot plate to dissolve and mix the 

components after which the volume was brought to 55 ml. Polymerization was 

initiated by adding 150 ul of TEMED and 200 ul of 10% APS (Ammonium 

persulfate) to the mixture. The mixture was swirled quickly and then poured in 

between two glass plates separated by 1.5 mm spacers. A 10-tooth comb was 

inserted between the plates to make the wells before the gel polymerized. The 

samples were prepared by placing 10 ug of each sample into a 0.6 ml 

eppendorf tube along with an equal volume of 8 M urea and 1 ul of 2.25% 

bromophenol blue. The samples were electrophoresed for approximately 6 

hours at 13 mA in 1X TBE buffer. Following electrophoresis, the gel was stained 

overnight in 200 ml of a solution containing 0.2% methylene blue, 0.2 M sodium 

acetate, 0.2 N acetic acid. The gel was destained with deionized water and 

then dried.

S DS-PAG E ELECTROPHORESIS

To observe the profile of ribosomal proteins asociated with the ribosomes 

from FUra-treated cells, approximately 30 ug of ribosomal protein preparation 

was loaded on a 15% SDS separating gel (20 ml of 30% acrylamide, 8 ml of 

1.875 M Tris-HCI pH 8.8, 400 ul of 0.2 M EDTA, 20 ul of TEMED, and 400 ul of 

10% APS in a total volume of 40 ml). The stacking gel was 5% acrylamide 

(1.67 ml of 30% acrylamide, 1.25 ml of 1 M Tris-HCI pH 6.8, 100 ul of 0.2 M 

EDTA, 100 ul of 10% APS, and 5 ul of TEMED in a total volume of 10 ml).
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The separating gel was poured between two horizontal layered with 

water and then left to polymerize for about 20 min after which the stacking gel 

was prepared and poured on top of the separating gel (after removing the layer 

of water from the top of the gel). The comb was inserted into the stacking gel to 

make wells and left to polymerize again for another 30 - 40 min after which, the 

comb was removed and the wells were flushed with the top running buffer to 

remove any particles that might interfere with the smooth migration of the 

protein samples. The top chamber was then filled with a full concentration of 

the running buffer (0.025 M Tris, 0.19 M glycine, 0.003 M SDS in a total volume 

of 4 L at pH 8.3). The bottom electrophoresis chamber contained about 3 L of a 

1:2 dilution of the same running buffer. To prepare the samples, an equal 

amount of a 2X solubilization buffer (2 ml of 10% SDS, 400 ul of 2- 

mercaptoethanol, 1 ml of glycerol, 625 ul of 1 M Tris pH 6.8 and H20  to make a 

total volume of 5 ml with bromophenol blue to give it color) was added to each

sample. The solubilized samples were boiled for 5-10 min at 100°C and then

loaded onto the gel. The gel ran for 2.5 - 3 hours at 50 mA before it was stained 

overnight in 2% coomassie blue dye (0.2 g coomassie, 45 ml methanol, 45 ml 

water, 10 ml glacial acetic acid). The gel was placed in a destaining solution 

(Per liter: 7% glacial acetic acid, 25% isopropyl alcohol in distilled water) 

overnight.

COMPOSITE GEL ELECTROPHORESIS

To characterize the overall conformation of FUra-treated ribosomes, 

composite gels were prepared. The procedure for this type of ribosomal
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separation was done according to Dahlberg and Grabowski (1990). These gels 

give very good resolution of large complex macromolecules and allow 

separation based on size and shape. The gels were made up of a mixture of 

agarose and acrylamide. A 2.25%- 0.5% acrylamide - agarose gel (0.8 g 

agarose in 127 ml of ddH20 , 9 ml of 40% acrylamide solution, 4 ml of 1 M Tris- 

HCI pH 7.6,1.6 ml of 3M  KCI, 1.6 ml of 1 M MgCI2, 500 ul of 10% APS, and 100 

ul of TEMED) was prepared such that the entire gel mixture was kept at about

43°C. Before preparing the gel, the cooling system was turned on so as to

bring down the temperature to about 20°C. The gel was prepared by dissolving

the agarose in 126 ml of ddH20. This was done by heating gently on low heat.

The flask and its contents were cooled down to approximately 60°C by keeping

it under a running faucet of cool water. The volume was readjusted by adding 

ddH20  before adding 25 mM Tris-HCI, 10 mM MgCI2, and 30 mM KCI. The total 

volume of the gel mix was about 160 ml. The flask and its contents were then

cooled down to about 43°C.

Meanwhile, once the circulating cooling system was adjusted and

brought to 20°C, it was left to circulate around the wires of the gel slab for about

10 min. As soon as the gel mix cooled down to ~ 43°C, 1.6% APS was added.

The flask was swirled very quickly and the gel mix was poured into the gel 

mould in the cooled unit. The comb was inserted to form the wells and a frozen 

tube of ethylene glycol was placed in front of the comb to aid in cooling the gel 

areas that could not be cooled by the cooling coils. The gel was poured at
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20°C to allow the agarose to set before the acrylamide and also to form a coat

around the gel slab, thereby giving the gel stability. The gel was kept in the 

horizontal position for an hour to allow the entire gel to polymerize. A 

precooled 1X TMK buffer - the running buffer (25 mM Tris-HCI pH 7.6, 10 mM 

MgCI2, and 30 mM KCI) was poured into the gel chamber (now in the vertical 

position). Pre-electrophoreses was done by running the gel for 1 hour at 50 V

while reducing the temperature of the coolant to 4°C.

Ribosome samples were prepared by mixing 20 ug of the previously 

prepared ribosomal fractions in 30ul of TC70S buffer (the buffer in which the

ribosomal samples were dissolved). An equal volume of a 50°C, 0.5% agarose

in the same TKM buffer concentration was added to the sample. Before loading 

the samples, the running buffer in the gel chamber was drained. The wells 

were blotted dry using small pieces of filter paper before the samples were 

loaded onto the empty, dry well. The gel was run at a constant voltage of 100 V

at 4°C for about 6 hours recirculating the buffer constantly and replacing the

running buffer with fresh, cold running buffer every 2 hours. After 6 hours, the 

gel was stained in 2% methylene blue overnight and then destained in 

deionized water.

POLYRIBOSOME PREPARATION

The effects of FUra on translating ribosomes was also observed in the 

polyribosome profiles derived from sucrose gradients of E. coli cell lysates. 

These were prepared according to the protocol by Vila et. al. (1994). An
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overnight culture of E. coli cells was used to inoculate 50 ml of fresh LB nutrient 

media containing the following 5-FU concentrations; 20 ug/ml, 30 ug/ml,

40 ug/ml, 47.5 ug/ml and 50 ug/ml. The cultures were left to grow until they 

reached mid-logarithmic growth phase (A600nm= 0 .6 ) before the cultures were 

cooled quickly in an ice bath by swirling the culture in the bath for 5 min. The

cells were pelleted by centrifugation at 4°C  at 6 ,0 0 0  rpm for 5 min in a Sorvall

SS34 rotor. The supernatant was removed and the pellet was washed in 1 ml 

of TKM buffer (25 mM Tris pH 7.6, 25 mM MgCI2, 60 mM KCI in 20% sucrose 

and 150 ul/ml lysozyme) and then transfered into an eppendorf tube before it

was pelleted again for 10  min at maximum speed in a microcentrifuge at 4°C.

After removing the supernatant, 80 ul of the above TKM buffer was added to the 

pellet and resuspended with the aid of a sterile toothpick. Five cycles of 

freezing and thawing was carried out to weaken the cell walls of these cells and 

then 300 ul TKM buffer (without sucrose or lysozyme), 60 ul of a neutral lysis 

solution Brij 58 (5% w/v in 10 mM Tris pH 8.0), 100 units of RNase-free DNase I 

(Worthington biochemicals), 100 ul deoxycholic acid reagent (1% in 10 mM Tris 

pH 8.0) and 25 ul MgS04 (0.1 M) was added to each sample. The samples 

were left to on ice for 15 min and then centrifuged in the microcentrifuge for 

10 min at maximum speed in the cold room. The supernatant (~610 ul) 

containing the ribosomes and polysomes were transfered into new, clean 

eppendorf tubes and the concentration of the polysomes and ribosomes was 

determined spectrophotometrically using a 1 :100  dilution of the samples at an 

absorbance of 260 nm and an extinction coefficient of 14.5. The lysate was
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brought to 1 ml with the TKM solution and then loaded onto a 38 ml 5-30 % 

sucrose gradient in TKM buffer (25 mM Tris-HCI pH 7.6, 15 mM MgCI2, 60 mM

KCI) and centrifuged at 26,000 rpm at 4°C for 6 hours in a Beckman SW28 rotor

with the acceleration - decceleration parameters set for the rotor to change its 

speed gradually at low speeds (3 minutes between the rates of 0 and 500 rpm).

The resulting gradients were pumped through an Isco Apparatus UA-5 

Absorbance/Fluorescence detector at a pump speed of 60, a chart speed of 70 

cm/hour at a sensitivity of 1 all at 260 nm. The separate fractions (30S, 50S,

and 70S and polyribosomes were collected and kept in a -2 0 °C  freezer with

two times the volume of 95% ethanol.

INCORPORATION STUDIES

The amount of 5-fluorouracil incorporated into the ribosomes was

measured in a separate study using tritiated-FUra (3 H-5FU). Basically, this 

experiment was sim ilar to the procedure for polyribosome preparation 

previously described. In this case, five flasks containing 50 ml of LB nutrient 

medium were inoculated with 500 ul of an overnight culture and the cells were

allowed to grow at 37°C  for 100 min. After that, the cells were labeled with 3 H-

FUra (6 uCi / 50 ug/ml). The flasks were placed back in the water bath to allow 

the cells to continue the growth process. The fifth flask contained no FUra 

(control) and was kept in the waterbath until the cells reached an A 600 value of 

0 .6  (mid-logarithmic growth phase) and then harvested. The other four flasks 

were harvested at different time intervals. Before harvesting, 100 ul of the FUra-
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treated culture was put in an eppendorf tube and kept in the refrigerator. Cells 

in Flask #1 were harvested after 60 min of incubation of the tritiated FUra. Cells 

in Flask #2 were harvested 90 min after incubation, cells in Flask #3 were 

harvested 30 min (120 min) later and cells in Flask #4 were harvested another 

30 min later (150 min). The rest of the polyribosome preparation was carried 

out according to Vila et. al, (1994) in the protocol described in the previous 

section.

Once the lysates were loaded unto a 38 ml 5-30% sucrose gradient in 

TKM buffer, they were centrifuged at 26,000 rpm at 4°C  for 6 hours in the

Beckman SW28 rotor with the acceleration - deceleration parameters set as in 

the previous experiment (rotor set to change its speed gradually 3 minutes 

between the rates of 0 and 500 rpm).

The gradients were pumped through the Isco Apparatus UA-5 

Absorbance/Fluorescence detector pump using a chart speed of 60 cm/hr, a 

pump speed of 70 and a sensitivity of 1 at an absorbance of 260 nm. Fractions 

of 2 0  drops were collected in eppendorf tubes for absorbancy and radioactivity 

assays. Aliquots containing 100 ul of each of these fractions were put on a filter

paper, dried in an incubator set at 50°C  for approximately 10 mins. Each filter

was placed in liquid scintillation vials and 4 ml of scintillation fluid (cocktail) was 

added. Each sample was counted for 4 min. The same was done to the 100 ul 

of the cell lysates removed before harvesting and before loading onto the 

gradient.

5-fluorouracil and tritiated-FUra were gifts from Dr. William Gmeiner of the
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University of Nebraska Medical Center in Omaha.
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The object of this study was to investigate the effects of 5-fluorouracil on 

the structure and function of the ribosome. FUra is a drug that is known to be 

effective in retarding the growth processes of certain tumor cells. The results of 

this study has contributed to the body of work characterizing the effects of FUra 

at the molecular level. The study has also shown that there are still many 

unanswered questions about FUra.

DOES FUra AFFECT THE GROWTH RATE GROWTH ?

The effects of 5-Fluorouracil on the growth of E. coli cells were observed

for growth in rich media at 37°C, which allow the translational apparatus of the

cell to function at maximal rate and efficiency. The data for the growing of cells 

in several concentrations of FUra are shown in Figure 1 2 . Experimental 

conditions were employed using FUra concentrations varying from 1ug/ml - 

50 ug/ml. Cells grown in 1ug/ml of FUra (5FU1) showed only a slightly 

decreased growth rate compared with control cells (5FU0). A ten-fold increase 

in the drug concentration (5FU10) showed a remarkable decrease in the growth 

rate indicating a decreased rate of division. Cells grown in 25 ug/ml of FUra 

(5FU25) and 50 ug/ml of FUra (5FU50) showed only slight growth 8  hours after 

inoculation. Very little growth in these cultures was apparent throughout the 

experiment. Thus, they did not divide enough times to show significant growth 

characteristics.

A similar experiment was performed to assess the effects of FUra on cells
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that were already growing. Here, cells were grown for 100 min before 200 

ug/ml FUra was added (5FU200A). These cells showed normal growth 

characteristics until the addition of FUra when they exhibited a markedly 

decreased growth rate (Figure 13). A control experiment done with 200 ug/ml 

FUra present at the time of inoculation (5FU200B) gave a pattern of growth 

similar to that seen previously in Figure 12 for the cells grown in 25 ug/ml and 

50 ug/ml.

Both experiments showed that cells grown in the presence of FUra had a 

decreased rate of growth. No differences were observed in cells grown in 

5FU25, 5FU50 or 5FU200(B) indicating that there is a threshold value at which 

the drug exerts its maximum potential on the growth of the cell.

DOES FUra A FFEC T THE FORMATION OF FU N C TIO N A L  

RIBOSOMES ?

To analyze the effects of FUra on the formation of functional ribosomes, 

isolated ribosomes from cells grown in LB medium containing 9 different FUra 

concentrations were prepared and analyzed. Cells were grown to an A 600 of

0 .6  at 37°C then ribosomes were prepared individually from cultures containing

1,10, 20, 30, 40, 42.5, 45, 47.5 and 50 ug/ml concentrations of FUra. The drug 

was added to the medium before inoculation. These ribosomes were treated in 

a high concentration (0.5 M) of NH4CI which removes cellular factors from the 

ribosomes. The ribosomal preparations were loaded on a sucrose gradient to 

separate ribosomal particles. Cells grown in FUra concentrations between 30 

and 50 ug/ml of FUra took about 4-5 hours longer to reach A600 of 0.6. The
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absorbancy profiles were generated for each sample and the ribosomal 

fractions for each sample was collected in separate pools. The data in 

Figure 14 shows that in 5FU0, the distribution pattern of fractions is 

characterized by a large peak corresponding to associated ribosomal particles 

(70S) and the two smaller peaks corresponding to the free, unassociated 

subunits (30S and 50S). The distribution patterns of FUra-treated cells varied 

from that produced by the control. The 70S peak is smaller with increasing 

FUra concentrations (5FU10 - 45) and the 30S and 50S subunit peaks are 

larger (Figure 14). Cells in 5FU47.5 and 5FU50 gave peculiar absorbance 

profiles with the 30S and SOS peaks becoming a slight shoulder on the 70S 

peak and then becoming merged into one peak as seen in the 5FU50 sample.

The results indicate that with increasing FUra concentrations, free 

ribosomal subunits increase in the ribosomal pool while associated ribosomal 

complexes decrease in number. Also, the definite broadening of peaks 

suggests that the conformation of the ribosome is altered and unfolded particles 

are nonspecifically associating together. Since the functional ribosomes form 

discrete 70S peaks, increasing concentrations of FUra lead fewer functional 

ribosomes.

DOES FUra AFFECT THE TRANSLATIONAL MACHINERY IN  VIVO ?

To analyze the effects of FUra on the translational machinery (the 70S 

complex and polyribosomes) in E. coli cells, ribosomal fractions from cultures 

containing four of the nine FUra concentrations: 20 ug/ml, 30 ug/ml, 47.5 ug/ml 

and 50 ug/ml were produced. Cells were grown in LB medium containing one
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of the four FUra concentrations. Once the cells reached an A600 of 0.6 at 37°C

they were immediately chilled in an ice bath with constant swirling to quickly 

cool the cells. The cells were harvested and treated in a buffer which had a 

higher magnesium concentration than in the previous experiment (25 mM vs 6 

mM for lysis and 10 mM vs 6 mM for the gradient). By analyzing whole cell 

lysates, this experiment also assayed ribosomes in the presence of cellular 

factors, a condition which differs markedly from NH4CI salt-washed ribosomes. 

The absorbance profiles generated for each of these samples are shown in 

Figure 15. With increasing drug concentration, there was a decrease in the 

fraction of associated ribosomal subunits forming the 70S complex. All FUra- 

treated samples had larger 30S and 50S peaks compared to the control 

sample, with the 70S fraction being significantly smaller than the control 70S 

peak. In addition, the profiles of samples treated with 20 ug/ml of FUra showed 

that there are polyribosomes present. The polyribosome peaks in this sample is 

similar to the control polyribosome peaks. However, the polyribosome peaks in 

5FU30 were lower than in the control or 5FU20. The samples with the highest 

drug concentrations (5FU47.5 and 5FU50) gave profiles showing little or no 

polyribosomes present, larger peaks of free 30S and 50S subunits, and smaller 

70S peaks. These profiles showed a definite effect of FUra on the translational 

machinery of E. coli in vivo.

DOES FUra LEAD TO DEGRADATION OF rRNA ?

The effects of FUra on RNA degradation was observed by running equal 

amounts of purified rRNA samples from previously isolated ribosomal fraction
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on a 3.75% polyacrylamide gel. The normal break down of 23S rRNA can be 

seen in 5FU0 in Figure 16. The incorporation of FUra into the 23S rRNA of the 

50S subunit showed that the breakdown products increased with increasing 

FUra concentrations. The 23S rRNA band is decreased as FUra concentrations 

increase while a well characterized breakdown product, the 13S rRNA, is 

increased. In 5FU47.5 and 5FU50, the 18S RNA band is further broken down to 

give two more distinct bands of break down products. The intensity of the 5S 

rRNA band varied slightly from sample to sample. This molecule can be used to 

normalize the amount of rRNA in each lane.

In the 16S rRNA, the effects of FUra are not as drammatic as seen in the 

23S rRNA. In this case, the same break down products are seen in all samples 

(data not shown). The only difference observed is in the 5FU50 sample which 

shows a slower migrating band than any of the others. This reflects the 

presence of 23S rRNA contaminating the 16S prep. Note that this sample was 

derived from a gradient such as that shown in Figure 14. Thus, it was not a pure 

30S fraction. As shown in Figure 14, the absorbance profile of this sample 

showed that all ribosomal particles migrated as one merged peak.

DOES FUra AFFECT RIBOSOME STRUCTURE ?

Composite gel electrophoresis permits the study of the ribosome 

structure by separation of molecules based on size and shape. Changes in 

electrophoretic mobility reflects conformational changes in the ribosome 

structure (Dahlberg and Grabowski, 1990). In this experiment, ribosomal 

lysates for 8  of the 9 previously prepared FUra-treated samples were loaded on
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a composite gel. Surprisingly, the samples showed no evidence of any 

conformational differences (evidenced by the same pattern of migration)

(Figure 17). The gel does show that there are differences in the ribosomal 

component in each of these samples. There is a polyribosome band present in 

the control sample but not in any of the FUra-treated samples. The 70S 

fractions from each sample had the same pattern of migration except that the 

70S band of the 5FU50 sample is a little darker than the other samples. The 

50S band of all FUra-treated samples are not as distinctly separated from the 

70S band as in the control sample. The gel shows two types of 30S fractions. 

One band shows the 30S fraction with the S 1 protein and another band 

without the S1 protein. The 30S fraction in the control sample shows a band 

corresponding to the 30S fraction with the S1 protein. It did not give a definite 

band of the S1 minus 30S fraction. In the other samples, this 30S band was 

somewhat diffuse with increasing FUra concentration. The FUra-treated cells 

all had a faster migrating 30S band which was the 30S fraction without the S1 

protein. This band increased in intensity as FUra concentrations increased.

DOES FUra AFFECT RIBOSOMAL PROTEINS ?

The purpose of this part of the thesis project was to analyze the proteins 

derived from the ribosomal particles from FUra-treated cells. This analysis was 

done on a 15% SDS-PAGE gel. Using the ribosomal fractions of all 9 FUra- 

treated samples, protein samples were prepared by boiling in equal amounts of 

a 2X solubilization buffer for 5-10 min to remove the rRNA. The protein analysis 

of the whole ribosomal preparation showed some protein bands that decreased
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in intensity as FUra concentrations increased (Figure 18). Essentially, all 

ribosomal proteins were present in each sample, but the top set of protein 

bands, have decreased intensity with increasing FUra. Two protein bands 

(-57.5 Kd and 56 Kd) are visible only in two samples (5FU0 and 5FU10). 

Similarly, a protein band below the 45 kd marker band is eliminated at 5FU20. 

This indicates that with increasing FUra, these proteins are affected.

The protein samples from the 30S fraction gave similar banding patterns 

(Figure 19). On this gel, the 5FU0, 5FU10, 5FU20 samples have 5 visible 

protein bands which are not visible in samples with higher FUra concentrations. 

One of these bands is the S1 protein (65 Kd). This protein band is not visible in 

samples with higher FUra concentrations. This was consistent with the results 

of the composite gel (Figure 17).

The same banding pattern was observed on a gel with 50S ribosomal 

proteins (Figure 20). In this case, there is a protein band absent from all 

samples except the samples with FUra concentrations of 47.5 and 50 ug/ml 

(indicated by the asterix). The other ribosomal protein bands were somewhat 

diffuse under these gel conditions.

IS FUra INCORPORATED INTO rRNA ?

The experiments have shown that FUra affects the growth rate of E  coli 

cells and increases the doubling time of FUra-treated cells when compared to 

control cell growth rate. They also showed that FUra affects the structure and 

function of the ribosome. In order to effectively show that FUra was causing 

these changes in the ribosome, it was necessary to prove that the drug was
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Figure 18. SDS-PAGE one-dimensional analysis of whole ribosomes. 
Samples were taken directly from ribosomal lysates containing all ribosomal 
proteins before centrifugation on the 5-30% sucrose gradient as described in 
Methods. Samples loaded were grown with FUra concentrations between 0 
ug/ml (5FU0) and 50 ug/ml (5FU50). (* = protein bands absent in higher FUra 
concentrations).
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Figure 19. 3DS-PAGE one -dimensional analysis of 30S proteins from isolated 
ribcsomai fractions. The 308 rbcsomai fraction was centrifuged for 18 hr at
40,000 rpm at 4 C in a Beckman Ti-70 rotor and the pellet was resusoended in 
TC70S buffer. 30 mg of this sample was preoared as aescrbed in Methods and 
separated by size on a 15% (w/v) polyacrylamide gel and V'sualized by staining 
in coomassie blue. Samoles were isolated from ceils grown in FUra 
concentrations ranging from 0 ug/ml (5FU0) and 50 ug/m! (5FU50) (* = protein 
bands absent in higher FUra concentrations).
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Figure 20. SDS-PAGE one-dimensional analysis of 50S proteins from isolated 
ribosomal fractions. 50S ribosomal fractions were centrifuged for 18 hr at
40,000 rpm at 4°C in a Beckman Ti-70 rotor and the pellet was resuspended in 
TC70S buffer. 30 mg of this sampie was prepared as cescnoed in Methoas and 
separated by size on a 15% (w/v) poiyacrylarniae gel ana was visualized in 
coomassie blue. Samples were isolated from ceils grown in FUra 
concentrations ranging from C ug/ml (5FU0) and 50 ug/ml (5FU5G) (* = protein 
bands present omy ;n higher FUra concentrations).
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becoming incorporated into rRNA.

Bacterial cells exposed to 50 ug/ml of 3H-FUra in a time dependent 

manner were analyzed by allowing the cells to grow for 100  min before a 

radiolabeled aliquot of the drug was added (6  uci / 50 ug/ml FUra culture 

medium). The counts produced by the ribosomal fractions indicated that the 

amount of the drug incorporated into the ribosome in each sample was 

essentially the same (Table 1).

The absorbancy profiles generated for these samples are similar to those 

in Figure 14 except that with increased exposure to the drug, the 70S peak got 

larger and so did the 30S and 50S peaks. This reflects the increase in cell 

number over time. The first sample shown in Figure 22 (5FU50A) produced 

almost no polyribosomes and the 70S peak was smaller than those in 5FU50C 

and 5FU50D (Figures 24 and 25). 5FU50B was somewhat similar to 5FU50A. 

In 5FU50C (Figure 24) and 5FU50D (Figure 25), the 70S peaks and the 

polyribosome peaks are comparable to those of the control (Figure 2 1 ), but 

each sample had high numbers of free 30S and 50S subunits.

The fractions generated from each sample was counted on the 

scintillation counter for 4 mins and also plotted against the absorbance profiles. 

The findings were interesting. After 60 min of FUra incubation (5FU50A), the 

radioactivity distribution patterns showed that most of the drug was found in the 

free subunits. Very little labeled incorporation was seen in the 70S peak.

Increasing the incubation time to 90 min, as in 5FU50B (Figure 23), the 

radioactivity profiles showed that the amount of labeled drug increased 

dramatically in the 70S fraction. Very little drug was observed in the
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polyribosome fraction. In sample 5FU50C (Figure 24), the amount of 

incorporated drug into the 50S fraction increased by 28 dpm (tube 19). The 

70S fraction also showed a marked increased in incorporation of the drug as 

characterized by the peak at tube 23. Similarly, the peaks at tubes 31 and 33 

showed a slight increase in the polyribosome fraction. In 5FU50D (Figure 25), 

the 50S fraction showed an increased incorporation of the drug by 14 dpm at 

tube 17. Drug incorporation into the 70S fraction increased by another 172 

dpm characterized at tube 21. Incorporation into the 30S peak seemed to be 

about the same (tube 13). The peak before the 30S peak also had an 

increased level of drug incorporation when compared to the others.

The results of the incorporation study indicates that FUra gets 

incorporated into the rRNA molecules of the ribosome. With time, the amount of 

FUra incorporated into the RNA is essentially the same. To quantify the 

relationship between FUra and inhibition of ribosome synthesis, the percentage

of radioactivity from 3H-FUra in the total extract that had been associated with 

ribosomes and ribosomal subunits was calculated i.e.,

sum of dpm in ribosomal fractions only X 100 

sum of dpm in total cell

This indicates that Fura gets incorporated into the rRNA, inhibits association of 

ribosomal subunits to form the 70S complex leading to the existence of more 

free subunits and fewer 70S ribosomes. Somehow, this problem is overcome 

after for a short period of incubation (after 90 min) so that more 70S ribosomes 

and polyribosomes are formed to continue translation in the cell.
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Figure 21. Distribution of absorbance following sucrose gradient analysis of E. 
coli extracts from control cells. Cells were grown in 50 ml LB culture containing 
no 5FU. Cell lysates were collected as described in Methods according to 
procedures by Vila e l al., (1994). The pellet was resuspended in 1 ml TKM 
buffer and loaded onto a 5-30 % (w/v) sucrose gradient under the same 
buffered conditions. Samples were centrifiuged for 6 hours at 26,000 rpm at
4°C  in a Beckman SW28 rotor. The polysome fractions were collected as 
described in Methods.
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Table 1. Effect of ^H-FUra distribution in ribosomal fraction of E.coli 

cells.

Sample| Incubation Time| Total Cell | Ribosomal fraction! Total Extract 

__________ fmin^__________ (dorrO__________(dprn^_____ incorporation

Control 0 0.02 0.02 0%

5FU50A 60 2.91 6.48 74 %

5FU50B 90 2.91 6.39 74 %

5FU50C 120 2.68 7.19 73 %

5FU50D 150 3.41 9.49 68 %

dpm = 10+3
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FUra is a chemotherapeutic agent that has been shown to have various 

mechanisms of action within the cell. Several studies have been done to 

investigate the details of FUra action, but there are still many unanswered 

questions. For example, studies have shown that FUra affects various RNA 

species. The focus of this study was to demonstrate the effects of FUra on 

cellular translation and most importantly, its effects on the structure and function 

of the ribosome. Most studies on the effects of FUra on the ribosome have 

approached the issue using short term exposure (one generation time) to the 

drug (Hahn and Mandel, 1971). This study has expanded on previous studies 

and has focused on the effects of various FUra concentrations which inhibit cell 

growth over a long period of time (more than one generation) so as to achieve 

and maintain a steady level of FUra substitution. This study showed that cells 

treated with high concentrations of FUra were significantly affected, translation 

was inhibited and the structure and function of the ribosomes was altered.

The initial experiment done to show the effects of FUra on the growth rate 

of E. coli cells basically supports previous investigations. High concentrations 

of FUra such as 50 ug/ml or 200 ug/ml have a detrimental effect on the ability of 

the cells to make functional ribosomes. The fact that there were no obvious 

differences observed in the growth rates of cells grown in FUra concentrations 

between 25 ug/ml and 200 ug/ml (Figures 12 and 13) leads to the conclusion 

that a threshold value exists at which the drug exerts its most powerful effect on 

the cell. Cells containing 1 ug/ml of FUra showed some significant growth
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differences from that of the wild-type sample. All the cells containing FUra 

showed hindered growth rates. Given the results of the ribosome analysis, the 

cause of altered growth can be interpreted as a diminished level of translation 

due to the reduced subunit association in these cells.

The sucrose gradient profiles generated from isolated ribosomes 

indicated that FUra caused an interesting structural defect in ribosomal 

assembly. The absorbance profile of cells containing 10 ug/ml FUra 

concentration did not show significant differences from that generated by the 

control sample. However, cells with FUra concentrations ranging from 20 - 40 

ug/ml gave profiles that showed an increasing amount of free subunits and 

fewer numbers of 70S complexes. The ribosomes from cells grown in 5FU40 to 

5FU50 (Figure 14) all showed a tremendous decrease in subunit association 

(i.e. more free 30S and 50S subunits). Somewhat similar results were obtained 

in previous experiments done by Hahn and Mandel (1971). However, in their 

experiment, they used 48 uM of FUra was utilized, and allowed the cells to 

reach an absorbance value (A540 nm) of 0.1. In the present experiment, the 

cells were allowed to grow until an absorbance value (A600 nm) of 0.6 was 

reached before they were harvested. The difference in the current results when 

compared to previous experiments is that at high FUra concentrations, the 

absorbance profiles indicate structurally altered ribosomes.

The extreme broadening of the peaks in the profiles generated by the 

sucrose gradients showed the changing conformation of the ribosome as a 

result of the drug. The ability of the subunits to associate properly is greatly 

decreased with increasing drug concentration. Growth data (Figure 12) showed
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that ribosomes from these cells were seriously hindered from performing 

normally. Given the sucrose gradient profiles, this can be interpreted as a 

decreased translational competence of the altered ribosomes. Despite the 

clear and signifiant alteration in ribosome conformation, cells were still capable 

of growing to A600 of 0.6 when given enough time. Although the growth rate 

experiment (Figure 12) seems to indicate no growth, there was some growth 

observed. Cells without FUra were harvested after just 2.5 hours. Typically, it 

took the other FUra treated cultures (5FU30 - 5FU50) between 4 and 5 hours to 

reach an absorbance value (A600 nm) of 0.6 before they were harvested. Thus, 

the overall profiles showed that with increasing FUra concentrations, 

translational rates of these ribosomes was greatly reduced leading to slower 

growth rates than those observed in the wild-type cells.

To compliment the experiment on isolated ribosomes, the translational 

apparatus from whole cell lysates was also examined. As shown in the 

polyribosome profiles in Figure 15, even at high concentrations of FUra, there 

are translating ribosomes and polyribosomes. This is somewhat in contrast to 

the previous results in Figure 14 which showed that at concentrations between 

40 and 50 ug/ml, naked ribosomes gave characteristically different profiles from 

the wild-type. Basically, the isolated ribosomes were not at all characteristic of 

functional ribosomes at such high concentrations. In the case of the cell lysate, 

the translating pool of FUra-treated cells was analysed and the profiles gave 

absorbance profiles with distinct 30S, 50S and 70S peaks (Figure 15).

Comparing the two procedures (ribosome preparation and polysome 

preparation), it is obvious that there are translating ribosomes in cells treated
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with high FUra concentrations as seen in Figure 15. This is not very obvious in 

the absorbance profiles of 5FU47.5 and 5FU50 in Figure 14 which shows a 

merged peak in these samples. As mentioned in the previous section, in the 

preparation of ribosomes, 0.5 M NH4CI in Buffer B was used to remove cellular 

factors so as to analyze the ribosomes in these FUra-treated cells. In the 

preparation of polyribosomes, ribosomes were assayed in the presence of all 

cellular factors. This serves to illustrate the important effects certain cellular 

factors exert on the structure and function of the ribosome. Hence, FUra must 

play an important role in inhibiting some cellular factor that indirectly or directly 

affects the structure and the function of the ribosome during translation.

The structural and functional effects of FUra on rRNA was also observed. 

FUra incorporation into the 45S rRNA of eukaryotic cells is known to cause 

inhibited maturation of precursor rRNA to make large ribosomal subunits 

(Kanamaru et. al., 1986). In prokaryotic cells, it has been shown that FUra 

incorporation into 23S rRNA inhibits processing to a much greater extent than in 

the 16S rRNA of the 30S subunit (Hahn and Mandel, 1971). Figure 16 shows a 

marked increase in the degradation of 23S rRNA with increasing FUra 

concentrations. This can be interpreted as either poor assembly or as shorter 

half-life. These samples were taken from FUra-treated cells in the preparation 

of ribosomes in TC70S buffer. This study supports previous data showing that 

the stability of 16S rRNA is not significantly affected by FUra incorporation. 

However, the darkened bands in Figure 16 indicate that the drug has a definite 

effect on the 23S rRNA of the large subunit. It is possible that the effects of the 

drug on the 50S subunit may cause it to become unable to associate with the
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30S ribosomal fraction to form the 70S complex. Unfortunately, this was not 

directly tested. For some reason, FUra affects the 50S ribosomal subunit more 

than the 30S subunit and the reason for this is still unclear.

Previous studies have shown conflicting data with this particular study of 

5-fluorouracil. Armstrong et. al. (1986), showed that cells treated with 10 uM or 

100 uM FUra plus thymidine showed no effect on the 18S and 28S rRNA in 

eukaryotic cells even though both concentrations gave 100% clonal growth 

inhibition. Parker and Cheng (1990) explained this by the fact that mammalian 

RNA is stable and so even if no new RNA was made during exposure to FUra, 

the residual RNA may have been able to continue the cells’ protein synthetic 

needs. Similar results were observed in a study done by 

Dolnick and Pink (1983).

In this present study, the results of the incorporation studies gave several 

insights on the previous experiments, but it also posed many new questions. 

Two previous experiments that become more clear as a result of the 

incorporation study are the growth rate experiments in Figure 12 and 13 and the 

sucrose gradients of polyribosomes in Figure 15. In the growth rate experiment, 

even though 200 ug/ml FUra was used in that experiment (5FU200B), similar 

results were produced when 50 ug/ml of FUra is used to assess growth rate in 

cells (Figure 12) ie., no growth was observed. The incorporation study showed

that when 3H-FUra was added to healthy growing cells after 100 min of growth, 

newly synthesized ribosomes containing FUra did not immediately enter the 

70S or polyribosomes. The data in Figure 22 showed that the already formed 

70S complexes had very little incorporation after 1 hour of drug incubation.
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5FU50A showed that once the drug was added, it became more incorporated 

into the newly synthesized RNA (mostly the free subunits). These newly 

synthesized RNAs were continuously recycled and as a result were kept out of 

the translating pool of functional ribosomal RNA. Polyribosomes and 70S 

ribosomes in this sample, also had very little drug incorporated.

However, with increased incubation time, more of the drug was found in 

the 70S fraction. Specifically, after 2.5 hrs of incubation, the bulk of the labeled 

drug was found in the 70S fraction even though the absorbance peak was of a 

similar height as that of the control sample. The polyribosome peaks also 

showed increased incorporation of the drug compared to the earlier samples 

(5FU50B and 5FU50C). Likewise, the absorbance profiles in 5FU50C and 

5FU50D were rich in free subunits. This seems to be a paradox. In Figure 15, 

increased exposure to the drug shows that the growth rate of cells is continously 

hindered and the number of 70S ribosomes and polyribosomes was 

decreased. However, in Figures 22 through 25, the ribosomes seemed to be 

recovering from the drug effects and forming particles that translate normally. A 

probable explanation for the latter results is that after the addition of the drug, 

normal ribosomes in these cells continued to help the cells survive, but growth 

is at a much slower pace in an overall sense. With time, the number of normally 

replicating cells increase as well as newly synthesized and defective ribosomes 

containing the drug which also increase at a much slower pace. Thus, with 

continued exposure, the drug has to become incorporated in the normal 

translating pool of ribosomes which explains the increased incorporation of the 

drug in the 70S fraction and polysomes. In addition, as explained earlier, the



77

continued exposure of the cells to FUra indicates that some cellular factor may 

be transiently affected by the drug which is overcome so that the cells are able 

to allow rRNA maturaton (Parker and Cheng, 1990). All the evidence from this 

study suggests that this recovery over time is not a ribosomal effect. Perhaps, 

the S1 protein in the FUra-treated cells is transiently affected so that with 

continued exposure to the drug, the cell alters the production of S1, thereby 

compensating for the damaged subunits. In addition, the overall incorporation 

of the drug into the RNA in each cell sample was about the same even though 

in 5FU50D, there seemed to be a higher incorporation of the drug in this sample 

(Table 1). Finally, the differences observed in these two experiments, the 

polyribosomes prepared in Figure 15 and those prepared in the incorporation 

study, can also be explained by the fact that in the former preparation, FUra was 

added to the media before inoculation while in the latter experiment, addition of 

the drug took place 100 min after inoculation.

The effect of FUra on the ribosome structure was observed in the 

analysis of FUra-treated, naked ribosomes. The absorbance profiles of 

5FU47.5 and 5FU50 indicated that the ribosomes in these samples were 

conformationally different from those found in other samples with no FUra or low 

concentrations of the drug (Figure 14). The composite gel experiment was 

done to study the conformational changes in the ribosomal structure of FUra- 

treated cells. It gave no such results. While this was somewhat surprising, it is 

possible that the conformational changes observed on the gradient profiles 

were not significant enough to be detected by the composite gel. However, the 

composite gel experiment did give other very important information about these
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FUra-treated ribosomal particles. As seen in Figure 17, the separation pattern 

of ribosomes from the FUra-treated cells were different from the control sample. 

The absence of polysomes in any of the FUra samples correlates very well with 

the polyribosome profiles shown in Figure 15. As mentioned earlier, the FUra- 

treated samples had a different 30S band, i.e the 30S band without the S1 

protein. The S1 protein is an important protein for initiation during translation. 

This means that FUra inhibits the binding of this protein which is necessary to 

allow the 30S subunit to become bound to the 50S subunit to form the 70S 

complex during translation.

The observations seen on the protein gels (Figures 18-20) showed few 

differences in protein composition, however the protein bands had different 

intensities suggesting that the asssembly of certain ribosomal proteins were 

indeed affected by FUra. In Figure 18, cellular proteins associated with 

unfolded particles are present but, with increasing drug concentration, these 

protein bands decrease in intensity until some of them are no longer visible in 

the 5FU50 sample. This indicates that with increased drug concentration, the 

production of these proteins is hindered. Also, the absence of the S1 protein in 

these samples may also indicate the that the 30S subunit had difficulty during 

its association with the 50S subunit. Without the S1 protein initiation cannot 

occur.

The protein analysis of the 50S fraction also gave similar results to the 

previous experiment (Figure 20). In this experiment, some of the protein 

associated with ribosomes are not visible on the gel. A band corresponding to 

a 67 kd protein is present in all samples, but in this case, the intensity of this
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protein band is increased with increasing FUra concentrations. On the other 

hand, two protein bands (62 kd and 57.5 kd) were absent in all samples except 

in 5FU47.5 and 5FU50. These protein bands are probably not normal 

ribosomal proteins. An explanation for the increased production of these 

particles in these FUra-treated cells is unclear. Probably, the drug targets the 

cell in such a way as to cause an increased production of these ribosomal 

particles during translation. Basically, all the other ribosomal proteins were 

present in the ribosome.

This project has shown that there are significant affects of FUra on the 

ribosome and on translation using E. coli cells as a model. It has been shown 

that the ribosome is severely affected by high concentratrions of FUra. As a 

result, translation in these cells is hindered. The results of the absorbance 

profiles showed the structural effects of the drug on the ribosome even though 

such structural effects were not observed using the composite gel technique. 

Several other experiments however, did show complimentary results which 

either supported or expanded on previous studies. Most importantly, the results 

of this study gave several conclusions. Firstly, at high concentrations of FUra, 

the translational apparatus of the cell is severely hindered. Secondly, certain 

important proteins such as the S1 protein which is involved in the translational 

process is affected by the drug. Thirdly, some cellular proteins associated with 

the ribosome were affected by FUra.

The incorporation study also gave a better indication of what actually 

occurs in a real setting where the drug is administered to already growing tumor 

cells. An aspect of the drug that was not addresed in this study is the
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cytotoxicity of FUra. However, the fact that FUra becomes incorporated into 

normal translating ribosomes with continued exposure leads one to understand 

how the drug must be monitored when administered to patients. A drawback of 

the drug is keeping it localized so as not to affect other normal functioning cells 

in close proximity to the tumor cells that may or will be affected by the drug. 

The incorporation assay did show that FUra was effectively incorporated in 

these cells and it helped to understand what was actually happening in these 

cells.

More specific studies will have to be done to better target the action of 

FUra in the translational process of cells and to continue the pursuit of more 

knowledge and answers about 5-fluorouracil. This research project has 

brought about some critical answers to the study of FUra. It will be interesting to 

observe other research findings in this area.
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