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The genus Amorphophallus contains many species that are sought after by collectors. A 

large proportion of these species do not reproduce quickly enough to satisfy the demand. 

Consequently, the establishment of micropropagation methods to increase the supply is 

desirable. Though several protocols for tissue culture do exist, these focus on species of 

agricultural importance that naturally reproduce vegetatively. This research demonstrated 

the successful in vitro reproduction o f Amorphophallus hewittii Alderw., a species that is 

not known to reproduce vegetatively. The protocol avoided destroying the parent plant 

through use of petiole material. It concluded with direct transfer of shoots to soil, 

eliminating the in vitro rooting stage and simplifying the acclimation of plants from 

culture. Molecular markers based upon Inter Simple Sequence Repeat (ISSR) were 

developed to determine genetic stability during the tissue culture process. These 

markers are useful in a wide variety of investigations. Sufficient loci were found to use 

this leclmique in this Species. This study reports the first successful in vitro protocol for 

this species and the first ISSR markers for a non-agricultural Amorphophallus species.
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Chapter 1: 

In vitro culture o f  Amorphophallus and measurement o f its effects on 

plant genetics

Introduction

In vitro culture is a method capable of rapidly creating many cloned offspring 

plants from a single plant. This form of artificial multiplication is ideal for plants that 

mature slowly or do not reproduce large numbers o f offspring. Several members of the 

genus Amorphophallus demonstrate these traits. One such species is Amorphophallus 

hewitii Alderw.; this plant flowers infrequently and is not known to reproduce 

vegetatively.

The first objective of this investigation is to develop an efficient protocol to 

multiply A. hewittii by applying principles from existing Amorphophallus spp.

Many studies have shows that a number o f plants arising from in vitro culture are 

not genetically identical to the source tissue. Molecular markers have proven useful as 

only a tool to measure genetic stability through culture, and can be applied to a wide 

range o f biological studies.

The second objective of this investigation is to develop a set of molecular markers 

to visualize and quantify the mutations arising during in vitro culture.

The Genus Amorphophallus 

Natural History and Growth Habit

The genus Amorphophallus consists of at least 170 species of aroids (members of 

the family Araceae) occurring primarily in secondary growth or disturbed paleotropical
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forests across Africa, Asia and Australia (Hetterscheid and Ittenbach 1996). The species 

o f this genus are perennial, sending up a single leaf during the growing season and resting 

via underground corms or rhizomes during less favorable conditions. Tropical members 

in Amorphophallus may retain a leaf longer than a year. This single leaf is superficially 

similar to, and occasionally as massive as, a small tree; with the “trunk” composed of an 

herbaceous petiole and the “branches and leaves” formed by branching rachises and 

leaflets (Figure 1.1).

Figure 1.1. A young Amorphophallus 

hewittii plant. Note that all vegetative 

structures visible form a single leaf with 

the vertical petiole and spreading 

leaflets. The entire leaf will senesce 

before or during production of a new 

leaf.

When the plant reaches maturity, a process that in some species may take over a 

decade, it produces an inflorescence subtended by a leafy spathe that appears similar to 

those of peace lilies (Spathiphyllum spp.) or calla lilies (Zantedeschia spp.), two aroids 

common in the horticultural trade. Separate male and female flowers are arranged along

Leaflets

Petiole



the central spadix (Figure 1.2). These inflorescences range from four centimeters in A. 

pusilHits to a gargantuan three meters as in the case o f  A. titanum. The inflorescences are 

protogynous, thus preventing self-fertilization; several cases o f pollination by the same 

plant and between clones have been mostly unsuccessful. Plants may only bloom every 

two to three years and the stigmas are only briefly receptive (a few hours to a day) to 

pollination by flies and carrion beetles attracted to the flower by its odor (Hetterscheid 

and Ittenbach 1996). Most floral odors in the family are likened to rotting meat and 

explain why Amorphophallus spp. are often referred to as “corpse flowers.” Successful 

pollination is followed by maturation of the seed in a brightly-colored fleshy fruit; birds 

are considered to be the main dispersal agent of seeds (Hetterscheid and Ittenbach 1996).

Figure 1.2. Amorphophallus linearis inflorescence. The 

male and female flowers are situated around the spadix, 

which is subtended by a leafy spathe. These 

inflorescences are very short-lived if not pollinated.
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Research on the genus Amorphophallus has primarily focused on systematics, 

floral physiology, and agricultural uses of its species. Much of the information regarding 

culturing and natural history has been anecdotal, collected by amateur naturalists and 

horticulturists interested in the genus. These observations were presented with a brief 

description and plates of plants commonly found in culture by Hetterscheid and 

Ittenbach in the International Aroid Society’s journal Aroideana (1996).

Demand for Amorphophallus species 

Commercial Uses

Two members of the genus, A. konjac and A. paeoniifolius, have received more 

attention than the rest due to economic importance. Both are valued as food sources 

(Misra and Swamy 1999). Powdered corms of A. konjac are medicinally useful in 

treating constipation (Loening-Baucke et al. 2004), improving weight loss, and lowering 

cholesterol (Walsh et al. 1984). A. konjac is also used in the commercial production of 

mannose (Cescutti et al. 2002). A. albus corms are harvested in China for glucomannan, 

but on a limited basis due to its three year cultivation period before harvest (Hu et al. 

2006). Agricultural crops of Amorphophallus are typically grown in monoculture or are 

interspersed with other crops such as coconut. Plants are placed in pits fertilized with 

manure and, upon maturing, the large corms are dug up with spades and crowbars (Misra 

et al 2 0 0 2 ).

Horticultural Interests

Perhaps the best recognized species is A. titanum because of its massive size and 

the interest generated at universities and botanical gardens worldwide when it blooms.
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While the flowering A. titanum is not as rare as it once was, due to the wide distribution 

o f seeds and the use of tissue culture, large crowds still gather to observe this botanical 

curiosity. The remaining species are typically only of interest to researchers and 

individuals seeking to grow them. Though not as severe as tulipmania in 17th century 

Holland, collectors are willing to pay several hundred dollars for a larger or more rare 

plant. These prices can often be attributed to the novelty of a newly described species or 

difficulty in sustaining enough plants to meet demand due to long reproduction time or 

lack of vegetative reproduction.

Reproductive Methods

Within the genus, wide variability exists in reproductive behavior. While some 

species become sexually mature in the relatively short time of 2-4 years, most take much 

longer. Vegetative reproduction often takes place in the form of offsets from the parent 

corm, rhizomes or bulbils produced on the leaf (Figure 1.3). Offsets typically take one to 

several seasons to mature and may be directly attached to the parent corm (Figure 1.3) or 

arise from short rhizomes (Hetterscheid and Ittenbach 1996). Plants may produce 17 or 

more offsets in one growing season (D. Bertelsen, personal observation) in the case of A. 

paeoniifolius. Bulbils (Figure 1.3) are masses of undifferentiated tissue found on the leaf, 

either along the rachises (epiphyllar) or at the point the petiole meets the leaf blade 

(intercalary). These are usually distributed within a short distance of the mother plant 

when the leaf senesces; clumps of plants are found in species where this form of 

reproduction occurs (Hetterscheid and Ittenbach 1996).



6

Figure 1.3. Vegetative reproduction in Amorphophallus. Left: Three cormels (a) 

forming on the underground corm of A. haematospadix. Right: A. bulhifer with bulbil 

forming at the junction of the rachises.

Within this genus, species such as A. konjac (offsets), A. paeoniifolius (offsets) 

and A. bulbifer (bulbils) are known to reproduce vegetatively, while many others such as 

A. titanum  do so only when the plant is disturbed or damaged (Hetterscheid and 

Ittenbach, 1996). This adaptation allows the plant to resume growth in the event of loss 

o f the main growth point. Naturally, species reproducing freely are typically more 

available from horticultural sources and less expensive than those species where 

vegetative reproduction is absent or slow.

Means of Traditional Commercial Propagation

As previously mentioned, many species of Amorphophallus will at least 

occasionally reproduce vegetatively. Relying solely on vegetative reproduction may 

result in few or no plants, depending on the species. Those that reproduce large numbers 

o f offspring are widely established in culture (A. bulbifer, A. konjac, and A.



7

paeoniifolius)', while many species of horticultural interest do reproduce vegetatively, 

they often do so at a rate insufficient to meet demand (Hetterscheid and Ittenbach, 1996).

Large-scale multiplication has been reported in the case of A. paeoniifolius (Misra 

et al. 2002). The traditional method employed involves sectioning larger corms into 

multiple smaller pieces that are planted in a similar fashion to seed potatoes. Dormant 

meristems located on the surface of the corm are activated and one or more shoots grow 

from the piece. This method has several disadvantages when considering plants less 

common in cultivation. Up to twenty percent of the crop from the previous year provides 

starting material for the new crop. In the case of plants where only a few corms are 

available, removing corm material reduces the biomass available to produce the next leaf; 

this leads to either a smaller or non-existent original plant. The loss of a large mother 

plant can be a costly sacrifice if the entire corm is used. Harvesting only a portion of the 

original corm provides a method to preserve the original plant but may reduce the value 

of the plant and extend the time before sufficient corm mass exists for flowering.

Wounds resulting from partial harvest of the corm may allow pathogen entry into a tissue 

that is susceptible to necrosis and secondary pathogens (Hetterscheid and Ittenbach, 

1996). Although many species may be successfully multiplied in vivo, pathogen 

contamination of stocks has been cited as a factor reducing plant quality (Gandawijaja et 

al., 1983) when Amorphophallus is considered an agricultural crop. In vitro propagation 

of Amorphophallus spp. is also desirable because of slow maturation rates, the lack of 

vegetative reproduction in many species (Hetterscheid and Ittenbach, 1996) and the 

absence of viable pollen due to rare flowering events, in addition to the previously



mentioned occurrence of pathogens.

Current Research Involving Amorphophallus

Hetterscheid and Ittenbach are currently working on major revisions of both the 

Asian and African groups of Amorphophallus. Research groups in India, China and 

Japan are studying agricultural aspects including use of molecular markers to study 

cultivar relatedness in A. konjac and A. paeoniifolius. The in vitro protocol and/or 

molecular tools described in later chapters could be applied to either study.

Tissue Culture of Amorphophallus 

Published Protocols

Development of in vitro culture for Amorphophallus species has been relatively 

limited. Commercial applications are often cited as a motivation for in vitro culture for 

both A. konjac and A. paeoniifolius (Cescutti et al., 2002). To date, only a few published 

in vitro protocols exist for non-agricultural species, including A. titanum (Kohlenbach 

and Becht, 1988. Though suggested as a useful method to preserve this endangered plant 

species, the authors did not report if the protocol was suitable for a reintroduction 

program or merely to meet commercial demand. Protocols for A. albus, A. kachinensis 

and A. yunnanensis (Zhuang and Zhuo, 1987) and a second protocol for A. albus have 

been reported (Hu et al. 2006). Inorganic components of media followed that of 

Murishige and Skoog (1962) for all the protocols except for A. titanum and A. konjac 

(Kohlenbach and Becht 1988). These two protocols employed several modified Nitsch 

media as previously described (Pierik 1976; Geier 1986).
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Explant Tissue Sources

All of these species for which tissue culture protocols have been established, with 

the exception of A. titanum, are known to reproduce vegetatively, whether by offsets, 

rhizomes or bulbils (Hetterscheid and Ittenbach; 1996) and may lend themselves to tissue 

culture by utilizing explants that would normally be amenable to organogenesis. Two 

protocols for A. paeoniifolius report utilizing explants composed of a lateral bud and small 

amount of corm tissue (Irawati et al. 1986, Nyman et al. 1987). The activation of these 

dormant meristems would most closely mirror natural plant responses to loss of the 

primary growth point. Interior corm tissue was used in one protocol for A. konjac 

(Asokan et al. 1984) with a brief callus formation and shoot differentiation occurring in 

eight to nine weeks after initial culture. A viable alternative to tissue culture using corm 

material, preserving both the corm size of the parent plant and reducing the chances for 

soil-borne pathogens is the leaf itself. Protocols for A  konjac (Zhuang and Zhou 1987; 

Kohlenbach and Becht 1988; Hu et al. 2005), A. titanum (Kohlenbach and Becht, 1988),

A. albus (Zhuang and Zhou 1987; Hu et al. 2006), A. kachinensis and A. yunnunensis 

(Zhuang and Zhou 1987) call for propagation via petiole segments through formation of 

dedifferentiated callus followed by shoot organogenesis. One trial using the leaf lamina as 

explant material (Kohlenbach and Becht 1988) provided no viable cultures on the media in 

the study.
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Parameters of Tissue Culture

Premise and Stages o f  Tissue Culture

In vitro propagation of plants or portions of their structure, has developed 

theoretically and practically over the last century. The guiding principle in tissue culture 

is multiplication of a selected plant under controlled conditions. These include high 

nutrient levels and axenic conditions to eliminate bacteria, fungi or other pathogens that 

might compete or damage the plant. Under these conditions plants can rapidly multiply. 

The total number of plants may double within a few weeks or months.

Plants are organisms that produce all new structures (roots, shoots, and modified 

types of both) via meristems. While plant cells may grow and divide apart from these 

meristems, the new cells are functionally and morphologically defined by chemical 

signals from surrounding cells and tissues (Scheres 2001). Cells in a meristematic region 

are characterized as totipotent, i.e., able to differentiate into any type of plant cell; not 

unlike stem cells found in animals. Meristems were used in early tissue culture to grow 

roots isolated from any photo synthetic tissue (White 1934) and commonly serve as a 

source of new plants in the traditional method of reproducing a plant by taking cuttings.

Micropropagation, the process of multiplying plants in vitro with smaller sections 

of tissue than in vivo propagation, in many plant species is as simple as taking 

microcuttings of a sterilized plant and repeatedly dividing them. The new plant grows 

from meristems developed in the same manner meristems would form in a plant found in 

nature. This method is relatively simple and can produce many thousands of plants per 

year as long as the species of interest naturally produces many shoot meristems.
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When considering other species lacking this rapid production of meristems, a 

different course of development may be employed through tissue culture. In the absence 

of meristems suitable for producing new plants, cells may be chemically dedifferentiated; 

under the right conditions, subsequently divided cells lack functional or structural 

specialization and will continue dividing into undifferentiated cells until they are 

chemically triggered to differentiate into one of the many types of specialized plant cells. 

Micropropagation via organogenesis relies on this developmental pathway as a source of 

meristems. All except one Amorphophallus spp. protocol employ this shoot 

organogenesis from undifferentiated material.

The process of tissue culture has traditionally been divided into three stages 

(Murishige 1974). Stage I is the disinfection and initial introduction of the explants to in 

vitro culture. Stage II, the multiplication stage, includes any steps necessary to induce 

the plant to reproduce vegetatively. This may include activation of axillary meristems, 

somatic embryogenesis, callus induction or adventitious shoot development. Stage III 

prepares the plant for transplant from culture and may include rooting and/or hardening. 

Since each of these stages involves promoting a different physiological response, it is 

common that each stage involves a particular set of conditions including nutrition and 

environmental parameters differing from the other stages.

Protocol Development

Development of a suitable protocol for in vitro culture of a plant may be time- 

consuming and costly (Kyte and Kleyn 1996). Optimizing a protocol fully would entail 

studies regarding the source of plant material, individual optimization of dozens of
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inorganic and organic compounds, media preparation, selection of a strategy by which to 

multiply the plants, and adjustment of a range of environmental conditions including 

temperature, lighting levels and photoperiod. Fortunately, many of these parameters have 

a limited impact on in vitro production and do not need extensive study unless difficulties 

arise.

Explant response is largely determined by concentrations of growth regulators 

when other factors are favorable for the plant; of secondary importance are tissue source, 

energy source, photoperiod and vitamins (Torres 1989). Initial studies on protocol 

development tend to focus on growth regulator identity and concentration. Often, two or 

three growth regulators are combined in a range of concentrations to determine optimal 

formulation as judged by desired response (Torres 1989). This process of growth 

regulator optimization may need to be repeated for each stage in the culture process.

In vitro culture occurs in some form of closed system in order to prevent entry of 

contaminants. Even if  filtered air and circulating liquid-phase media are utilized, plants 

must still rely on the media for all mineral nutrients. While it is possible to optimize 

individual levels of each inorganic compound, many protocols call for one of several 

dozen common formulations derived for a particular class of plants (McCown and Lloyd 

1981), initiating a physiological response (Fujita et al. 1981) or as a generalized medium 

for many differing plants (Murishige and Skoog 1962). As stated before, most 

Amorphophallus spp. protocols use some modification of Murashige and Skoog (MS) 

media, which was developed to culture tobacco (Nicotiana tabacum) callus (Murishige 

and Skoog 1962) and has since been used in hundreds of other genera.
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Tissue Culture Media Contents

The typical constituents in tissue culture media can be categorized as gelling 

agents, macronutrients, micronutrients, carbohydrates, vitamins, and growth regulators. 

Media preparation involves several factors that may affect culture results including pH 

adjustment, sterilization method, and duration of sterilization (Torres 1989).

Gelling Agents

Gelling agents provide a mechanical support and may provide osmotic control for 

the plant. Common gelling agents are agarose, gellan gum, and other less frequently used 

compounds such as cornstarch and gelatin. Agarose, a polysaccharide derived from 

several species of red algae, has been the gelling agent of choice for many decades but is 

relatively opaque, may contain impurities that may interfere with cultures, and is 

expensive to use on a commercial basis (Torres 1989). Many substitute gelling agents 

offer improved clarity, purity or decreased cost. The identity of gelling agent has been 

linked with culture response (Van Ark et al. 1991).

Inorganic Nutrients

Macronutrients and micronutrients are defined as inorganic ions acquired from 

soil and functional in planta. Macronutrients include ions needed in relatively large 

quantities for normal plant growth and development and include calcium, magnesium, 

nitrogen, phosphorus, potassium and sulfur. Micronutrients are ions needed in smaller 

proportion than macronutrients; among them are boron, copper, iron, manganese, 

molybdenum, and zinc. These are usually added in chelated form, reducing the rate of
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precipitation (Torres 1989).

Carbon and Energy Source

Cell proliferation may be accelerated in culture as compared to similar tissues 

found in vivo and are subjected to conditions under which auto trophy, generation of all 

required photoassimilate (sugars or starches) from light and carbon dioxide, will not 

provide the plant with enough energy and carbon molecules for optimum growth. Even 

in the rare occurrence where a culture is capable of autotrophy, supplementation of 

carbon dioxide may be required for long-term maintenance (Rogers et al. 1987). In order 

to compensate for lower light and a lower available carbon dioxide rates, addition of a 

carbohydrate, most commonly sucrose, allows the plant to operate as a mixotrophic 

(partially dependent on photosynthesis) or heterotrophic organism. Under the latter state, 

plants or the organs under culture do not need to produce any chlorophyll and may be 

cultured in complete darkness for extended periods of time. Both carbohydrate 

concentration and identity are important when developing protocols (Khuri and Moorby 

1994).

Vitamins

Vitamins, organic compounds that act as cofactors and regulators in plants, are 

required for normal growth and development (Ohira et al. 1976). They are commonly 

added to tissue culture media, as they may be a growth-limiting factor in cell growth 

(Torres 1989). Vitamins commonly added include nicotinic acid, thiamine, pyridoxine, 

and ascorbic acid. Vitamins are typically produced endogenously by plants and may not 

be required except in the case of low-density cell cultures (Ohira et al. 1976). Most of
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the common media formulations call for them (Murishige and Skoog 1962; Gamborg et 

al. 1968; Anderson 1975).

Plant Growth Regulators

The group o f media constituents requiring the most fine-tuning is the plant growth 

regulators (PGRs). Though new categories of growth regulators including methyl 

jasmonate, jasmonic acid and brassinosteriods are being characterized (Ravnikar et al 

1993; Clouse and Sasse 1998), four major groups are recognized as significant in tissue 

culture of a wide range of species: auxins, cytokinins, gibberellins, and abscisic acid 

(Table 1.1). These categories are largely based upon their biological activity; cellular 

response is determined by cell type and may be on opposite ends o f a response spectrum 

for different cells in the same plant. Relative activity within the groups varies by 

chemical identity and responses are dependent not only upon concentration of the 

individual PGR but also upon the ratios in which they are present and the species or even 

cultivar of interest.

Auxins generally stimulate cell growth, callus formation and root initiation. 

Indole-3-acetic acid (IAA) is the only naturally occurring auxin, but several others 

including 2,4-dichlorophenoxyacetic acid (2,4-D), 1-naphtaleneacetic acid (NAA), and 

lH-indole-3-butryic acid (IBA) find use in tissue culture.

Cytokinins are a class of PGRs that stimulate cell division and shoot initiation. 

Naturally occurring compounds among this group are N-(2-furanylmethyl)-lH-purine-6- 

amine (kinetin) and 6-(4-hydroxy-3-methyl-trans-2-butenylamino)purine (zeatin). In 

addition to those naturally occurring, synthetic cytokinins such as 6 -benzylamino purine
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(BAP) or 6-y-Y-dimethylaminopurine (2iP) have been used with success in many tissue 

culture protocols.

The last two groups of PGRs are less commonly used, but may be required for 

certain protocols. Gibberellins (commonly GA3 ) and abscisic acid (ABA) enhance stem 

elongation in dwarfed plants and enhance shoot proliferation, respectively.

Table 1.1. Overview of plant growth regulators. Major classes, their common 

physiological action on plants and several examples used in tissue culture are listed

Plant Growth Regulators 

Class Predominant action (s) Examples

Auxins

Cytokinins

Gibberellins

Abscisic acid

Stimulate callus, cell elongation, root IAA, 2,4-D, IBA

initiation

Cell division, shoot initiation, promote Kinetin, 2iP, BAP, 

axillary meristems zeatin

Seed germination, shoot elongation, GA 3

callus growth

Promote or supress callus growth, Abscisic acid

increase shoot multiplication

Undefined Additives

Occasional additions to growth media include undefined organic additives such as 

coconut milk (liquid endosperm) and other plant and animal extracts such as casein
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hydrolysate. These may provide traces of PGRs or other compounds such as amino 

acids. Activated charcoal may be included in the media to absorb toxic phenolic 

exudates or promote root development by blocking light. Most protocols do not employ 

these unless necessary (Torres 1989). Casein hydro lysate was reported as a component 

for A. titanum media (Kohlenbach and Becht 1986) but its necessity is dubious.

Source of explants for in vitro experimentation has involved sterilized seeds, 

embryos, leaf lamina, stem sections, roots, storage organs, pollen grains and many other 

sources, the source being largely determined by availability, ease of surface sterilization, 

and purpose of the culture. Culture success can be dependent upon tissue source and age 

of tissue. As mentioned before, in vitro protocols for Amorphophallus spp. have focused 

on petiole sections and, to a lesser degree, corm material; these tissues being both 

predominant in a non-flowering specimen and lending themselves to sterilization.

Measure of Success in Tissue Culture

Benefits o f  Tissue Culture

Tissue culture offers several benefits over both wild-collection and traditional 

vegetative propagation. It is possible to introduce a wild plant into tissue culture by only 

removing a sample o f tissue without disturbing the root system or injuring the corm. This 

may be the best option when considering a highly imperiled species. In cases of 

increased availability, a sample of wild plants may be moved to the site of culturing and 

used as stock plants. Seeds also provide an excellent source of tissue and include the 

added benefit o f genetic variation. Methods such as meristem culture and thermotherapy
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(increase of temperature to destroy pathogens) provide an avenue for eliminating 

pathogens such as fungi, bacteria and virii from wild-collected plants and have been used 

on other members of Araceae (Hartman 1972; Li et al. 2002) to provide clean stock 

plants.

Drawbacks o f  Tissue Culture

Tissue culture provides a method for rapid production of large numbers of 

pathogen-free plants; however, it is important to note that several drawbacks do exist. 

Those commonly encountered are temporary aberrations caused by culture conditions 

(Bednarek et al. 2007), loss of genetic diversity, and genetic mutations arising from 

culture (Larkin and Scowcroft 1981).

The conditions under which plants are cultured may have adverse effects upon 

plant morphology. Hyperhydricity (presence of excess fluid in cells or tissues), excess 

branching, or physiological changes in any number of tissues may arise in plants in vitro. 

These physiological responses may either revert after a short time out of culture or do not 

pass the traits on to progeny (Torres 1989).

Genetic Consequences o f  Tissue Culture

Ideally, plants generated through tissue culture would be exact genetic clones of 

the parent plant as no sexual reproduction has taken place. While consequent genetic 

uniformity may be valuable in many horticultural plants where near-simultaneous 

blooming or another desirable trait is to be maintained, conservation-based projects place 

value on capturing as much of the genetic variation and identity as possible (Allen 1994). 

Reproductive incompatibility may become a problem when all cultured plants are
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reproductively incompatible (de Nettancourt 1997).

Somaclonal variation (SCV) was coined by Larkin and Scowcroft (1981) to 

describe mutations arising in vitro. This includes single nucleotide polymorphism and 

chromosomal mutations such as deletions, inversions, duplication, and translocation. The 

loss of genetic fidelity has been observed in a number of species including sugarcane 

where up to 6.93% of meristem-cultured plants showed polymorphism over 98 RAPD 

(random amplification of polymorphic DNA) loci (Zucchi et al. 2002). One study on A  

konjac reports that root tip cells showed between 22 and 45 percent variation in 

chromosomal number from expected with all plants appearing phenotypically normal 

(Huang et al. 1995). Chromosomal variation was not reported for a control group not 

undergoing tissue culture; further molecular studies should be conducted before making a 

determination whether tissue cultured plants would be suitable for reintroduction as part 

of a conservation program.

Properly maintaining an ex situ population of plants is difficult because of 

unintentional selection and high costs associated with maintenance of a large number of 

individuals (Snyder et al. 1996). This difficulty coupled with the pervasive nature of 

tissue culture mutations (Phillips et al. 1994) bring into question the applicability of 

releasing plants produced through tissue culture as part of a conservation effort. Perhaps 

the best use of tissue culture conserving Amorphophallus would be to ease the demand 

for wild plants by producing specimens for sale. This approach was applied to the rare 

Alocasia guttata var. im perialist Burnett 1984).

Detection of Genetic Mutations
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History

Initially, plants undergoing tissue culture were screened for mutations via a 

physical observation of progeny. This is sufficient to ensure a plant looks normal and the 

traits of interest are present. The karyotyping of cells undergoing mitosis allows a 

superficial confirmation that no major chromosomal mutations have occurred. This 

method was utilized when characterizing genetic stability in A. konjac; this study also 

implied that observed phenotypic appearance was unreliable as a determinant of SCV 

(Huang et al. 1995).

Molecular Methods

With the advent of molecular techniques, it has become possible to observe a 

molecular make-up of the organism (genotype) as a phenotype. Many molecular markers 

are co-dominant; allowing the heterozygote to be scored. DNA fingerprinting converts 

DNA sequences into textual, numerical or graphical data and provides the best method by 

which to directly detect or estimate frequency of mutations. Rather than rely on a 

handful of characteristics validated during visual screening or the low resolving power of 

karyotyping, a set of fingerprints can be created where hundreds of characteristics can be 

quickly screened visually or electronically. Four methods of generating these data have 

been commonly used: RFLP (Restriction Fragment Length Polymorphism), AFLP 

(Amplification of Fragment Length Polymorphism), RAPD (Random Amplification of 

Polymorphic DNA), and ISSR (Inter Simple Sequence Repeat).

RFLP
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RFLP creates fragments of DNA by action of restriction enzymes on genomic 

DNA. These enzymes recognize a particular sequence of DNA (a restriction site) and cut 

the strand of DNA within this sequence. Genetic differences between two organisms 

may be located within the restriction site causing the enzyme to not cleave the DNA or a 

new restriction site to be recognized; alternatively, different lengths of DNA between two 

restriction sites will result in different lengths of fragments. These fragments are then 

separated by size through electrophoresis, blotted, and allowed to hybridize to a probe 

molecule (typically radioactively labeled). Any changes to restriction sites or the length 

of DNA sequences between two sites will appear as loss, addition or shifting of bands. 

RFLP is procedurally simple and robust but is dependent upon large quantities of DNA of 

relatively high quality (fragment length) to produce good results. It requires little to no 

previous knowledge of the genome of interest. With the limited amount of DNA 

available in this study, and the drawbacks of radiolabeled probes (short shelf-life, cost, 

and disposal) this method is feasible but has serious drawbacks.

AFLP

AFLP uses PCR (Polymerase Chain Reaction) to amplify fragments produced by 

restriction enzyme digestion by addition of adapter sequences to the end of restriction 

fragments before amplification (Vos et al. 1995). Amplification products are then 

separated by electrophoresis. It offers similar data to RFLP but does not require such 

large quantities of DNA due to the amplification step. Nonetheless the method is time- 

consuming and technically demanding. Large numbers of loci are generated per 

experiment, but full resolution requires the use of a larger PAGE (PolyAcrylamide Gel
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Electrophoresis) apparatus.

RAPD

RAPD provides genetic information by amplifying random areas o f the genome 

using primers (9 or 10 bases long) of arbitrary sequences to initiate PCR amplification 

(Williams et al. 1990; Welsh and McClelland 1990). Again, visualization of amplified 

fragments is accomplished via electrophoresis. It requires no prior knowledge of the 

genome of interest but suffers from reproducibility because o f non-specific binding 

(Jones et al. 1997).

ISSR

Inter simple sequence repeat (ISSR) is another PCR-based method that utilizes a 

primer of short repeat length, typically two to six bases per repeat and is anchored at one 

end by one or more nucleotides (Gupta et al. 1994; Zietkiewicz et al. 1994). These 

primers are designed to anneal to SSRs (Simple Sequence Repeats) found throughout the 

genome (Figure 1.4). Benefits of ISSR over other molecular marker systems include 

reproducibility (Jones et al. 1997), hypervariability, genome-wide distribution (McCouch 

et al. 2002), and ease of development, as they require no previous knowledge of genomic 

sequences for the organism o f interest. Most o f the bands produced by ISSR are 

dominant, i.e, there is no method to distinguish a homozygous and heterozygous 

individual. Standard PCR (polymerase chain reaction) is carried out with an annealing 

temperature at or slightly above the melting temperature of the primer. This prevents 

nonspecific annealing and improves reproducibility. Amplified regions are those that 

contain two of the repeats on opposite strands within amplification distance (typically
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two kilobases or less). The amplified PCR products are then separated by 

electrophoresis. Due to the technical simplicity, low cost and high yield o f loci, this 

method is the most suitable for this investigation.

Figure 1.4. Method by which DNA is amplified in ISSR. Primers with multiple repeats 

o f a short sequence, (TCG)6 in this case, are anchored by one or two nucleotides (C in 

this example). Polymerization occurs in a 5' to 3' direction. Loci where two annealing 

sites are inverted and within a short distance (typically 2kb or less) will be amplified 

geometrically, while those lacking a second inverted site will only amplify arithmetically.

CGCTGCTGCTGCTGCTGCT5 
5'TCGTCGTCGTCGTCGTCGCM M M W M M — — GCGACGACGACGACGACGA3'

P CGCTGCTGCTGCTGCTGCT5

Genetic Variation in Tissue Culture

Detection o f  Variation

Genetic distance, a measurement o f differences in DNA sequence, can be 

determined in organisms using molecular markers. Methods for estimating genetic 

distance find wide use in biology to determine how many differences exist between 

individuals, populations or species. In the case o f examining tissue culture clones, the 

genetic distance becomes a metric o f SCV between the parent and offspring plant. 

Mutations detected by ISSR markers includes deletion o f the amplified area and/or at

5 TCGTCGTCGTCGTCGTCGC3 
3 AGCAGCAGCAGCAGCAGCGS
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least one of the flanking SSRs resulting in a complete loss of the amplified band and 

additions or deletions within the band which show up as a shift in band size.

Chromosomal inversions, duplications and translocations may disrupt an amplified 

sequence but must be verified by other methods.

Drawbacks not withstanding, ISSR has detected SCV in cultured plants. Six out 

of 224 calli from cauliflower (Brassica oleracea var. botrytis) showed variation from the 

parent plant when compared with four primers generating 149 ISSR bands (Leroy et al. 

2001). Four primers amplifying 51 ISSR bands detected two instances of SCV in potato 

0Solarium tuberosum) (Albani and Wilkinson 1998). Studies using both ISSR and one or 

more of the other tools in population or systematic studies show good agreement between 

marker systems (Nagaoka and Ogihara 1997; Lakshmanan et al. 2007).

Calculating Genetic Distance

When considering success of tissue culture with respect to genetic fidelity using 

molecular data, the Jaccard similarity coefficient (Equation 1.1) is a method of determining 

similarity between two plants (van Eeuwijk and Baril 2001). While typically used in 

circumstances involving plants that are not necessarily identical, the equation can be 

extended to comparisons of parent plant and vegetative offspring, whether produced by 

tissue culture or natural reproduction.

Loci from the ISSR are scored based upon reproducibility and distinctiveness.

They should appear in independent amplifications and be distinct enough to distinguish 

the loci from those flanking it. Each amplified fragment of DNA from the offspring plant
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is compared to the set of fragments in the parent plant. Those that match are included in 

the term nj j. Those bands not present in offspring and bands found in offspring but not 

the parent are designated n 10 and n0i, respectively. Since molecular data of the parent 

plant represent the target in the case of tissue culture, nparent is used to represent the data 

of the parent, the inverse of the equation is taken, number of dissimilar data is subtracted 

from the number of similar data instead of adding as in the Jaccard coefficient (Equation 

1.2). This rearrangement of the equation causes distance to be linear as number of similar 

data decrease. In the event the offspring plant has more dissimilar data than similar, the 

similarity does become negative in value. Precision of the calculated distance increases as 

the number of loci are increases.

Equations 1.1 and 1.2. Left: Jaccard similarity equation. Right: Modified Jaccard 

similarity equation to linearize similarity and set parent loci as target similarity.

Closing Remarks

Based upon past in vitro responses of Amorphophallus spp., development of a 

protocol for A hewittii should be both possible and straightforward. While fine-tuning of 

conditions is necessary for optimal response between species, a good foundation of

n u
1 JaccardModfied
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example protocols outline a general method to regenerate plants from petiole-derived 

callus.

Because of the ubiquitous nature of SSR repeats in eukaryotes and the technically 

simple process of amplifying ISSR fragments, it is expected that many loci will be 

generated by screening a range of repeat sequences. Of particular interest would be those 

repeats that consistently amplify multiple fragments independent of the anchoring 

nucleotide identity. Such a group would suggest frequent occurrence in the genome. The 

tools developed may prove useful in applications outside the field of tissue culture in 

Amorphophallus.

By combining the ability of ISSR markers to detect DNA mutations with samples 

of tissue from various stages of the protocol, it may be possible to implicate a particular 

stage with such mutations.
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Chapter 2: 

In vitro plant regeneration of Amorphophallus hewittii from petiole- 

derived callus

Introduction

A. hewittii is slightly smaller than A. titanum, with leaves reaching 3 m high and 

inflorescences 2 m high, as compared to 5 m high leaves and inflorescences reaching 

approximately 2.5 m, and, like A. titanum , lacks regular vegetative reproduction 

(Hetterscheid and Ittenbach, 1996). Like most Amorphophallus species, A. hewittii is a 

desirable plant for many aroid growers, garnering premium prices as seeds, bulbs, or 

plants. We have developed a comparatively simple protocol for the in vitro 

multiplication o f A. hewittii from its abundant petiole tissue.

Methods & Materials

Plant Material

Ten Amorphophallus hewittii seeds were acquired from Malesiana Tropicals 

(Malaysia) and grown under greenhouse conditions at the University of Nebraska at 

Omaha. All seeds germinated and were allowed to grow out for two years. The solitary 

leaf of a one plant was allowed to fully develop and regenerate corm material via 

photosynthesis before collection of explants. The petiole was cut 1-2 cm above the 

junction of the petiole and corm to prevent damage to either the root system or growth 

point. This point was typically located below soil level and lacked chlorophyllous tissue.
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Tissue Sterilization

Petioles were stripped of all leaflets, washed under tap water for 5 minutes and 

then sterilized with a combination of 50% (v/v) ethanol and distilled water for one minute 

directly followed by a 15 minute submersion and agitation in a 1% (w/v) sodium 

hypochlorite solution with 0.1% Tween 20 added as a surfactant.

Culture Conditions

A series of media were inoculated with petiole sections (0.2 -  0.5 cm long). 

Lengths varied in order to maintain a constant mass of tissue in each explant. The entire 

length of the petiole was utilized, except for short discontinuities where the petiole was 

divided to aid the sterilization procedure. The mass and relative petiole locations of all 

explants were recorded for future reference. All cultures and plants were kept on 

growing shelves with a 15 hour photoperiod provided by compact fluorescent lighting 

(2.4x104 lux) and temperatures ranging from 25°C to 30°C. Cultures were monitored for 

signs of cell division, differentiation and contamination. Any cultures showing signs of 

contamination were disposed of or rescued through re-sterilization of the explant. 

Uncontaminated cultures, regardless tissue or media, were sub-cultured onto similar 

media every four to six weeks. Cultures were subdivided into two to four cultures when 

they would no longer fit into the tube. The subdivided cultures were then placed on 

similar media or transferred to media used for shoot multiplication trials. Cultures on 

shoot multiplication media were still transferred every four to six weeks until shoot 

meristems formed and appeared to begin active growth (Figure 2.1). Cultures were then 

rinsed and placed in soil-free potting mix under light stand conditions as previously
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described. A leaf sample was taken for related molecular studies after the leaf fully 

expanded.

Figure 2.1. Early shoots on callus. One 

of the three pointed shoots on the left side 

subsequently elongated; the other two 

remained dormant. The dark color o f the 

callus is due to a layer o f dead cells. This 

coloration was typical o f all calli.

Callus Induction

Twenty experimental media were prepared by amending MS media (Murashige 

and Skoog, 1962) with reduced ammonium nitrate (720 mg I'1), ascorbic acid (100 mg 1' 

^  Gelrite (1.5 g I’1), sucrose (3.0% w/v) and a range of NAA (0-13.5 pM) and kinetin (0- 

4.6 pM), pH 5.7. The best candidate media (NAA 13.5 pM and kinetin 2.3 pM) was 

selected by visual comparison of calli and used for further studies (Table 2.1).

Shoot Generation and Deflasking

The base media was modified for shoot generation by omitting the sucrose and 

increasing Gelrite to 2.0 g I'1 to account for weaker gel strength caused by absence of 

sucrose. Ten media were prepared with a range of NAA (0-0.05 pM) and kinetin (0-23.2 

pM). The optimum medium (NAA 0 pM and kinetin 11.6 pM) was determined by



30

examining the number of shoots produced. Calli showing active shoot growth on this 

modified medium were transferred as previously mentioned. Root formation and 

hardening stages were unnecessary as plants were placed below soil level and allowed to 

grow naturally.

Table 2.1. Combinations of growth hormones tested. This table reflects the results of 

hormone concentrations on a sample of at least 12 explants per treatment. C denotes the 

media tested for callus production; S denotes shoot generation. Media with strong 

responses for callus, shoot or root formation are marked with a subscript 1, 2, or 3 

respectively. The suggested media for callus and shoots are noted with a subscript O.

[NAA] (pM)

0 0.05 0.54 5.4 13.5

0 C,S

0.05 C,S

0.46 C,S

C,S C Ci

C,S2 C Ci Ci,3

C,s Cl Cl,3 Cl,3
[Kinetin]

G*M) 2.3 C 3 C 3 C o ,  1,3

4.6 S S Cl Cl Cl

11.6 So,2

23.2 S
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Results and Discussion

Tissue Sterilization

Low rates of surface contamination were observed using the described protocol. 

Most contaminants began growth on the medium distal from the explant and were 

probably not directly from the tissue. Repeated subculturing sometimes resulted in an 

unidentified endogenous contaminant becoming obvious; no deleterious effects were 

observed in cultures this contaminant was present in. Culture rescue including surface 

sterilization and infiltration with the wide-spectrum biocide PPM (Plant Cell Technology) 

did not rid the cultures of contamination. Due to the late development o f this 

contaminant with respect to the protocol, it is suggested that careful screening of parent 

plants and explant material of A. hewittii and the rest of the genus be performed before 

undertaking large-scale production through tissue culture. Identification of contaminant 

source (endogenous/exogenous) will direct any necessary modifications to the 

sterilization procedure.

Callus Induction

Petiole sections were initially filled with many air pockets that were crushed as 

cells divided and expanded. Resistance by the outer petiole layers caused the callus to 

expand outwardly from the cut surfaces of the explant. Cultures were initially off-white, 

but often developed a brown to black layer of dead cells at the surface. Under this layer 

were a thin chlorophyllous layer and the remainder of the off-white, and frequently 

purple, callus. This purple coloration was not observed in plants grown from seed under 

greenhouse conditions but may be chemically similar to pigments located in the petiole of
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both the mother plant and clones.

The effectiveness of hormone complements in inducing callus was examined by 

varying NAA and kinetin in a modified MS medium. Media contained NAA 

concentrations from 0 pM to 13.4 pM and kinetin from 0 pM to 23.2 pM. Explants 

grown on the media exhibited responses along a continuum from no change to rapid 

callus growth. Organogenesis of roots was observed on several media. The roots 

appeared to be morphologically consistent with in vivo roots, complete with root hairs. 

The medium showing the most consistent callus proliferation (NAA 13.5 pM and kinetin 

2.3 pM) was selected for further trials. The rate of mass accumulation was judged to be 

sufficient for culture purposes, though additional NAA may result in an increase in 

growth rate.

Callus growth rates on optimal medium were calculated on a percentage increase 

in fresh weight basis for each of the first three months. Fifty-eight separate calli, all from 

the same parent plant, were averaged; the calli increased an average of 238% (±87%) 

fresh weight per month. The increase in mass was lower during the first month in culture 

but stabilized thereafter. The large variation in fresh weight was due to several calli that 

increased in mass almost eightfold during a four-week period and calli that did not 

acclimate to culture quickly. Most published works do not cite rates of fresh weight 

accumulation; Irawati et al. measured callus diameter and found that their most effective 

medium approximately doubled the diameter of A  paeoniifolius calli every four weeks 

(1986). Assuming their calli were approximately spherical, this rate is comparable to the 

eightfold increase in fresh weight observed for A. hewittii.
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Shoot Generation and Deflasking

No shoots were produced on the media optimized for callus proliferation. The 

medium with (NAA 0 pM and kinetin 11.6 pM) produced 1-9 shoots on most calli after 

2-4 months; however, most o f these shoots remained dormant while one or two shoots 

per callus elongated and produced leaves. Multiplication rates may be increased by 

decreasing callus size when transferring to shoot generation media or by dividing the calli 

after shoots have developed. Use of liquid media coupled with agitation (Asokan et al. 

1984) or wounding of the main shoot (Hu et al. 2006) may prevent apical dominance and 

increase the number o f shoots per callus and speed up shoot organogenesis. Cultures 

were washed, covered with potting mix and kept moist when one or more shoots began 

elongating. This method did not require the storage at 4°C that Hu et al. described as 

necessary to encourage sprouting (2006). Rooting and acclimation were accomplished 

naturally as the shoot elongated and broke the soil surface. One callus was kept under 

sterile conditions to observe plant development; it subsequently grew normal-appearing 

roots from the base of the shoots. Similar root development is evident in cultures that 

have grown under light stand conditions as seen in Figure 2.2. Details of the callus/shoot 

system are shown in Figure 2.3.
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Figure 2.2. Fully developed j4. hewittii six months after deflasking. Normal plant 

morphology is visible including the leallets, petiole, corm and roots. The parent callus is 

visible as the dark tissue adjacent to the newly formed corm.
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Figure 2.3. Detail of callus and corm six months after deflasking. The dark parent callus 

is still attached to the lighter conn tissue (produced after transfer to soil) by a bridge of 

live tissue. The leaf seen is the second to develop since deflasking; older roots may be 

seen closer to the parent callus while newer roots emerge closer to the petiole.
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Conclusions

To our knowledge, this is the first reported in vitro propagation of 

Amorphophallus hewittii, and the first demonstration o f successful transfer of elongating 

shoots along with the callus, directly to soil without either extended time in culture 

resulting in cormel formation (Irawati et al., 1986) or in vitro root development (Asokan 

et al., 1984; Nyman et al., 1987; Kohlenbach and Becht, 1988).

The relative simplicity (two media) and quick turnaround time (3-6 months) of 

this protocol compared to the protocols utilizing petioles as explant materials 

(Kohlenbach and Becht, 1988) also suggests that a more efficient method for culturing A  

titanum and A  konjac may exist. Hu et al. (2005) used a similar two-step protocol with 

petiole sections to make histological observations of A. konjac, but did not document any 

root formation or transfer from in vitro culture.
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Chapter 3: 

Characterization o f ISSR Markers for  Amorphophallus hewittii 

Introduction

ISSR was chosen over other methods due to its technical simplicity, 

reproducibility, and the ubiquitous nature of the loci in eukaryotes. It does not require 

multiple steps, radio-labeled probes or specialized equipment. The overall process of 

generating ISSR fingerprints has changed little since the method's proposal (Zietkiewicz 

et al. 1994; Gupta et al. 1994). Optimization of the protocol involves obtaining a quality 

genomic DNA sample, determining primers that provide multiple, scorable bands when 

visualized, and maximizing reproducibility by selecting the optimum annealing 

temperature for PCR. This optimization ensures the data provide an accurate reflection 

of the organism’s genetic fingerprint.

DNA Extraction

Genomic DNA for PCR must be separated from cellular contents such as 

membranes and proteins that interfere with DNA amplification. Plant tissue offers 

additional difficulties when DNA must be extracted for molecular work. Typical plant 

cells are surrounded by a cellulosic cell wall. Even young tissues where this wall has not 

thickened must be mechanically disrupted before proceeding with the isolation of the 

DNA. Cell membranes and proteins are disrupted in a buffer solution by detergents and 

chaotropic substances, respectively. Organic solvents such as phenol, chloroform and 

iso-amyl alcohol are added to the aqueous phase to further denature proteins and
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precipitate them. Centrifugation of the mixture results in separation o f water-soluble 

compounds, a layer of cell debris including cell walls and proteins, and an organic phase 

that has absorbed several plant pigments including chlorophyll. Adding cold ethyl 

alcohol and gently agitating the solution accomplishes precipitation of the nucleic acids. 

The remaining pellet is then washed of other impurities with solutions in which DNA is 

not soluble. Addition of molecular-grade water or buffer solution then dissolves the 

DNA for PCR work.

By measuring the ratio of absorbances at 260 and 280 nm, rapid quantification 

and qualification of DNA may be performed. Nucleic acids strongly absorb light with 

wavelength of 260. Contaminants cause background absorbance at 280 nm to increase 

which lowers the absorbance ratio. “Clean” DNA usually has a ratio above 1.6 or 

greater. The concentration of DNA in a sample may be roughly calculated by measuring 

the absorbance at 260 nm.

Initial Screening o f  ISSR Primers

Primer selection for ISSR is often informed by successful amplification in a 

related species. At the time primers were selected for this study, no reports of ISSR in 

Amorphophallus could be located. In order to best screen for primers, all unanchored and 

single-nucleotide anchored dinucleotide repeats with the repeat combinations AC, AG, 

and CT were screened (Figures A. 1 and A.2). A subset of trinucleotide repeats, both 

anchored and unanchored, were screened (Figures A.3 and A.4).

Effect o f  Annealing Temperature on ISSRs

Many variables affect amplification in PCR. The concentration of reagents,
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reaction volume, and temperature profile are three variables commonly optimized. When 

considering the temperature profile, modification of the annealing temperature causes the 

greatest change in amplification products. Primers bind to DNA during the annealing 

phase of PCR. In order to promote specific binding, i.e., where all bases match the 

template DNA, the annealing temperature (Ta) should be close to the melting 

temperature, at which the primer will dissociate from a complementary sequence. Lower 

temperatures may permit primer binding despite mismatches.

It is expected that bands amplified in low Ta reactions will disappear as the 

stringency is increased with increasing temperature, and at still higher temperatures, 

primers may no longer bind sufficiently to complementary sequences. This leads to a 

loss of bands at higher temperatures. Determining the optimum Ta involves balancing 

well-defined bands with loss of bands as Ta increases.

Comparing Reproducibility

ISSR is valued for its reproducibility when compared to RAPD, which uses a 

shorter primer, and low annealing temperatures. It is important to ensure loci are 

amplifiable and identical when compared across independent DNA extractions from the 

same source material.

Converting Gels to Numerical Data

One method for converting the gel data as seen in Figure 3.2 is based upon using 

the molecular ladder to generate a standard curve of distance migrated by a fragment of 

given length. Peaks of the lanes of interest are matched with this curve to calculate the 

size of fragments for that peak. Multiple lanes of ladder DNA can account for any
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variation in migration rates. Loci are then associated with the length of the fragment 

producing that band. Comparison of loci between the parent and offspring plants can 

then be used to calculate genetic distance.

Materials and Methods

Plant Material

Plants were maintained in greenhouse conditions at the University of Nebraska at 

Omaha. DNA was extracted from A. hewittii leaf lamina tissue. Leaf midribs were 

removed before processing.

DNA Extraction

One effective protocol for plant DNA extraction is based on Cetyl Trimethyl 

Ammonium Bromide, commonly known as CTAB (Doyle and Doyle 1987). This 

procedure was scaled down proportionally for 0.1-gram samples. Upon isolation, 

genomic DNA was then checked for quality by measuring the absorbance ratio 

(A 2 6 0 /A2 8 0 ) of the sample. The concentration was normalized to lOng/pL for PCR 

reactions.

PCR Conditions

PCR was carried out in 25 pL volumes with 2.5 pL lOx PCR buffer (Invitrogen), 

0.75 pL 50 mM M gC f (final concentration 1.5 mM), 10 ng template DNA, 0.5 U Taq 

Polymerase (Invitrogen), 1 pL 10 mM dNTP mixture (final concentration 1 mM each), 

and 100 pmol custom-made ISSR primer (IDT DNA). Reactions conditions were as 

follows: denaturation for 6 minutes at 94°C, cycled 32 times (1 minute at 94°C, 1 minute
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at the designated annealing temperature, 2 minutes at 72°C), and followed by a final 

extension for 7 minutes at 72°C before electrophoresis.

Electrophoresis o f  PCR Products

Samples were mixed in a 10:1 ratio with Promega loading dye and 0.2 pL lOOx 

SYBR Green dye (Bio-Rad). All gels were 1.2-1.5% agarose SB (sodium borate, 200 

mM) as described by Brody and Kern (2004) and samples were electrophoresed at 250 

volts. Molecular ladders used include X phage digested with Hindlll and EcoRl 

restriction enzymes and a 100-base ladder. Gel images were captured and processed as 

described in Appendix I.

Initial Primer Screening

Standard ISSR conditions were used to amplify loci for all primers (Figure 3.1). 

Annealing temperature was 45°C to promote annealing. Primers amplifying multiple, 

distinct bands when visually scored were selected for further characterization. See 

Tables 3.1 and 3.2 for a list of primers and bands amplified during screening. Lower 

discrimination by visual scoring probably undercounts the actual number of bands
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Figure 3.1. Initial screening of ISSR primers. Sixteen primers are screened. Note that 

the unanchored primers have weak amplification as compared to other primers with the 

same repeat and an anchor nucleotide. Molecular ladders are X phage DNA digested with 

Hindlll and EcoRl.
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Table 3.1. Dinucleotide repeat ISSR primers screened. Also listed is the number of 

visually scorable loci for each primer. The actual number o f amplified DNA fragments 

may be significantly higher. Total number of bands: 82. Average loci per primer: 3.0. 

Primer Loci Primer Loci Primer Loci

(AC)g 0 (AG)8 0 (CT)8 0

(AC)8C 2 (AG)8c 3 (CT)8A 5

(AC)8G 6 (AG)8G 2 (CT)8G 7

(AC)8T 5 (AG)8T 5 (CT)8T 5

(CA)8A 4 (GA)8A 4 (TC)8A 5

(CA)8G 5 (GA)8C 5 (TC)8C 6

(CA)8T 6 (GA)8T 3 (TC)8G 4
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Table 3.2. Trinucleotide repeat ISSR primers screened. Also listed is the number of 

visually scorable loci for each primer. The actual number of amplified DNA fragments 

may be significantly higher. Total number of bands: 206. Average loci per primer: 6.4.

Primer Loci

(ACC)6 4

(ACC)6C 7

(ACC)6G 7

(ACC)6T 10

(AGC)6 5

(AGC)6C 6

(AGC)6G 9

(AGC)6T 10

Primer Loci

(AGT)6 2

(AGT)6C 12

(AGT)6G 6

(AGT)6T 0

(CCG)6 9

(CCG)6A 9

(CCG)6G 9

(CCG)6T 11

Primer Loci

(CTC)6 4

(CTC)6A 3

(CTC)6G 5

(CTC)6T 8

(GAA)6 7

(GAA)6A 7

(GAA)6C 9

(GAA)6T 8

Primer Loci

(GTT)6 3

(GTT)6A 9

(GTT)6C 7

(GTT)6T 7

(TGC)6 0

(TGC)6A 0

(TGC)6C 7

(TGC)6G 6

Fifty-nine dinucleotide and trinucleotide repeat ISSR were screened; 288 loci 

were amplified with an average of 4.88 per primer. Unanchored primers typically 

amplified fewer bands than anchored primers. On average, trinucleotide repeat primers 

yielded more scorable bands than dinucleotide repeat primers (averages of 6.4 and 3.0, 

respectively).

Annealing Temperature Optimization
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Selected primers from the initial screening were subjected to an annealing 

temperature (TA) gradient to determine optimum PCR conditions (Figures A.5-A.16). 

Ideal Ta was selected by comparing the number and clarity of bands among lanes. A 

summary of annealing temperatures is shown in Table 3.3.

Table 3.3. Optimum annealing temperatures. Primers selected from the initial screen 

were run on a gradient of temperatures from 45°C to55°C .

Primer TA Primer TA Primer TA Primer TA

(AG)8A 51°C (CA)8A 55°C (AGC)6G 49°C (GAA)6C 51°C

(GA)8A 55°C (CA)8G 53°C (AGC)6T 55°C (GTT)6A 45°C

(GA)8C 49°C (CA)8T 51°C (AGT)6C 49°C (GTT)6C 47°C

(CT)8A 51°C (AC)8G 55°C (AGT)6G 47°C (GTT)6T 45°C

(CT)8G 49°C (AC)8T 55°C (CCG)6A 47°C (TGC)6C 45°C

(CT)8T 49°C (ACC)6C 51°C (CCG)6G 53°C (TGC)6G 55°C

(TC)8A 49°C (ACC)6G 51°C (CCG)6T 47°C

(TC)8C 47°C (ACC)8T 49°C (CTC)6G 45°C

(TC)8G 47°C (AGC)8C 51°C (GAA)6A 55°C

Parent /  Clone Comparison

Products of PCR reactions containing genomic DNA of either the parent plant or 

one of the offspring were next separated by gel electrophoresis. A 100 base-pair ladder 

was used as a baseline for estimating fragment size. Two replicates of independent DNA
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extractions demonstrate reproducibility (Figure A. 17). Lanes were converted to linear 

plots using ImageJ and banding patterns compared (Figures 3.2 and A. 18). This method 

is far more sensitive and accurate than visually scoring the gel. Any increase in signal that 

showed clear demarcation and exceeded three percent on both sides was scored as a locus.

Figure 3.2. Gel conversion to an intensity graph. Lanes are grouped by primer. Paired 

lanes with each primer group include two independent DNA extractions for the parent 

plant (first two lanes) and duplicates o f two clones from the in vitro protocol as the 

second and third pairs, respectively. Lanes 1 and 20 contain a 100 hase-pair ladder with 

1 0 0 , 600, and 1500 bases markers o f higher intensity.

(AGT)6C (TGC)6C (TC)8C
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Results and Discussion

The ISSR method was able to amplify sufficient loci for a distance analysis of 

Amorphophallus hewittii. Proof-of-concept screening of three primers did not uncover 

any genetic mutations of the amplified areas, but a larger population of offspring and 

more loci are required for a meaningful analysis of mutation rates. Research on banana 

plants, {Musa acuminata var. Nanjanagudi Rasabale) in culture for approximately 10 

years, generated 424 bands with RAPD and ISSR. They examined the mother plant and 

eleven offspring and found no differences in loci as compared to plants not subjected to 

tissue culture (Lakshmanan et al. 2007).

In population studies, both monomorphic (demonstrated in all individuals) and 

polymorphic (those that vary between individuals) markers are useful. Polymorphism 

could not be determined during the initial primer screen as there was only one individual 

screened. But with the hypervariable nature of ISSRs and the sheer number of loci 

amplified during the primer screen, sufficient loci (both polymorphic and monomorphic) 

for population and systematic studies could be amplified with the existing primers.

The primer screen of Amorphophallus hewittii uncovered a general trend for 

primers based on a (CT)sN or one o f the tri-nucleotide repeats such as (AGC^N, 

(ACC)6N, and (CTC^N to amplify multiple clear bands with good intensity. Unanchored 

primers within a repeat family tended to yield fewer strongly-amplified loci than 

anchored primers. This may be an indication that the primers are not selective enough. 

Further restrictions on the annealing sequence such as using a dinucleotide anchor at the 

3' end would allow for further segregation of these bands between primers and uncover
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sites that are less strongly amplified.

Background noise is present at relatively high levels. Better resolution and 

improved amplification may be possible through a second round of PCR using a dilution 

of the first round PCR product as the template DNA.

Conclusions

With the primers screened, sufficient loci exist for most applications where 

randomly amplified primers are suitable. An investigation focusing on resolving 

additional loci with primers terminating in more anchoring nucleotides would determine 

if  the background noise is an artifact of too many loci.

This work represents the first set of ISSR markers optimized for Amorphophallus 

hewittii. Their utility may be extended for studies of naturally-occurring genetic diversity 

and it is conceivable that they may be used in breeding programs for agriculturally 

significant Amorphophallus species. These markers will also permit the exploration of 

taxonomy in the genus if  the optimized markers are employed on other species. The 

amplified DNA fragments may also provide a stepping-stone to develop SSR markers to 

explore heterozygosity and homozygosity in the species.
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Appendix I: Gel Images

Notes on the Images

All of the images in this appendix were taken with a Canon digital camera. The 

SYBR green dye was excited using a U V box. All images were photographed through a 

yellow photographic filter with an exposure of one to three seconds. Camera images in 

JPEG format were then processed with ImageJ 1.37 (available from the National Institute 

of Health). The workflow is as follows:

Rotate image to align gel with screen if necessary.

Crop image at gel edges.

Split the red, green, and blue (RGB) layers.

Discard the red and blue layers.

Execute the Gel Converter (v 1.0) plugin available from 

http://www.virginia.edu/biology/Fac/hirsh_gePgel/Gel_converter.class 

Invert the LUT (look up table) to set the background to white.

Save image as an uncompressed TIF file.

Figure A. 18 was generated using the Gel Analysis package of ImageJ. Only a 

medial portion of the band was highlighted for processing to avoid distortion from 

electrophoresis. Area under the curves was filled using the bucket fill tool. Images were 

then saved to JPEG format.

http://www.virginia.edu/biology/Fac/hirsh_gePgel/Gel_converter.class
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Figure A. 1. Primer Screen #1.
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Figure A.2. Primer Screen #2.
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Figure A.3. Primer Screen #3.
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Figure A.4. Primer Screen #4.
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Figure A.5. Annealing Temperature (Ta) Screen #1. Diamonds denote optimum TA.
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Figure A.6. Annealing Temperature (Ta) Screen #2. Diamonds denote optimum Ta

Lane Primer / Ta Lane Primer / Ta

1 Ladder 1 1 (CT)8G /5 1 °C

2 (CT)gA / 45°C 1 2 (CT)8G / 53°C
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4 (CT)8A / 49°C 14 (CT)8T /4 5 °C

5 (CT)8 A /  51°C 15 (CT)8T / 47°C

6 (CT)8A / 53°C 16 (CT)8T / 49°C

7 (CT)8A / 55°C 17 (CT)8T / 51°C

8 (CT)8G / 45°C 18 (CT)8T / 53°C

9 (CT)8G / 47°C 19 (CT)8T / 55°C

1 0 (CT)8G / 49°C 2 0 Ladder

n
i

l



56

Figure A.7. Annealing Temperature (Ta) Screen #3. Diamonds denote optimum Ta.
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Figure A.8. Annealing Temperature (Ta) Screen #4. Diamonds denote optimum Ta.
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1 0 (CA)8G / 49°C 2 0 Ladder
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Figure A .9. Annealing Temperature (Ta) Screen #5. Diamonds denote optimum Ta-
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Figure A. 10. Annealing Temperature (Ta) Screen #6 . Diamonds denote optimum Ta- 
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8 (ACC)6G / 45°C 18 (ACC)6T / 53°C

9 (ACC)6G / 47°C 19 (ACC)6T / 55°C

1 0 (ACC)6G / 49°C 2 0 Ladder
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Figure A. 11. Annealing Temperalure (Ta) Screen #7. Diamonds denote optimum Ta.

1 2 3 4 5 6  7 8  9 10 11 12 13 14 15 16 17 18 19 20

♦  ♦  ♦
f

Lane Primer / Ta Lane Primer / Ta

1 Ladder 1 1 (AGC)6G /5 1 °C

2 (AGC)6C / 45°C 1 2 (AGC)6 G /5 3 °C

3 (AGC)6C / 47°C 13 (AGC)6G / 55°C

4 (AGC)6C / 49°C 14 (AGC)6T / 45°C

5 (AGC)6 C /  51°C 15 (AGC)6T / 47°C

6 (AGC)6C / 53°C 16 (AGC)6T / 49°C

7 (AGC)6C / 55°C 17 (AGC)6T /5 1 °C

8 (AGC)6G / 45°C 18 (AGC)6T / 53 °C

9 (AGC)6G / 47°C 19 (AGC)6T / 55°C

1 0 (AGC)6G / 49°C 2 0 Ladder

ll
T

f
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Figure A. 12. Annealing Temperature (Ta) Screen #8. Diamonds denote optimum Ta.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

 ̂ ^ mmm

• r

► ♦ ♦

.ane Primer / Ta Lane Primer / Ta

1 Ladder 1 1 (AGT)6G /5 1 °C

2 (AGT)6C / 45 °C 1 2 (AGT)fiG / 53°C

3 (AGT)6C / 47°C 13 (AGT)6 G /5 5 °C

4 (AGT)fiC / 49°C 14 (CCG)6A / 45°C

5 (AGT)6 C / 51°C 15 (CCG)6A / 47°C

6 (AGT)6 C /5 3 °C 16 (CCG)6A / 49°C

7 (AGT)fiC / 55°C 17 (CCG)6A / 51°C

8 (AGT)6G / 45°C 18 (CCG)6A / 53°C

9 (AGT)sG / 47°C 19 (CCG)6A / 55°C

1 0 (AGT)sG / 49°C 2 0 Ladder
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Figure A. 13. Annealing Temperature (Ta) Screen #9. Diamonds denote optimum Ta-

Lane Primer / Ta Lane Primer / Ta

1 Ladder 1 1 (CCG)6T /5 1 °C

2 (CCG)6G / 45°C 1 2 (CCG)6T / 53°C

3 (CCG)6G / 47°C 13 (CCG)6T / 55°C

4 (CCG)6G / 49°C 14 (CTC)6G / 45°C

5 (CCG)6 G / 51°C 15 (CTC)6G / 47°C

6 (CCG)6 G /5 3 °C 16 (CTC)6G / 49°C

7 (CCG)6G / 55°C 17 (CTC)6G /5 1 °C

8 (CCG)6T / 45°C 18 (CTC)6G / 53°C

9 (CCG)6T / 47°C 19 (CTC)6G / 55°C

1 0 (CCG)6T / 49°C 2 0 Ladder
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Figure A. 14. 
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Annealing Temperature (Ta) Screen #10. Diamonds denote optimum Ta- 
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.ane Primer / Ta Lane Primer / Ta

1 Ladder 1 1 (GAA)6C / 51 °C

2 (GAA)bA / 45°C 1 2 (GAA)6C / 53°C

3 (GAA)6A / 47°C 13 (GAA)6C / 55°C

4 (GAA)6A / 49°C 14 (GTT)6A / 45°C

5 (GAA)6 A /  51°C 15 (GTT)6A / 47°C

6 (GAA)6A / 53°C 16 (GTT)6A / 49°C

7 (GAA)6A / 55°C 17 (GTT)6A / 51 °C

8 (GAA)6C / 45°C 18 (GTT)6A / 53°C

9 (GAA)6C / 47°C 19 (GTT)6A / 55°C

1 0 (GAA)6C / 49°C 2 0 Ladder
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Figure A. 15. Annealing Temperature (Ta) Screen #11. Diamonds denote optimum Ta- 

1 2 3 4 5 6  7 8  9 10 11 12 13 14 15 16 17 18 19 20

St

mm

Lane Primer / Ta Lane Primer / Ta

1 Ladder 1 1 (GTT)6T / 51 °C

2 (GTT)6C / 45°C 1 2 (GTT)6T / 53°C

3 (GTT)6C / 47°C 13 (GTT)6T / 55°C

4 (GTT)6C / 49°C 14 (TGC)6C / 45°C

5 (GTT)6 C /  51°C 15 (TGC)6C / 47°C

6 (GTT)6C / 53°C 16 (TGC)6C / 49°C

7 (GTT)6C / 55°C 17 (TGC)6C / 51°C

8 (GTT)6T / 45°C 18 (TGC)6C / 53°C

9 (GTT)6T / 47°C 19 (TGC)6C / 55°C

1 0 (GTT)6T / 49°C 2 0 Ladder
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Figure A. 16. Annealing Temperature (Ta) Screen #12. Diamonds denote optimum Ta- 
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Lane Primer / Ta Lane Primer / Ta

1 Ladder

2 (TGC)6G / 45°C

3 (TGC)6G / 47°C

4 (TGC)6G / 49°C

11 (TGC)6G / 51°C

12 (TGC)6 G / 5 3 ° C

13 (TGC)6 G / 5 5 ° C

14 Ladder
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Figure A. 17. ISSR of parent and two tissue culture offspring. Three primers are tested to 
verify reproducibility between DNA extractions and offspring. Tissue from Parent,
Clone A, and Clone B was subjected to replicate DNA extractions (#1 and #2).

Lane Primer / Source Lane Primer / Source

1 Ladder 1 1 2 / Clone A #2

2 1 / Parent #1 1 2 2 / Clone B #1

3 1 / Parent #2 13 2 / Clone B #2

4 1 / Clone A #1 14 3 / Parent # 1

5 1 / Clone A #2 15 3 / Parent #1

6 1 / Clone B #1 16 3 / Clone A #1

7 1 / Clone B #2 17 3 / Clone A #2

8 2 / Parent #1 18 3 / Clone B #1

9 2 / Parent #2 19 3 / Clone B #2

1 0 2 / Clone A #1 2 0 Ladder
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Figure A. 18. Plots of lanes 1,9,  10, 13, and 17 of ISSR from Figure 26. Length of 
fragments may be determined by interpolation based upon the molecular weights (bottom 
graph).

(17) Primer 3 / Clone A #2

(13) Primer 2 
Clone B #2

(10) Primer 2 
Clone A #1

(9) Primer 2 
Parent #2

(1) Ladder
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