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ABSTRACT

The rhizosphere is a complex of biotic and abiotic factors and their interactions.

It includes the soil, the micro- and megafauna, and a variety of autotrophic species. The 

goal of this study is to understand the belowground dynamics of the terrestrial orchid, 

Sniranthes cemua. through the characterization of soil nutrients, root system morphology, 

and mycorrhizal infection. Interrelationships among the soil, the mycorrhizae and S. 

cemua may explain the role of mycorrhizae in adult chlorophyllous orchids as well as the 

influence of soil nutrients on mycorrhizae. Understanding mycorrhizal relationships, will 

also contribute to the conservation and reestablishment of threatened and endangered 

terrestrial orchids.

Spiranthes cemua was studied at Nine-Mile Prairie, near Lincoln, NE, in 1997. 

The soil is a silt loam to silty clay loam with a pH range of 5.4 - 5.95. The soil contained 

4.54 ± 0.61 pg/gds ammonium-N, 1.23 ± 0.11 pg/gds nitrate-N, 5.62 ± 0.13 pg/gds 

phosphorus (Bray), and 3.38 ± 0.07 g/gds total carbon. Inorganic nitrogen decreased 

through the growing season while carbon and phosphoms remained stationary.

The size and structure of the root system of S. cemua changed during the period 

April - July. During this vegetative phase the root system was composed of young and 

old mature roots and bud roots. Bud roots and old roots were not observed after July.

Mycorrhizae infected approximately 12.1% of root cortical cells in S. cemua. 

however, less than 5% was active infection. Mature roots were significantly less infected 

than bud roots (10.4 ±0.01% versus 31.1 ± 0.04%). It is possible that S. cemua. like its 

congener S. sinensis, has two types of roots, one primarily for mycorrhizal infection and 

one for storage. In ST. cemua bud roots may represent the "mycorrhizal" roots.

During the vegetative phase the plant must manufacture/acquire resources for the 

growth and maintenance of the current shoot as well as store resources for future growth 

and reproduction. In S. cemua mycorrhizal activity is greatest when the plant is



vegetative and soil inorganic nitrogen levels are highest. This temporal pattern 

allow the plant to acquire nutrients at the lowest possible cost.
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INTRODUCTION

Mycorrhizae play a role at many levels of biological organization from increasing 

the growth of individual plants (Carlile and Watkinson, 1994) to influencing community 

structure (van der Heijden et al., 1998). Mycorrhizal associations are common in the 

family Orchidaceae, especially in terrestrial orchids. The terrestrial orchid* Spiranthes 

cemua (L.) Rich., has been extensively studied (Schmidt, 1987; Schmidt and Antifinger, 

1992; Wendel, 1994; Wendel and Antifinger, 1996; Antifinger and Wendel, 1997) in 

Nebraska and is the experimental organism in this research.

Antifinger and Wendel (1997) found that there was a critical aboveground size 

necessary for flowering in S* cemua. While current photosynthesis met about 50% of the 

expense of flowering, stored reserves would be needed for the remainder, in addition to 

supporting vegetative growth the next year. Therefore, to understand resource allocation 

in S* cemua. belowground dynamics must be considered. In addition, Alexander (1987) 

and Rasmussen (1995) have called for investigations which relate mycorrhizal infection 

to plant and soil nutrient levels in adult orchids. Based on these reports, the goals of this 

study were to: (1) describe the development of the root system and its contribution to 

resource allocation; (2) quantify the mycorrhizal infection of roots of adult plants in 

space and time; and (3) analyze the nutrient concentrations of soil and plant tissues.



2

Knowledge of the relationship between mycorrhizal infection, root system morphology 

and nutrients will contribute to our understanding of growth and reproduction in JL 

cemua and other mycorrhizal species. Further, these data are essential for understanding 

the environmental requirements for terrestrial orchid conservation and reestablishment.

Research involving root systems is difficult because it relies on excavation which 

disrupts normal growth and is labor intensive. The following sections review the 

information available on the goals stated above and introduce the specific objectives and 

methodology of this study.

Mycorrhizae—Underground there is a world of organisms rarely seen or 

considered but vital to the growth of individual plants and to the establishment of plant 

communities. Fungi are one component of this underground world. Fungi are important 

decomposers, pathogens, and symbionts of plants. Symbiotic associations between fungi 

and the underground parts of plants are known as mycorrhizae. Approximately 90% of 

vascular plants are known to be mycorrhizal (Selosse and Le Tacon, 1998). The 

significance of mycorrhizal associations is recognized by both scientists and practitioners 

(St. John and Coleman, 1983; Cook, Jastrow, and Miller, 1988; Gange, Brown, and 

Farmer, 1990). In most mycorrhizae, the fungal partner provides the plant with increased 

absorption of nutrients, especially phosphorus, and water from the soil in exchange for
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carbon from the plant. Greenhouse studies have shown that the host plant may exhibit 

increased growth and/or increased levels of nutrients in the tissues (i.e., phosphorus: 

Hetrick, Wilson, and Schwab, 1994). Plants growing in nutrient-poor soils tend to 

benefit more from their mycorrhizae than plants of the same species in nutrient-rich soils.

Most of what is known about orchid mycorrhizae comes from seed germination 

and seedling studies. Unlike most mycorrhizae, the orchid mycorrhiza transfers carbon 

from the fungus to the seedling (Smith, 1966, 1967; Alexander and Hadley, 1985; Beyrle 

and Smith, 1993). It is not known whether adult plants also receive carbon via the 

fungus, though the symbiotic relationship is maintained for the entire life span of the 

plant (Poole and Sheenan, 1982). The fungus is able to utilize a wide range of carbon 

compounds from simple sugars (i.e., glucose) to cellulose (Harley, 1959; Hadley, 1969; 

Smerciu and Currah, 1989). It is thought that cellulose is the major carbon source 

available to the fungus in nature (Hadley, 1969). A higher incidence of fungal parasitism 

relative to symbiosis is observed on nutrient-rich media (Hadley, 1969; Beryl, 

Penningsfeld, and Hock, 1991).

Orchid mycorrhizae are typically basidiomycete fungi in the form genus 

Rhizoctinia though a few ascomycetes are known (Rasmussen, 1995). Basidiomycete 

fungi are septate and have two to many nuclei per cell. The orchid mycorrhizae are
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mostly asexual. A few telomorph genera have been identified including Ceratobasidium. 

Tulasnella. Sebacina. and Thanatephorus (Filipello Marchisio et al., 1985; Currah, Sigler, 

and Hambleton, 1987; Smreciu and Currah, 1989; Currah, Smreciu, and Hambleton,

1990). The classification of these mycorrhizal fungi is based on morphological features 

of the hyphae and septal pore, but is not well understood (Rasmussen, 1995). Several 

Rhizoctinia species are known plant pathogens of non-orchid species (Carlile and 

Watkinson, 1994).

Fungi used in symbiotic germination of seeds are isolated from the roots of adult 

orchids. It is possible to isolate several fungal species from the roots of one orchid 

species, or even a single individual (Curtis, 1939). Seed germination experiments have 

demonstrated a range of fungal specificity (Curtis, 1939; Warcup, 1981; Smerciu and 

Currah, 1989; Zelmer, Cuthbertson, and Currah, 1996). Williamson and Hadley (1970) 

found that the fungi respond to crucifer seedlings differently than to orchid seedlings. 

This indicates recognition between the fungi and orchid that directs the association 

toward symbiosis and not parasitism. It has been suggested that bacteria associated with 

orchid mycorrhizae assist in recognition (personal communication in Wilkinson, Dixon, 

and Sivasithamparam, 1989). The symbiotic association is thought to be controlled by 

the orchid (Harley, 1959; Hadley, Johnson, and John, 1971). Infection is restricted to the
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basal portion of the protocorm, away from the meristem, in symbiotic associations. 

Masuhara and Katsuya (1992) observed restricted infection in roots of Spiranthes sinensis 

suggesting that adult orchids are also able to exert some control over their fungal partner.

Orchid mycorrhizae infect orchid tissues through epidermal hairs (many orchids 

lack true root hairs) or exodermal passage cells (Esnault, Masuhara, and McGee, 1994). 

Active infection is greatest in young roots and may also occur in the rhizome (Liparis: 

Rasmussen, 1995). The infection is tolypophagous, that is, the hyphae invade host cells 

and form a mass of coiled hyphae (called a peloton) before they are digested. During 

residence in the orchid cells the fungus breaks down carbon storage products (i.e., starch) 

and may use some of this carbon (Breddy, 1991). The orchid receives nutrients from the 

fungus upon fungal digestion (i.e., necrotrophically); biotrophic transfer of nutrients has 

not been clearly demonstrated (Rasmussen, 1995). Two types of pelotons are visible in 

orchid root cells: living, hyphal pelotons and amorphous pelotons which have been 

digested (Curtis, 1939; Currah, 1991; Stoutamire, 1991; Masuhara and Katsuya, 1992). 

Hyphae are thought to remain viable as pelotons for a short period of time (Stoutamire,

1991). It is not known how long amorphous pelotons persist.

Terrestrial orchids have higher levels of mycorrhizal infection than epiphytes. 

While infection in epiphytes is generally limited to those portions of the root in contact
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with the substrate, infection in terrestrial orchids is found throughout the entire root 

(Hadley and Williamson, 1972; Alexander, 1987; Goh, Sim, andLim, 1992).

Very few studies have quantified the infection of adult orchids through time 

(Alexander, 1987; Rasmussen, 1995). Masuhara and Katsuya (1992) examined roots of 

^  sinensis across 13 months. They found that in heavily-infected roots, peloton numbers 

peaked at the time of flowering and then living pelotons decreased markedly. One 

objective of this study was to characterize the mycorrhizal infection in roots of adult 

plants through the growing season. Because Si cemua is a chlorophyllous orchid, I 

hypothesized that the mycorrhizal infection functions like a “typical” mycorrhizae, in that 

the orchid obtains mineral nutrients (e.g., nitrogen and phosphorus) and water in 

exchange for carbon. Plants need additional nutrients and water during rapid growth, 

therefore increases in mycorrhizal infection would be expected early in the season when 

new leaves develop. Further, infection can be tolerated during the vegetative period 

when photosynthesis is able to cover the cost of carbon used by the fungus. Peloton 

number should decrease with leaf senescence, because the orchid should limit carbon 

loss, especially if the plant is going to flower.

Orchid root systems—Vascular plant roots are another component of the 

rhizosphere. Roots change the physical and chemical aspects of the soil and conduct
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essential nutrients into the plant. Terrestrial orchids typically have simple root systems 

with unbranched roots (one explanation for the necessity of mycorrhizae; Rasmussen, 

1995; but see Curtis, 1939). Though roots are simple, a variety of underground structures 

are observed. These structures are typically adaptations for storage and, in terrestrial 

orchids, include cormous rhizomes (Tipularia: Stoutamire, 1991; Zimmerman and 

Whigham, 1992), root-stem tubers (in orchidoid species: Rasmussen, 1995) and tuberoid 

roots, which function in mycotrophy as well as storage tSpiranthes: Ames, 1921; Stem et 

al., 1993). Masuhara and Katsuya (1992) observed two types of roots in SL sinensis 

which differed in function and time of development but were relatively indistinguishable 

morphologically. Pseudobulbs are typical “underground” storage organs found in 

epiphytic orchids.

Underground storage organs are common in herbaceous perennials and are 

thought to provide necessary resources for periods of rapid growth (i.e., breaking of 

seasonal dormancy or reproduction). In orchids, research on epiphytes has demonstrated 

the importance of storage organs. Zimmerman (1991) found that storage of non- 

structural carbon, nitrogen and phosphorus in the pseudobulbs was important for 

vegetative growth and flowering in Catasetum viridiflavum. In the hybrid epiphyte 

Oncidium ‘Goldiana’, Hew and Ng (1996) also reported that pseudobulbs function in
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storage of carbon, nitrogen, phosphorus, and potassium, and that these nutrients are 

shunted from pseudobulbs to developing tissues. In the terrestrial orchid Tipularia 

discolor. Whigham (1984) found that the cormous rhizome was mainly involved in 

carbohydrate storage. It is possible that the higher levels of mycorrhizal infection in 

terrestrial orchids have reduced the need for mineral storage as compared to epiphytes.

Prairie populations of S. cemua are usually fugacious, that is, without leaves at 

the time of flowering (Sheviak, 1991). Therefore, resources stored in the root system 

could be mobilized twice within a growing season: in early spring for vegetative growth 

and for inflorescence development during the fall. I examined the morphology of the 

root system to try to detect this reallocation and to monitor root system size. Also, root 

and leaf nutrient levels (carbon, nitrogen and phosphoms) were determined during the 

vegetative and reproductive stages to understand patterns of nutrient allocation related to 

reproduction.

Prairie soils and soil interactions—Relative to other ecosystems, prairies have 

limited and variable nutrient and water supplies, and there is intense competition for 

resources. In grasslands nitrogen has been shown to be important in affecting structure 

and function of biogeochemical cycles (Risser and Parton, 1982). Nitrogen levels in 

temperate grasslands are highest in spring and decrease through the summer (Turner et
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al., 1997; DeLuca and Keeney, 1994). Soil moisture and temperature are the primary 

abiotic factors influencing nitrogen mineralization and cycling within the plant-soil 

system (Risser and Parton, 1982). Nitrogen is often a limiting resource for plants in 

tallgrass prairie (Bentivenga and Hetrick, 1992).

Soil is a complex medium formed by both abiotic and biotic factors and their 

interactions (Coleman and Crossley, 1996). Soil nutrient interactions are often complex 

and cyclic. For example, plants with high nitrogen use efficiency tend to have high tissue 

C:N ratios, which produces poor quality litter and depresses nitrogen mineralization rates, 

and consequently less nitrogen becomes available in the soil (Tateno and Chapin, 1997). 

The plant “environment” is both above and below ground. Thus, plants contribute to and 

are affected by various soil interactions. Beaver (1994) and Beaver, Westover, and 

Antonovics (1997) suggest that even interactions between plant species may be mediated 

by the soil community.

Mycorrhizae also contribute to belowground interactions. Prairies are rich in 

mycorrhizal species, dominated by vessicular-arbuscular mycorrhizae (VAM). VAM 

supply phosphorus to their plant hosts and thereby increase the host's competitive ability 

(Bentivenga and Hetrick, 1992). Phosphorus mobility in the soil matrix is more limited 

than that of other minerals (White, 1987). VAM confer a benefit to their host because
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fungi are able to search large volumes of soil in addition to having increased absorptive 

abilities compared to vascular plants (Carlile and Watkinson, 1994).

Though many studies have examined nutrient relations between VAM fungi and 

the host plant (Bentivenga and Hetrick, 1992; Hetrick, Wilson, and Schwab, 1994;

Wilson and Hartnett, 1997), few studies of orchid mycorrhizae have attempted to relate 

infection with the nutrient levels of adult plants (Rasmussen, 1995). In this study the 

tallgrass prairie site was unammended. It was necessary to characterize the soil nutrient 

levels at the site to establish a base-line for interpreting plant nutrient levels. The goal 

was to relate the degree of mycorrhizal infection to nutrient levels in plant tissues and soil 

through the growing season. Higher root infection was expected in soil with lower 

nutrient levels or in plants with lower tissue nutrient levels. Plants that were going to 

flower were expected to have increased infection during the vegetative phase and a 

marked decline at or around the time of flowering regardless of soil nutrient levels. This 

study is unique in that multiple components affecting the mycorrhizal relationship were 

investigated simultaneously in order to understand the complex relationships between 

mycorrhizal fungi, the host plant, and the immediate environment.
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MATERIALS AND METHODS 

The species—Spiranthes cemua (L.) Rich. (Lady's-tresses) is a terrestrial orchid 

found in the eastern half of the United States and southeastern Canada in wet to dry 

prairies and occasionally open woodlands (Kaul, 1986). Plants are perennial and emerge 

in mid to late April. Plants have a basal rosette of 2 -  5 lanceolate leaves. Prairie 

populations are fugacious, losing their foliage in late July (Sheviak, 1991). The root 

system is composed of one to several fleshy fasiculate roots that are known to be 

mycorrhizal (Stern et al., 1993). Plants flower in mid-September through October. The 

inflorescence is composed of a spike with several tight twisting ranks of white flowers. 

Seeds can be produced both sexually and asexually (Ames, 1921; Sheviak, 1991; Schmidt 

and Antifinger, 1992). Like many orchids, S. cemua has dust seeds and thousands of 

seeds are produced in a single capsule (Rasmussen, 1995). Sheviak (1991) also notes that 

vegetative reproduction occurs via roots acting as a stolon.

Description of study site—Nine-Mile Prairie is a 97 ha virgin tall-grass prairie 

owned by the University of Nebraska Foundation and located in Lancaster County, 

Nebraska. The dominant grass species are Andropogon gerardii. A. scoparius. 

Sorghastrum nutans, and Koeleria pvramidata (Kaul and Rolfsmeier, 1987). The SL 

cemua study population is located on a well-drained, north-facing upland in the East
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Flader section of Nine-Mile Prairie (see map in Schmidt, 1987; Wendel, 1994). The soil 

is a silt loam to silty clay loam with a pH range of 5.4 -  5.95 (Antifinger, unpublished 

data). Most of the data collection for this study occurred 29 April through 31 October, 

1997. Mean daily maximum temperature during this period ranged from -5.6° C to 32.2° 

C and averaged 17.2° C during the vegetative phase (April through July) and 18.3° C 

during the reproductive phase (August through October). Total precipitation during the 

1997 growing season was 1 127.78 mm.

The age of the population is not known. Individual S. cemua plants were first 

flagged and numbered in 1985 and have been regularly censused since that time 

(Schmidt, 1987; Schmidt and Antifinger, 1992 ; Antifinger and Wendel, 1997). Most 

plants in the population are located in seven 10 m x 10 m plots (see map in Appendix A). 

In 1997 there were 81 plants in the population with at least one leaf and only 4 plants 

flowered. The study site was last burned in the spring of 1995.

Morphological examination—Herbarium study-Herbarium specimens were 

obtained from the University of Nebraska-Lincoln (NEB), University of Nebraska at 

Omaha (OMA), South Dakota State University (SDC), University of Kansas (KANU), 

and Kansas State University (KSC). Only plants from prairie habitats were used. Due to 

morphological similarities between S. cemua and other congeners, only annotated plants
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were included in the survey of herbarium specimens to ensure proper identification. 

Traits measured on herbarium plants included: total plant length, inflorescence length, 

number of flowers, number of roots, and length and width of roots. All measurements 

were in millimeters. Length measurements were only taken on roots that did not appear 

broken. The presence of a small shoot was noted when present. The herbarium survey 

was completed before the beginning of the 1997 field season.

Harvested plants-A trial excavation was performed on 29 April 1997 to determine 

a method of excavation and develop staining techniques for mycorrhizal examination. 

Two plants were harvested, photographed, weighed, and measured. Using these plants, 

different root clearing and staining procedures (Appendix B) were evaluated to establish 

a protocol for light microscopy of mycorrhizae.

Twelve plants were harvested on four dates during the growing season of 1997 

(three plants per date). There were two collection dates during the vegetative phase of 

the life cycle (19 May and 30 June), and two collection dates during the reproductive 

phase of the life cycle (17 August and 16 September). Plants for this project were 

selected based on their status in 1996. In order to survey the range of variability in 

morphology, and mycorrhizal and nutrient status at each date, a sample included a plant 

that had flowered in 1996, a large vegetative plant, and a small vegetative plant. “Large
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plants” had a leaf area greater than 20 cm2 and “small plants” had a leaf area less than 20 

cm2. Orchids were excavated by removing a cylinder approximately 15 cm in diameter 

and 20 cm deep of surrounding soil and vegetation. The entire cylinder was placed in a 

plastic bag and transported to the laboratory.

In the laboratory, plants were removed from the soil, rinsed with distilled water, 

blotted dry, and photographed. Length and width measurements of roots, leaves, and 

reproductive structures were made with digital calipers. Total plant fresh weight, and 

fresh and dry mass of individual structures were measured to the nearest 0.0001 g. 

Usually one root was prepared for light microscopy of mycorrhizae and one root for 

scanning electron microscopy. Plants that were harvested during the vegetative phase 

had small, apparently new, roots. When possible, a new or “bud” root was taken for 

mycorrhizal examination in addition to the mature root. Any remaining roots, leaves, and 

reproductive structures were dried at 70° C to a constant weight for nutrient analysis.

Bud and mature roots were not separated for nutrient analysis.

Replanted plants-Three plants were excavated and replanted in their original 

location on each of four dates. As with the harvested plants, there were two dates during 

the vegetative phase (5 June and 15 July), and two dates during the reproductive phase (5 

September and 30 September). Plants were excavated a second time to determine
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growth. Plants excavated during the vegetative phase were reexamined on 17 August, 

and plants excavated during the reproductive phase were reexamined on 31 October.

This schedule allowed the second excavation to occur after 1 and 2 months of growth. 

Plants were removed from the soil, rinsed, photographed, measured, and weighed in the 

field as above. Care was taken to keep roots moist and return them to the soil quickly.

Plants were censused in 1998 to determine the survival and growth of transplanted 

individuals. Aboveground structures were measured in May and June. Plants that had 

not emerged by 16 June were excavated, photographed, weighed, and measured. None of 

the replanted plants flowered in 1998.

Mycorrhizal examination—Light microscopy-Roots that were examined for 

mycorrhizae were separated from the rest of the plant with a small portion of the 

hypocotyl. Previous studies indicated that infection was limited to the area at the base of 

the stem (Ames, 1921). Roots were placed in a 10% KOH solution for 24 hours to clear 

the root (Stoutamire, 1991). The root was divided into 0.5 cm blocks and hand sectioned; 

each block yielding 1 0 - 1 6  sections. Sections were stained with warm 0.05% trypan 

blue in lactophenol and rinsed once with plain lactophenol (Alexander and Hadley,

1984). Sections were mounted in distilled water and coverslips were ringed with several 

layers of clear nail polish. It was necessary to reapply nail polish to some slides as gaps
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formed and caused some drying. In general, the sections from one 0.5 cm block were 

mounted onto two slides. Sections were not kept in serial order. There were 292 slides 

made from 22 plants.

One randomly-chosen slide from each block was used to determine fungal 

infection (N = 158). Each slide was assigned a random number and read in numerical 

order to reduce bias. Slides were read at 100X with a 10 x 10 mm2 ocular grid (0.5 mm 

divisions) to determine quadrant location and to assist in cell counting. Mycorrhizal 

infection was estimated by counting all cortical cells in one systematically assigned 

quadrant of each root section. Cells were classified as uninfected, amorphous, or hyphal 

infection. The presence of infection in any area of the section was also noted.

Scanning electron microscopy (SEM)-Cleaned roots were immersed in phosphate- 

buffered 5% glutaraldehyde (pH = 6.8) after separation from the root system. Roots were 

cut into sections taking care to keep the tissue immersed and then fixed for a minimum of 

three hours. Tissue was then post-fixed in phosphate-buffered 1% osmium tetraoxide 

(pH = 6.8) for 1.5 hours. Fixation was followed with an ethanol dilution series (five steps 

from 30-100%) and then immersed in acetone before critical point drying with CO2 as the 

transitional fluid. Some sections were cut after critical point drying. Specimens were



17

mounted and gold sputter-coated for 2 -  4 minutes with a Technics Hummer IV 

(Anatech, Ltd., Alexandria, VA).

Sections were viewed using a Phillips 515 scanning electron microscope (Eind 

Hoven, The Netherlands) at magnifications from 2.64 X 101 to 3.86 X 103. Pelotons 

were typically viewed at 2.0 X 102 to 4.0 X 102. Micrographs were made using Polaroid 

Type 55 positive/negative sheet film.

Nutrient analysis—Soil-During all plant excavations, soil was collected from 

immediately around the roots of the orchid. On the same day, a soil core was collected at 

the base of Helianthus rigidus (Asteraceae) as a non-mycorrhizal control. Core samples 

were likely not from the rhizosphere and therefore were not entirely equivelent to orchid 

soil samples. Helianthus rigidus is abundant at the S., cemua site and has a non-fibrous 

root system. Soil cores were placed in Whirl-pak bags, transported to the lab, and stored 

at 4° C until processed (not more than five days). Soil was sifted through multiple sieves, 

the smallest with a 1 mm pore size. Soil was dried at 60° C for 24 to 48 hours to a 

constant weight. Dry soil was analyzed for available phosphorus (Bray test) and total 

carbon. A 2M KC1 soil extract was prepared for nitrate-N and ammonium-N 

determination. 4 g fresh weight of soil was added to 20 ml of 2M KC1. The soil solution 

was mixed on a rotary shaker for one hour. The suspension was allowed to settle for ten
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minutes. The solution was transferred to 15 ml tubes and centrifuged at 4 000 RPM for 

five minutes at room temperature. The supernatant was poured into 20 ml scintillation 

vials and frozen until analyzed. All soil analyses were performed by the University of 

Nebraska-Lincoln, Department of Agronomy, Soil Testing Service (Lincoln, NE). 

Nitrate-N and ammonium-N values were expressed as fig analyte per gram dry soil using 

the following conversion: “in solution” value (mg/L) * 1 000 pg/mg * 0.02 L/ g soil dry 

weight.

Plant tissue-Plant tissue was dried at 70° C to a constant weight. The tissue was 

ground to a fine powder using a ball mill grinder (Model 5100 Spex CertiPrep, Metuchen, 

NJ). Due to small amounts of tissue, samples from some individual plants were 

combined to meet the mass required for the analyses. Total C, total N, and the C:N ratio 

were determined by micro-Dumas combustion elemental analysis. Total phosphorus was 

determined by continuous flow anion colorimetry of an ash/double acid extraction. 

Ground tissue was sent to the University of Georgia, Institute of Ecology, Stable Isotope 

Laboratory (Athens, GA) where extractions and analyses were performed.

Data analysis—All statistical analyses were performed using the Statistical 

Analysis System (SAS, 1990) general linear model, t-test, correlation, means and 

univariate procedures. Student-Newman-Keuls (SNK) multiple comparison tests were
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performed on significant main effects. Analyses were tested at a  = 0.05. Significant 

values are indicated by an asterisk in tables and figures. Details of each analysis are 

presented in the Results section. Means and standard errors are presented throughout. 

Figures were prepared with CricketGraph (version 1.3).

Plant status in 1997 was based on root volume and flowering history. Leaf area 

could not be used in 1997, as it was in 1996, because the data were incomplete. Root 

volume was estimated using the formula 2/37tr2h. The volumes of individual roots were 

summed for total root system volume. Three classes were defined: 1) flowered in 1997, 

2) vegetative in 1997 with a root system volume greater than 1.5 cm3, and 3) vegetative 

in 1997 with a root system volume less than 1.5 cm3.

Few plants in the population flowered during the 1997 season. To increase the 

sample size of plants that were reproductive in 1997 for light microscopy and nutrient 

analysis, a single root from two plants in the replanted group that flowered and a new 

plant found in flower were harvested.

Hyphal and amorphous peloton counts were expressed as proportions to remove 

the effect of root size, i.e., counts were divided by the total number of cortical cells. The 

proportion of infected cells included the number of cells with hyphal and amorphous 

pelotons per total number of cortical cells. Only hyphal pelotons are thought to be
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biologically active (Curtis, 1939; Currah, 1991; Stoutamire, 1991). To estimate the 

amount of active infection, the number of hyphal pelotons was divided by the total 

number of pelotons. Proportions were arcsine transformed to improve normality. All 

infection proportions were analyzed separately.

Results

Herbarium specimens—Antifinger and Wendel (1997) found that S. cemua must 

reach a critical aboveground size before plants will flower. Herbarium specimens 

represent a unique sample because usually the plants have flowered and are therefore 

robust. All selected herbarium specimens were from prairie habitats and were not in leaf, 

but a developing shoot was visible in addition to the flowering stalk. For this sample, the 

mean total inflorescence height was 263.14 ± 3.81 mm (N = 257), mean flower number 

was 9.18 ± 0.23 (N = 257) per rank and mean root number was 3.07 ± 0.08 (N = 257). 

With the exception of four herbarium specimens collected from the Nine-Mile Prairie 

population in 1985, few plants had unbroken roots. Average root system volume of these 

four plants was 1.48 ± 0.068 cm3.

Shoot morphology—Plant excavations allowed observations of both root and shoot 

development. In 1997, leaves of the basal rosette first appeared aboveground in April
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and all leaves had senesced by the end of July. Of the three to five leaves of the basal 

rosette, one was noticeably smaller and may represent an overwintering leaf. After the 

senescence of the basal rosette, the developing overwintering shoot became visible. One 

to two small leaves then developed. The shoot was not heavily pigmented and showed an 

increase in pigmentation at the distal end as it lengthened and approached the soil 

surface. When two leaves were present on the shoot, only one was pigmented and 

expanded. By September, some overwintering leaves had reached the surface. The 

overwintering shoot of flowering plants tended to be smaller than that of vegetative 

plants until flowering was terminated.

The developing inflorescence became visible aboveground in early August. In a 

plant that later flowered, no belowground structures were noted that indicated flowering 

would occur. Flowering in the Nine-Mile Prairie population of SL cemua has been 

recorded as early as August, but in 1997, open flowers were not observed until 

September. Of the four plants that flowered in 1997, three of were included in this study.

Root morphologv--The roots of SL. cemua were often entangled with the fibrous 

root systems of neighboring grass species. Some roots were oddly shaped and appeared 

to have grown in response to these space limitations. Several times the excavation of a 

“single” orchid aboveground disclosed multiple plants belowground. These roots were in
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close proximity and appeared to have divided belowground. Vegetative propagation in 

Spiranthes by root separation may occur when plants are dormant (Brickell and Zuk, 

1996).

The proportion of total biomass in the root system varied through the growing 

season: 0.816 ± 0.05 for plants in leaf (N = 7), 0.979 ± 0.01 for plants with a developing 

shoot (N = 7) and 0.556 for plants with an inflorescence (N = 1). The biomass of roots 

used for mycorrhizal examination was estimated with the regression equation: dryweight 

= 0.110333 * freshweight + 0.0019 (r2 = 0.8504, P = 0.0001). The biomass of leaves was 

obtained from the regression equation: dryweight = 0.090409 * freshweight - 0.000171 

(r2 = 0.8299, P = 0.0006). As with many herbaceous perennials, a large proportion of the 

biomass of S. cemua is belowground.

On average the root system of cemua was composed of 3.45 ± 0.29 (N = 33) 

roots. There were young and old mature roots, bud roots, and shriveled roots, possibly 

from the previous year. Young and old mature roots were the same size, but young roots 

were lighter in color and had no evidence of herbivory. Emerging bud roots were 

observed in plants excavated on 29 April. By May, bud roots ranged in length from 2.51 

to 19.16 mm. They continued to increase through July, but no bud roots were found after
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July. The “disappearance” of bud roots suggests that not all buds develop into mature 

roots.

Temporal changes in the root system—An obvious change in the root system was 

the change in root number. There was a significant decrease in mean root number 

between the vegetative and reproductive phases (Fig. 1). This change is likely due to the 

senescence of bud roots. Plants excavated during the vegetative phase had young and old 

mature roots, as well as bud roots. Plants that were reexamined in August had only 

young mature roots present.

The roots of S. cemua are storage organs for both water and the products of 

photosynthesis. Therefore, the size of the root system was expected to reflect the 

changing resource demands of the plant during the growing season. To detect these 

changes, plants were excavated May through September. Root system volume was used 

to estimate root system size. Temporal changes in root system volume were analyzed 

with ANOCOV using leaf area in 1996 as the covariate. There was no significant effect 

of time on root system size (Table 1) whether based on month or growing season phase. 

This is particularly interesting since there was a significant decrease in the number of 

roots between the vegetative and reproductive phases of the growing season. Apparently



Figure 1. Change in mean root number during the vegetative and reproductive phases of 

the growing season. Both bud and mature roots are included. Bars indicate one SE of the 

mean. Sample sizes were N = 18 in the vegetative phase and N = 15 in the reproductive 

phase.
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Table 1. ANOCOV of the effect of time (month or phase) on 

root system volume. Leaf area in 1996 is the covariate.

Source DF F P

Month 4, 1 0.79 0.3583

Covariate 1, 16 0.08 0.7862

Phase 1, 1 1.13 0.3001

Covariate 1. 19 0.89 0.3582
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the bud roots make a small contribution to the total root system volume. It is also 

possible that the small sample sizes prevented detection of differences in root system 

volume. Further, because the plants selected at each date represented different life 

history and size categories, variation at each date was maximized.

Significant differences in root system volume were found among plants with 

different reproductive histories and sizes (one-factor ANOVA, F = 5.87, P = 0.0094, DF 

= 2, 21). Plants that were vegetative and large in 1996 had a significantly larger root 

system volume than plants that were vegetative and small (Fig. 2). The root system of 

plants that reproduced in 1996 was intermediate in size. This may reflect a cost of 

flowering.

In order to study changes in the root system of the same individual, a group of 

plants were excavated and reexamined at later dates. The change in root number and root 

system volume between the first and second excavations was analyzed with a two-factor 

ANOVA to assess the effect of excavation regime (one or two months between the first 

and second excavation), growing season phase (vegetative or reproductive) and their 

interaction. There was a significant decrease in root number between the vegetative and 

reproductive phases, but excavation regime had no effect (Table 2). Root number 

decreased by an average of 2.83 ± 0.98 during the vegetative phase, but there was no



Figure 2. The effect of status in 1996 on mean root system volume in 1997. Status in 

1996 is based on leaf area (plant size) and reproduction in 1996. Bars represent one SE 

of the mean. Means with the same letter are not significantly different.1 Sample sizes 

were N = 5 for flowering, N = 10 for large vegetative and N = 7 for small vegetative.
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Table 2. Two-factor ANOVA of the effect of growing season phase and 

excavation regime (one or two months between excavations) on the change 

in number of roots between the first and second excavations.

Source DF F P

Phase 1,8 12.57 0.0076*

Excavation regime 1,8 3.52 0.0974

Interaction 1,8 3.52 0.0974

Table 3. Two-factor ANOVA of the effect of growing season phase and

excavation regime (one or two months between excavations) on the change 

in root system volume between the first and second excavations.

Source DF F P

Phase 1,8 0.00 0.9604

Excavation regime 1,8 0.91 0.3684

Interaction . 1,8 0.52 0.4911
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change in root number between excavations during the reproductive phase. Changes in 

root number during the vegetative phase were similar to those observed in plants that 

were destructively sampled. Change in root system volume was not affected by either 

excavation regime or by growing season phase (Table 3).

All plants excavated and replanted during the vegetative phase emerged in 1998 

and grew normally. However, the plants excavated during the reproductive phase did 

not. To determine if these plants were dead or dormant, they were excavated on 16 June 

1998. Five of the six plants were alive. Shoots appeared etiolated and were found 

growing horizontally, as well as vertically, in the soil. Average shoot length was 84.68 ± 

0.92 mm. It is possible that by exposing shoots late in the season a developmental cue 

was altered, or that soil upheaval caused some mechanical interference with normal shoot 

expansion. The sixth plant was not found and a gopher mound was observed adjacent to 

its flag.

Root internal morphology—Several layers of cells were visible in S. cemua root 

cross-sections. Cells of the epidermis had scalariform thickenings on the inner cell wall 

as described by Stern et al. (1993). Projecting from the epidermis were epidermal hairs. 

Epidermal hairs appeared to be elongated epidermal cells and also had scalariform 

thickenings. The hairs tended to tear in a pattern consistent with these thickenings. Stem
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et al. (1993) suggested the thickenings add support and are needed because the roots have 

thin epidermal cell walls. Cortical cells were polygonal and homogeneous. The cortex 

radius was generally 9 - 1 7  cells wide. The endodermis and stele were well defined.

Other structures viewed within the root included raphid bundles, starch granules, 

and starch granule aggregations known as spiranthosomes (Stern et al., 1993). Starch 

granules and spiranthosomes were visible with SEM. Because stained roots were cleared 

with 10% KOH, no starch was observed in sections observed with light microscopy.

Mvcorrhizae—The mycorrhizae found in SL cemua were similar to mycorrhizae 

described from other orchid species. Fungal septa were observed with light microscopy 

(Fig. 3) indicating the fungus was not a zygomycete, such as VAM, which are commonly 

found in prairies. Two forms of orchid mycorrhizae were observed with both light 

microscopy and SEM. “Hyphal” pelotons had distinct filaments in a coiled bundle within 

root cortical cells (Figs. 4 - 5 )  and “amorphous” pelotons lacked distinct hyphal filaments 

but did have filaments “anchoring” the pelotons within the cortical cells (Figs. 6 - 7). We 

assumed hyphal pelotons were biologically active and amorphous pelotons were 

nonfunctional (Curtis, 1939; Stoutamire, 1991). Amorphous pelotons, though non­

functional, persist within the cortical cells providing a history of infection for the life of



Figure 3. Infected root epidermal hair showing fungal septa (arrows). Bar =15 pm.
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Figures 4 - 5 .  Hyphal pelotons. Individual hyphae are distinct within the cortical cells. 

(4) Infection viewed with light microscopy. Note that the infected epidermal hair 

(closed arrow) is adjacent to an infection site. Cell to cell infection is visible (open 

arrow). Bar = 30 pm. (5) Peloton viewed with SEM. Bar =100 pm.





Figures 6 - 7 .  Amorphous pelotons. Fungal hyphae are digested and no longer 

distinct. Filaments anchoring the peloton within the cortical cell are clearly 

visible. (6) Infection site viewed with light microscopy. Pelotons are 

synchronous in the infection site. Bar = 65 pm. (7) Peloton viewed with SEM. 

Note the cell to cell infection (arrows). Bar =100 pm.
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the root. Cortical cells that were infected more than once were noted in cemua and 

have been observed in other orchids (Harley, 1959; Rasmussen, 1995).

Roots are thought to be infected through epidermal hairs or at the base of hairs 

(Peterson and Currah, 1990; Szendrak, 1997). Infected epidermal hairs were observed 

(Fig. 8). Infection within the root was restricted to the cortex. Figures 4 and 7 show cell- 

to-cell hyphal connections, demonstrating how infection is spread within the cortex. 

There was always a layer of cells directly under the epidermis where pelotons were not 

found. Pelotons were also never observed in cells with raphid bundles.

Mycorrhizal infection was observed along the entire length of the roots. The 

mean proportion of cortical cells of all roots infected with mycorrhizae was 12.1 ± 0.01% 

(7.4 ± 0.01% with amorphous pelotons and 4.7± 0.01% with hyphal pelotons). When 

buds and mature roots were analyzed separately, an average of 31.1 ± 0.04% of bud root 

cortical cells were infected while 10.4 ± 0.01% of mature root cortical cells were 

infected. Root buds had significantly higher proportions of all infection types than did 

mature roots (Table 4).

In the Nine-Mile population, biologically-active hyphal infection was found in all 

mature roots but at very low levels (2.13 ± 0.005%). Figures 9 and 10 show profiles of 

cortical cell infection for a “typical” mature root and bud root, respectively, from the



Figure 8. Infected epidermal hairs. Section of orchid root showing a group of infected 

epidermal hairs (arrows). Bar = 65 pm
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Table 4. One-factor ANOVA of the effect of root type (bud or mature) on 

cortical cell infection proportions.

Infection tvpe DF F P

Hyphal 1,649 139.26 0.0001*

Amorphous 1,649 4.43 0.0357*

Total 1,649 47.41 0.0001*

Hvphal/Total 1.344 84.54 0.0001*



Figures 9 - 1 0 .  Variation in infection type along the length of the root for a bud and 

mature root from the same plant (# 139). A block equals 0.5 cm. Block one is at the 

proximal end o f the root. (9) Mature root. The majority of the cortical cells in the 

mature root are uninfected. (10) Bud root. Bud roots have a high proportion of hyphal 

(living) infection.
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same plant. The hyphal infection in blocks 1 - 3  and blocks 5 - 7  probably represents 

two separate infection events in the mature root (Fig. 9). The mature root had a mean 

hyphal infection of 3.74 ± 0.01% versus 32.41 ± 0.06% for the root bud. The mechanism 

controlling infection in the two types of roots requires further investigation.

Pattern of mycorrhizal infection along the length of the root—Richardson et al. 

(1993) examined the mycorrhizae of tropical epiphytic orchids and found that the percent 

infection varied along the length of the root. Differences in infection proportions among 

0.5 cm blocks were examined to try to find a pattern of exogenous infection. Infection 

proportions were analyzed with a one-factor ANOVA separately for each root. Twelve 

of nineteen roots had significant differences among blocks for the cortical cell infection 

proportions (Table 1, Appendix C). A greater number of roots (eight of nineteen) had 

significant differences among blocks in amorphous infection proportions than in hyphal 

infection proportions (seven of nineteen). Though pelotons were found throughout the 

root, no distinct pattern of infection along the length of the root was detected.

Seasonal variation in mycorrhizal infection—Mycorrhizae are known to be 

important in the acquisition of nutrients and water by roots of the host plants. Because 

the dependence of JL cemua on root storage may vary within the growing season, it is 

possible that the level of mycorrhizal infection would also change seasonally.
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Mycorrhizal infection might show a seasonal pattern due to the influence of the host 

plant, the fungus, or some interaction of the two (or more) species. To detect changes in 

infection proportions over time, a nested ANOVA was performed with harvest date as the 

main effect. Nested factors included plant within harvest date and block within plant. 

Harvest date was not a significant effect for any of the infection proportions (Table 5). 

Except for the hyphal proportion, differences among plants were not significant. Block 

was significant for all of the infection proportions. A nested ANOVA was also used to 

examine differences between the vegetative and reproductive phases of the growing 

season (Table 2, Appendix C). As above, plant nested within phase and block nested 

within plant were tested. Plants were replicates for all infection types and differences 

among blocks were significant for all infection proportions. There was no significant 

effect of season on any of the infection proportions.

Effect of life history and season on amorphous infection—Masuhara and Katsuya 

(1992) observed a decrease in active infection at the time of flowering in Sk sinensis. If 

infection in SL cemua responds similarly, plants which flower would have a lower 

number of pelotons than vegetative plants. To address this question, plants that flowered 

in 1996 were analyzed. Too few plants flowered in 1997. Since flowering occurred the 

previous year, amorphous pelotons would reflect this association better than hyphal
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Table 5. Nested ANOVA of the effect of harvest date on cortical cell infection.

Infection tvpe Effect DF F P

Hyphal3 Harvest date 3, 18 1.09 0.3796

Plant 18, 99 2.79 0.0006*

Block 99, 530 .94 0 .0 0 0 1 *

Amorphous15 Harvest date 3, 18 1.64 0.2145

Plant 18,99 1.41 0.1455

Block 99,530 3.64 0 .0 0 0 1 *

Total0 Harvest date 3, 16 0.27 0.8461

Plant 16, 2 0 0.89 0.5896

Block 20, 609 6.30 0 .0 0 0 1 *

Hyphal/Total Harvest date 3, 12 1.17 0.3614

Plant 1 2 , 16 1 .1 2 0.4107

Block 16.311 4.26 0 .0 0 0 1 *

a number of hyphal pelotons/ number of cortical cells 
b number of amorphous pelotons/ number of cortical cells 
c hyphal + amorphous pelotons/ number of cortical cells
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pelotons, which may last only a couple of weeks. An ANOCOV of the effect of life 

history (vegetative or flowering) was performed. Harvest date was chosen as the 

covariate to account for the different time periods the plant was in the soil and therefore 

exposed to additional fungal infection. Neither life history nor harvest date were 

significant (Table 6 ). The function of mycorrhizae in adult orchids is still poorly 

understood. This analysis suggests that flowering has no lasting effect on mycorrhizal 

infection. However, small sample size may have contributed to a lack of significance.

Plant nutrient concentrations—Total carbon, nitrogen, and phosphorus were 

determined for the roots, leaves, peduncle, axis, and flowers and fruits. Nutrient levels 

are summarized in Table 7. On average root and shoot C were nearly equal (root / shoot 

C: 0.93 ± 0.026) while nitrogen concentrations were higher in leaves (root / shoot N:

0.65 ± 0.075). The C:N ratio for roots was almost double that of leaf C:N because root N 

levels were much lower than leaf N levels (C:N root: 17.15 ± 1.47, N = 18; C:N leaf: 

9.38 + 0.36, N = 8 ). It is possible that leaves have higher nitrogen levels in response to 

the physiological demands of photosynthesis.

Seasonal variation in root nutrient levels—Through the growing season, the root 

system of ̂  cemua must respond to a variety of resource demands. Like other



49

Table 6 . ANOCOV of the effect of life history status in 1996 

(vegetative or flowered) on amorphous infection observed in 1997 

with harvest date as the covariate.

Source DF F P

Life history 1,3 0.95 0.3486

Covariate 3. 13 0 .0 0 0.9578
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Table 7. Nutrient concentrations in SL cemua. Sample size is given in parentheses. Units 

are as follows: total C and total N: % per g dry weight; and total P: mg P per g dry 

weight.

Structure Total Carbon Total Nitrogen Total Phosphorus

Leaf 41.64 ±0.55 (8 ) 4.48 ±0.18 (8 ) —

Root 39.43 ±0.59 (18) 2.58 ±0.22 (18) 2.57 ± 0.24 (8 )

Axis 42.10 ± 1.20 (3) 3.59 ± 1.30 (3) —

Peduncle 43.85 ± 0.46 (2) 1.65 ±0.20 (2) 1.26(1)

Flowers & fruit 44.63 ± 0.36 (3\ 4.24 ± 0.59 (3} 4.96 ± 0.6 (2̂
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perennials, growth of new leaves and roots probably depends on root system reserves. 

Later, when the leaves of the basal rosette are actively photosynthesizing, the roots 

function in storage. Root tissue nutrients were analyzed with a one-factor ANOVA to 

detect differences in nutrient levels related to harvest date. Root total nitrogen varied 

among harvest dates (F = 7.78, P = 0.0027, DF = 3, 14) as did the carbon to nitrogen ratio 

(F = 4.96, P = 0.0150, DF = 3, 14). The greatest difference in root nitrogen was between 

the first and second harvest dates on 19 May and 30 June (Fig. 11). There was no 

difference among dates for total carbon (F = 1.08, P = 0.3908, DF = 3, 14) or phosphorus 

(F = 1.24, P = 0.3540, DF = 2, 6 ). There was also no difference in nutrient levels 

between the vegetative and reproductive phases. Because most of the plants in the 

sample did not flower, a difference between the phases was not expected. Changes in the 

root system of non-flowering plants likely occurred during the vegetative season.

Soil nutrient concentrations—The soil nutrient status at Nine-Mile Prairie is 

described in Table 8 . The £L. cemua population is located on a gentle north-facing slope 

and the orchids in this study were enclosed in six of the seven plots, labeled A through G. 

Soil moisture and nutrient concentration variation among plots were analyzed with a one- 

factor ANOVA. Spatial variation in soil nutrient and moisture levels could confound



Figure 11. Seasonal variation in mean root total nitrogen. Bars indicate one SE of the 

mean. Means with the same letter are not significantly different. Sample size was N = 3 

for each date.

0
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Table 8 . Soil nutrient and moisture concentrations. Units are 

as follows: ammonium-N, nitrate-N, and phosphorus: pg/gds; 

total carbon and soil moisture: %.

Nutrient N Mean ± SE

Ammonium-N 49 4.54 ±0.61

Nitrate-N 49 1.23 ±0.11

Phosphorus (Bray) 49 5.62 ±0.13

Total carbon 49 3.38 ± 0.07

Soil moisture 49 24.99 ± 0.89
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interpretation of the role of mycorrhizae. No significant differences among plots were 

found for any of the soil nutrients or soil moisture (Table 9).

Comparison of soil nutrients near S. cemua and H. rigidus through the growing 

season—Soils vary spatially and temporally in nutrients and moisture. Mycorrhizae help 

their host plants with the acquisition of water and minerals and are able to search larger 

volumes of soil. Helianthus rigidus is not known to be mycorrhizal and provided a 

control for the mycorrhizal soil surrounding Sh cemua roots. Both £L rigidus and S. 

cemua have non-fibrous root systems. Differences in nutrient levels between SL cemua 

and FL rigidus soil through the season were analyzed with a two-factor ANOVA with 

month and species as the main effects. There was a significant difference in soil carbon 

between the two species (F = 25.26, P = 0.0001, DF = 1, 37) but not for other nutrients 

(Figs. 12 -  16). Spiranthes cemua had a greater amount of carbon in the soil around the 

roots. Though not a significant difference (F = 3.08, P = 0.0873, DF = 5, 37), £L rigidus 

consistently had higher mean ammonium-N in every month except June. Monthly 

differences in soil moisture (F = 12.09, P = 0.0001, DF = 5, 37), total carbon (F = 5.03, P 

= 0.0013, DF = 5, 37), ammonium-N (F = 10.11, P = 0.0001, DF = 5, 37) and nitrate-N 

(F = 6.12, P = 0.0003, DF = 5, 37) were significant, but differences in phosphorus were 

not (Figs. 12 — 16). May, July, and October were the wetter months and September was
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Table 9. One-factor ANOVA of the effect of location on soil nutrient 

concentration and moisture. Soil was taken from within six 

10x10 plots (A through F).

Nutrient DF F P

Ammonium-N 5, 43 0.97 0.4487

Nitrate-N 5,43 1.39 0.2472

Total carbon 5,43 0.96 0.4524

Bray phosphorus 5, 43 1.76 0.1416

Soil moisture 5. 43 0.52 0.7593



Figure 1 2 -1 6 . Comparison o f soil nutrients and moisture near the roots of Spiranthes 

cemua and Helianthus rigidus. Means ± SE are given. Monthly means with the same 

letter are not significantly different. Sample sizes were: May, N = 3 for both species; 

June, N = 3 for both species; July, N = 6  for both species; August, N = 3 for both species; 

September, N = 6  for both species; and October, N = 4 for S. cemua and N = 3 for H. 

rigidus. (12) Total carbon. Across all dates, total carbon was significantly greater in S. 

cemua soil. (13) Phosphorus (Bray). (14) Ammonium-N. (15) Nitrate-N. (16)

Percent moisture.
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the driest. Consistent with results in other grasslands (DeLuca and Keeney, 1994; Turner 

et al., 1997), inorganic nitrogen levels decreased through the growing season. It is 

important to note that nitrogen mineralization was not measured. It is possible that soil 

inorganic nitrogen does not represent the amount of total available nitrogen. Soil carbon 

was highest in May and then decreased. Month by species interactions were not 

significant for any of the soil nutrients or moisture.

Nutrients and mycorrhizal infection—Plant and soil nutrients may be related to 

mycorrhizal infection if the fungus serves as a conduit between the soil and the plant. At 

Nine-Mile Prairie, S. cemua is photosynthetically active for only four to five months of 

the year and may depend on mycorrhizal fungi when belowground. Further, mycorrhizal 

infection of protocorms is followed by rapid growth and the same may be true for adult 

plants. Therefore, cemua may also be dependent on mycorrhizae during periods of 

aboveground growth such as the breaking of seasonal dormancy and flowering. Because 

so little is known about the mycorrhizal relationship in adult plants, and the possibility 

that different orchid species are dependent on mycorrhizal fungi to differing degrees, 

several hypotheses about the relationship between mycorrhizal infection and tissue and 

soil nutrient levels can be investigated.
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First we hypothesized that the orchid would have increased mycorrhizal infection 

in soil with lower nutrient levels (Wetzel and van der Valk, 1996). Hyphal infection was 

analyzed in bud and mature roots separately. Of the six bud roots sampled, four had 

hyphal infection present. Three of the roots had over 30% of the cortical cells infected 

(the fourth root had about 5% infection). There was little difference among the soil 

samples from around the roots of these six plants in carbon or phosphorus and no 

correlation with hyphal infection was observed (Table 3, Appendix C). Bud roots were 

only present through early summer when soil ammonium and nitrate were at their highest 

levels. There were no significant correlations between hyphal infection in bud roots and 

soil ammonium-N (r = 0.26471, P = 0.6122, N = 6 ) or nitrate-N (r = -0.52941, P = 

0.2801, N = 6 ). However, scatterplots of the data suggest an association between hyphal 

infection and inorganic soil nitrogen (Fig. 17). Plants with the highest soil ammonium-N 

levels also had the highest infection levels. In contrast, the two plants without hyphal 

infection occurred in soil with the highest nitrate-N levels: 5.085 and 6.925 pg/gds. The 

nitrate-N level of soil surrounding plants with infection ranged from 1.811 to 3.107 

pg/gds. No correlation was found between soil nutrient levels and hyphal infection in 

mature roots (Table 3, Appendix C).
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Next we hypothesized that roots with lower root nutrient levels would have higher 

levels of mycorrhizal infection. Bud and mature roots were not separated when tissue 

nutrient concentrations were determined. Therefore, root nutrient values are assumed to 

be representative of the entire root system of an individual plant. As above, hyphal 

infection was examined and a greater response was expected in buds. Root phosphorus 

was determined in only 8 plants due to the mass requirements of the analysis. There was 

no significant correlation observed between root phosphorus or root carbon and hyphal 

infection in either bud or mature roots (Table 3, Appendix C). As with soil nitrate-N, 

plants with greater root nitrogen appear to have less hyphal infection (Fig. 17). This 

probably reflects the plant’s ability to meet its own nitrate requirements in soil with 

higher nitrate-N levels. However, no significant correlation was observed between 

hyphal infection in bud roots and total root nitrogen (r = -0.52941, P = 0.2801, N = 6 ).

The lack of any detectable relationship between tissue nutrients and fungal infection may 

be explained by the fact that the mycorrhizae is tolypophagous (characterized by waves 

of infection, fungal lysis and reinfection) and probably necrotrophic (Rasmussen, 1995). 

The orchid receives mineral nutrients upon fungal digestion (when pelotons become 

amorphous). If pelotons are digested quickly, it would be difficult to observe the plant- 

fungal response to nutrient levels. Unfortunately, the persistence time of amorphous



Figure 17. Relationship of hyphal infection in bud roots to soil ammonium-N and nitrate- 

N and root total nitrogen. N = 6 .
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pelotons is unknown and amorphous pelotons from multiple infection episodes are 

indistinguishable.

DISCUSSION

Root systems of terrestrial orchids have a variety of underground structures. In 

Spiranthes the root system is composed of several tuberoid roots which are thought to 

function in both storage and nutrient and water acquisition (Stem et al., 1993). Masuhara 

and Katsuya (1992) found two types of roots in Ŝ . sinensis: genuine roots which were 

primarily mycorrhizal and therefore involved in mineral and water acquisition, and 

tuberous roots which were primarily involved in storage. These roots differed in time of 

development and infection level but were morphologically indistinguishable. A similar 

situation may exist in SL cemua with the bud roots functioning as the mycorrhizal roots 

and the mature roots functioning primarily in storage. Bud roots developed and senesced 

within the vegetative season. Old mature roots senesced during the vegetative season, 

but development of storage roots was not observed. Excavation of S, cemua during 

dormancy (October through March) is needed to determine when tuberous roots develop.

In studying the root system of replanted plants, volume was a better predictor of 

size than root number due to root senescence. To estimate growth of the root system,
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changes in the presence and absence of individual roots should be documented. This 

could be achieved if roots were individually marked. Also, the mini-rhizotron technique 

might be useful in following root development and senescence, especially when the 

prairie sod is frozen.

Spiranthes cemua tolerated excavation well and, with the exception of one plant 

(thought to have been destroyed by a small mammal), all plants were alive in 1998.

Plants were able to survive the loss of a root either by accidental breakage or collection. 

This may be related to their ability to reproduce asexually through root splitting (Brickell 

and Zuk, 1996). These results indicate that cemua would be a good candidate for 

reestablishment through transplantation. In this study, plants were better able to survive 

transplanting during the vegetative or early reproductive phase.

Bud roots had a significantly larger proportion of infected cortical cells and higher 

proportions of active infection as compared to mature roots. Though no seasonal change 

in mycorrhizal infection was detected when all roots were analyzed, there was seasonality 

to mycorrhizal infection in cemua. The bud roots represent the majority of the 

infected tissue and the bud roots were only observed during the vegetative phase (i.e., the 

seasonality of the mycorrhizal infection is linked to the phenology of bud roots). In 

orchid protocorms, mycorrhizal infection is followed by rapid growth (Rasmussen,
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1990), and it is likely that mycorrhizae are important for nutrient acquisition during 

vegetative growth of adult orchids as well.

Rasmussen (1995) notes that different orchid species rely on mycorrhizal fungi to 

different degrees in the adult stage. For example a non-chlorophyllous orchid, such as 

Corallorhiza sp., is entirely dependent on its fungal associate while a chlorophyllous 

orchid may not be. Levels of active mycorrhizal infection in SL cemua do not appear to 

be related to current nutrient levels in the root system. There are several possible 

explanations. First mycorrhizae may not respond to root nutrient levels but to some other 

factor such as temperature or soil nutrient concentrations. A second possibility is that 

because the relationship is necrotrophic, amorphous peloton numbers should be used for 

analyses instead of hyphal pelotons. Unfortunately, the persistence time of amorphous 

pelotons is unknown and different infection events would be indistinguishable. Finally, 

available carbon and nitrogen, rather than total values, might correlate better with 

mycorrhizal infection. It is possible that total carbon and nitrogen estimates masked 

changes in available carbon and nitrogen. Saarinen (1998) suggests that biochemically 

available carbon (non-structural carbohydrates) and nitrogen (as free amino acids) better 

represent plant carbon and nitrogen status than do total carbon and nitrogen.
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Zimmerman (1990) found that total non-structural (TNC) carbon decreased in 

pseudobulbs of the epiphytic orchid Catasetum viridiflavum with the development of the 

new shoot. In another epiphytic orchid, Oncidium ‘Goldiana’, Hew and Ng (1996) found 

that TNC in pseudobulbs not on the current shoot decreased with inflorescence 

development. In S. cemua no change was found in root total carbon during the growing 

season. Because only one plant that flowered in 1997 was harvested, a decrease in 

carbon due to inflorescence production was not tested. An increase in root carbon was 

expected in the spring and early summer due to storage of photosynthates. It is possible 

that no change was observed in cemua through the growing season because total and 

not available carbon was measured.

Total nitrogen in roots of R. cemua was greater than total nitrogen found in the 

pseudobulbs of the epiphyte C  viridiflavum (Zimmerman, 1990) and the wintergreen 

terrestrial orchid Tipularia discolor (Whigham, 1984). Total nitrogen decreased during 

shoot development and growth in C. viridiflavum (Zimmerman, 1990). A similar trend 

was observed in SL cemua with a significant decrease in root nitrogen from May to June. 

This decrease is probably related to the development of new tissues and the production of 

photosynthates. Root nitrogen increased after leaf senescence in J\ discolor (Tissue et
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al., 1995) and in the epiphyte (X ‘Goldiana’ (Hew and Ng, 1996). A slight, but not 

significant, increase in root nitrogen was observed after leaf senescence in SL. cemua.

In C  viridiflavum. pseudobulb total phosphorus increased when the plant was 

dormant and subsequently decreased during development and growth of the new shoot 

(Zimmerman, 1990). Hew and Ng (1996) found that phosphorus of the back pseudobulbs 

decreased in proportion to the increase in the newly developing pseudobulb in O. 

‘Goldiana’. No significant change in phosphorus during the growing season was 

observed in SL cemua roots. Whigham (1984) found that phosphorus decreased in the 

first year corm with inflorescence development and new corm initiation in T. discolor, 

however differences were not analyzed statistically. Whigham (1984) also found that 

nutrient uptake from the litter and soil was necessary for inflorescence development. It is 

possible that different strategies of mineral nutrient translocation and storage are utilized 

by terrestrial and epiphytic orchids. The epiphytic environment is marked by highly 

variable nutrient and water levels compared to a terrestrial environment. Terrestrial 

orchids may depend more on direct acquisition from the soil than nutrient translocation.

The soil at Nine-Mile Prairie was more acidic (range of pH = 5.4 -  5.95 vs. PH = 

6.1) and had higher amounts of ammonium-N, nitrate-N and phosphorus than Konza 

Prairie Research Natural Area, a native tallgrass prairie in Riley Co., KS (Bentivenga and



Hetrick, 1992). Differences between Konza and Nine-Mile Prairies may be explained by 

differences in parent material and species composition. When soil ammonium-N and 

nitrate-N concentrations from Nine-Nile Prairie were compared with Allwine Prairie, a 

restored prairie in Douglas Co., NE, the Nine-Mile Prairie values were considerably 

higher (4.54 ± 0.61 NH4-N pg/gds vs. 0.53 NH4-N pg/gds and 1.23 ± 0.11 NO3-N pg/gds 

vs. 0.273 NO3-N pg/gds; Vinton, unpublished data). Allwine Prairie may have poorer 

quality soil due to prior cultivation. Since the Nine-Mile Prairie soil samples were taken 

from the rhizosphere of 5L. cemua. they may have higher nutrient concentrations.

Similar to other grassland studies (DeLuca and Keeney, 1994; Turner et al.,

1997), soil ammonium-N and nitrate-N decreased through the growing season at Nine- 

Mile Prairie. Not only does inorganic nitrogen tend to decline through the growing 

season, it is often a limiting nutrient in prairies (Schimel et al., 1991). Spiranthes cemua 

has bud roots with high mycorrhizal infection at the time that soil inorganic nitrogen is 

highest. It is possible that S. cemua is able to meet its nitrogen requirements with a lower 

overall number of pelotons and, therefore, at a lower cost. Plants that did not have 

hyphal infection in the bud roots had the highest soil nitrate-N concentrations (Fig. 17), 

and it is likely these plants were able to acquire enough nitrogen without mycorrhizae.
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Compared to the microbial flora, plants are better able to acquire nitrate-N than 

ammonium-N from the soil (Jackson, Schimel, and Firestone, 1989). No hyphal infection 

was found in bud roots of the plants in soil with the highest soil nitrate-N. Interestingly, 

plants with higher hyphal infection were associated with soils lower in nitrate-N and 

higher in ammonium-N. Stephen and Fung (1971) tested the nitrogen requirements of 

two mycorrhizal fungal isolates from the orchid Arundina chinensis and found the fungi 

were unable to use nitrate as a nitrogen source. Perhaps the fungus in Ŝ . cemua has 

similar preferences and is more abundant in soil with higher ammonium, which may 

result in higher mycorrhizal infection.

VAM are thought to be most important in phosphorus acquisition (Carlile and 

Watkinson, 1994; Smith et al., 1994) and movement of phosporus from the fungus to 

seedlings has been demonstrated in orchids (Alexander, Alexander, and Hadley, 1984). 

Though no change in soil phosphorus was observed over the growing season, changes in 

plant resource demands were expected. No correlation between hyphal and soil 

phosphorus was detected. It is possible that phosphorus is not limiting S. cemua at Nine- 

Mile Prairie.

Carbon transfer to protocorms and developing seedlings from mycorhizae is well 

documented in orchids (Smith, 1966, 1967; Alexander and Hadley, 1985), however, the
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movement of carbon to adult chlorophyllous orchid plants has not been confirmed. Soil 

from around the roots of adult orchids was tested for total carbon, and soil from near the 

roots of the forb £L rigidus was used as a non-mycorrhizal control. The rhizosphere soil 

was expected to have high carbon values because root exudates are a major source of 

carbon addition in grassland soils (Anderson and Coleman, 1985). Though carbon 

concentrations showed no significant seasonal variation, cemua had significantly 

higher carbon values than HL rigidus. It is unlikely that the observed difference between 

carbon levels in soil from S. cemua and HL rigidus was due only to differences in soil 

sampling (i.e., rhizosphere vs. not) because significant differences were not observed in 

the other nutrients as well. Further research is necessary to determine why cemua had 

higher soil carbon than IT rigidus. No relationship between mycorrhizal infection levels 

and soil carbon was detected during the growing season.

Few plants flowered in 1997 and the effect of flowering on mycorrhizal infection 

and nutrient allocation was not examined. Information from herbarium specimens 

provided information on the root system morphology of flowering plants. It appears that 

plants must reach a critical size both above (Antifinger and Wendel, 1997) and below 

ground before flowering can occur. Because SL cemua does not have bud roots at the
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time of flowering, nutrient acquisition and storage is accomplished during the vegetative 

phase. No flower primordia were observed.

The terrestrial orchid ^  cemua appears to have two types of tuberoid roots like its 

congener sinensis. Mycorrhizal infection was highest in bud roots, which are present 

during the vegetative phase of the growing season. Hyphal infection did not significantly 

correlated with root or soil nutrient levels. However, mycorrhizal infection did 

correspond to inorganic soil nitrogen and was highest when ammonium-N concentrations 

were highest, thus allowing the orchid to acquire nitrogen with a lower numbers of 

pelotons and, therefore, at a lower cost. This study suggests that orchid mycorrhizae may

' t

be important for nitrogen acquisition.

Further research is needed to completely understand the phenology of the root 

system and the importance of mycorrhizae during dormancy. The development of 

storage roots was not observed during the growing season and is expected to occur during 

the dormant phase. Although no trend was observed between highly mycorrhizal bud 

roots and carbon levels in the soil, it is possible that mycorrhizae are important in carbon 

acquisition during prolonged periods of dormancy.
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APPENDIX B 

ROOT CLEARING AND STAINING TECHNIQUES

Protocol development—The roots of three seedlings (grown in symbiotic culture) 

and two plants harvested from Nine-Mile Prairie on 29 April 1997 (N = 6 ) were used to 

investigate root clearing and staining techniques. Four stains were tested: 0.05% trypan 

blue in lactophenol, cotton blue in modified lactophenol, 1% safranin in 50% ethanol, and

0.05% toluidine in dH2 0 . Stains were applied with and without clearing the root. Due to 

the large amount of starch in the root, clearing was deemed necessary. Roots were 

cleared before sectioning. Two methods of clearing were tried:

1. Soaked in 10% KOH for 24 h at room temperature (Stoutamire, 1991).

2. Heated in 10% KOH for one hour at 90 °C. Washed with fresh 10% 

KOH and immersed in 10% H2O2 for 5 min at 20 °C. Rinsed once in 

deionized water. Immersed in 1 % HC1 for 3 min before staining 

(Alexander and Hadley, 1984; Reich and Barnard, 1984).

Roots subjected to the second clearing protocol did not maintain their structural integrity 

and therefore, was not used.
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Stains were first tested on a pure culture of the fungus (strain TN29) used for 

symbiotic seed germination (Antifinger, unpublished data). Hyphae were placed on 

microscope slides and exposed to the stain at room temperature and on a hot plate set on 

low (dial set at 2). Specimens were removed from the hot plate when most of the stain 

had evaporated. In general, heating was not effective. The results of hyphal staining at 

room temperature are summarized below:

1. Trypan blue: positive staining; showed distinct hyphae, agar not stained

2. Cotton blue: no staining.

3. Safranin: hyphae stained well, agar stained.

4. Toluidine blue: hyphae stained well, agar not stained.

Next uncleared roots of two seedlings were stained. The root tissue was exposed 

to stain for 10 min at room temperature. Results were as follows:

1. Trypan blue: light staining of both fungus and cellular contents of cells 

with broken cell walls.

2. Cotton blue: no fungal staining and appeared to collapse the 

plasmalemma.

3. Safranin: dark staining of both fungus and root.
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4. Toluidine blue: dark staining of fungal strands and light staining of root 

cells.

Based on these experiments, we decided to discontinue cotton blue and safranin because 

they did not selectively stain the fungus. Also we decided to clear the root to achieve 

better staining with trypan blue. In addition, clearing the root would eliminate cellular 

contents that could be erroneously identified as pelotons.

Refinement of staining method—The staining procedure consisted of heating 

cleared tissue (hot plate set at 2 ) completely immersed in stain in hanging-drop slides for 

five and ten minutes. Only trypan blue and toliudine blue were used. As in Alexander 

and Hadley (1984), trypan blue-stained tissue was rinsed once with plain lactophenol to 

remove excess stain. Tissue was sectioned after staining. There was little difference 

between staining for 5 or 10 min. Trypan blue stained better with heating. There was 

little difference between stains. Root cells and stele were well defined.

Finally, we tried staining tissue that was already sectioned. Tissue was sectioned 

by hand under a dissecting microscope. Root cross-sections were exposed to toluidine 

blue at room temperature for 5 and 10 minutes. Trypan blue was prewarmed and cross- 

sections were exposed for ten minutes on or off of the hot plate. As above, tissue stained 

with trypan blue was rinsed with plain lactophenol. Sectioning the roots prior to staining
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allowed better exposure to both stains. For this study, roots were cleared, sectioned and 

then stained with trypan blue on the hot plate for ten minutes.



91

APPENDIX C 

ADDITIONAL TABLES
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Appendix C, Table 1. One-factor ANOVA of the effect of location in the root (block) on 

mycorrhizal infection. ANOVAs performed separately for each plant root.

Plant ID Infection tvpe DF F P

139 hyphal 6 , 30 2 .1 0 0.0832

amorphous 6 , 30 0.81 0.5711

total 6 , 30 1 .2 2 0.3227

139 bud hyphal 2, 15 1.49 0.2568

amorphous 2, 15 0.17 0.8423

total 2, 15 2.31 0.1333

140 hyphal 14, 84 1 .2 0 0.2889

amorphous 14, 84 3.56 0 .0 0 0 1 *

total 14, 84 3.04 0.0008*

143 hyphal 2 , 16 15.05 0 .0 0 0 2 *

amorphous no amorphous infection

total 2 , 16 15.05 0 .0 0 0 2 *

145 hyphal no hyphal infection

amorphous 7, 29 8.26 0 .0 0 0 1 *
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Appendix C, Table 1. (cont.)

Plant ID Infection tvpe DF F P

total 7, 29 8.26 0 .0 0 0 1 *

150 hyphal no hyphal infection

amorphous 4, 15 1.95 0.1541

total 4, 15 1.95 0.1541

150 bud hyphal 1,7 1.31 0.2897

amorphous no amorphous infection

total 1,7 1.31 0.2897

16 hyphal 1 , 6 0.30 0.6036

amorphous 1 , 6 1.34 0.2912

total 1 , 6 2.52 0.1636

167 hyphal 6 , 40 19.77 0 .0 0 0 1 *

amorphous 6 , 40 0.93 0.4843

total 6,40 9.21 0 .0 0 0 1 *

178 hyphal 10, 57 2 .0 1 0.0486*

amorphous 10, 57 3.98 0.0004*
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Appendix C, Table 1. (cont.)

Plant ID Infection tvpe DF F P

total 10, 57 4.68 0 .0 0 0 1 *

181 hyphal 8 , 52 36.63 0 .0 0 0 1 *

amorphous 8 , 52 7.53 0 .0 0 0 1 *

total 8,52 7.39 0 .0 0 0 1 *

21 hyphal no hyphal infection

amorphous 5, 14 3.43 0.0314

total 5, 14 3.43 0.0314

2 a bud hyphal 1 , 12 12.49 0.0041*

amorphous 1 , 12 21.38 0.0006*

total 1 , 12 0.16 0.06984

2 b hyphal 7, 27 1.52 0.2019

amorphous 7, 27 1.69 0.1534

total 7, 27 3.32 0 .0 1 1 2 *

2 b bud hyphal 2,5 0.43 0.6753

amorphous 2,5 0.42 0.6802
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Appendix C, Table 1. (cont.)

Plant ID Infection type_____________ DF__________F___________ P

total 2 ,5 0.45 0.6600

45 hyphal 5, 22 3.88 0.0114*

amorphous 5, 22 4.34 0.0068*

total 5, 22 13.69 0 .0 0 0 1 *

72 hyphal no hyphal infection

amorphous 5, 30 2.91 0.0295*

total 5, 30 2.91 0.0295*

95 hyphal 3, 13 0.87 0.4798

amorphous 3, 13 3.65 0.0417*

total 3, 13 2.67 0.0912

npc hyphal 8 , 50 9.80 0 .0 0 0 1 *

amorphous 8 , 50 2 .0 2 0.0625

total 8 . 50 2.15 0.0480*
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Appendix C, Table 2. Nested ANOVA of the effect of growing season phase 

(reproductive or vegetative) on cortical cell infection.

Infection tvpe Effect DF F P

Hyphal3 Phase 1 , 18 1.57 0.2260

Plant 18, 2 0 1.58 0.1623

Block 20, 609 6 .1 1 0 .0 0 0 1 *

Amorphous15 Phase 1 , 18 1.33 0.2643

Plant 18, 2 0 0.46 0.9500

Block 20,609 6.35 0 .0 0 0 1 *

Total0 Phase 1 , 18 0.25 0.6255

Plant 18, 2 0 0.84 0.6473

Block 20, 609 6.30 0 .0 0 0 1 *

Hyphal/Total Phase 1, 14 1 .2 0 0.2915

Plant 14, 16 1.35 0.2814

Block 16.311 4.26 0 .0 0 0 1 *

a number of hyphal pelotons/ number of cortical cells 
b number of amorphous pelotons/ number of cortical cells 
c hyphal + amorphous pelotons/ number of cortical cells
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Appendix C, Table 3. Correlation analysis of hyphal infection and soil or plant tissue 

nutrient concentrations. Correlation was performed on bud and mature roots separately.

Root tvpe Nutrient source Nutrient N R P

Mature Soil C 16 -0.13604 0.6154

P 16 -0.12697 0.6394

n h 4 16 -0.37494 0.1524

n o 3 16 -0.10606 0.6958

h 2o 16 -0.27635 0.3002

Root N 13 -0.28825 0.3393

c 13 0.10174 0.7409

p 7 -0.18531 0.6908

Leaf N 7 0.21622 0.6414

C 7 0.01802 0.9694

Bud Soil c 6 -0.52941 0.2801

p 6 -0.70588 0.1170

n h 4 6 0.26471 0.6122

n o 3 6 -0.52941 0.2801

h 2o 6 0.26471 0.6122

Root N 6 -0.52941 0.2801

c 6 0.50000 0.3125

p 3 0.86603 0.3333
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Appendix C, Table 3. (cont.)

Root type Nutrient source Nutrient N________ R__________ P

Leaf N 3 -0.86603 0.3333

__________________________________ C 3 -0.86603 0.3333
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