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CHAPTER 1

Section 1

Take G to be any multiplicative group. Let IGI = n and
choose q to be a prime such that n and q are relatively prime. Let
K denote the field of order q (i.e. GF(q) = K). We form the
group algebra KG defined to be the set of all formal sums
Z a(glg , a(g)€EK = GF(q)
2€G

with multiplication and addition defined by

I

i) X a(glg+ I b(gs I (a(g) + b(g)g
gEG g€G geG

it

ii) I a(g)lg . I b(h)h L a(g)bth) g -h ,
8cG h€G gch

5 [ I a(kh D) b)] k ,
kEG h€g

il

£ a(kh ) b(h) .
hEG

where the coefficient of k is v (k)

A straightforward application of these definitions yields that
KG is an associative algebra with multiplicative identity. In fact,

the identity in the group G acts as the multiplicative identity in KG.



Definition 1.1.1. A ring is said to satisfy the minimum chain

condition if it satisfies the following two properties:
i) The chain of ideals (ascending chain condition)

.C1. € ...

11C 12C 13. . I

always. repeats indefinitely after a -finite number
of steps;
ii) The chain of ideals .(descending chain condition)

]Z]_D*".[2 313. . . DInD .« ..

always repeats indefinitely after a finite number

of steps.

The dimension of KG over K as a vector space is n, and
every ideal.of KG is a vector subspace. -Therefore, KG satisfies
the minimum chain condition.

An ideal is nilpotent if Ik = (0, for some integer k, (where
Ik is. the set of all products of k elements in I). The radical
of the ring, (denoted Rad(R)), is the sum of all nilpotent left

ideals.

Definition 1.1.2. A ring with minimum condition will be called semi-
simple if Rad(R) is the zero ideal. A ring is said to be simple if
the only two-sided ideals are the trivial ones.

Recall that when KG was defined we restricted n to be
relatively prime to q. This is a sufficient condition to ensure that

KG is a semisimple ring. We state without proof:



Theorem 1.1.3: Let G be a finite group of order n, and let K be an
arbitrary field.  Then the.group algebra KG is semisimple if and
only if char K = 0, or char K [ n.

The proof of this theorem and a 1ucid<development»of'TheOrem'1.2.3

can be found in [2].

Definition 1.1.4. Given bEKB, then b is an idempotent generator
if b acts as. a multiplicative identity on < b >. The set
{ bl’ s e s bS } is a set of primitive .idempotents if < bi > is a

minimal ideal for each i, bi . bj = 0 whenever i # j, and I bi = 1 €XKG.

Theorem 1.1.5: Let R be a.semisimple ring with identity, which
satisfies the minimum chain condition. Then the following are

properties of R:

i) Every minimal left ideal has a generating idempotent,
and every left ideal canm be written as the direct sum
of minimal left ideals;

ii) The sum of all left ideals of R that are isomorphic to
a given miniﬁ;I\Igft\E?eal of R is a simple two-sided
ideal;

iii) R can be written uniquely up to ordering as a direct
sum of simple two-sided ideals. Any two-sided ideal is
a direct sum of simple left-sided ideals;

iv) An ideal I is two-sided if and only if it has a central

idempotent generator.

Thelast three properties imply that KG is a principal ideal domain,

and in addition give the properties of elements which generate\two—sided
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ideals. In particular, when G is an abelian group, KG is a commutative
associative algebra whose ideals are two-sided. The idempotent genera-
tors of minimal ideals act as the multiplicative identity on the ideals

they generate.

Section 2

The set of all n-tuples .over GF(q) forms a vector space,

v (GF(q)).

Definition 1.2.1. A block code of length n with elements in GF(q) is any

subset of Vn(GF(q)).

The alphabet of a code are the symbols used to transmit informa-
tion over a. channel. In a block code the alphabet is the field GF(q).
An example of an alphabet is the binary .alphabet {50,1:}; which is just
GF(2). An n-tuple consisting of zeros and ones is in Vn(GF(Z)). Any
subset of.Vn(GF(Z)) may be chosen and designated as a block code.

Each element in the block code is used for a distinct "message" over
the channel. For instance, all n-tubples which have an even number
of ones describe a block code. Suppose such a message word is sent
over some channel. 1If there is "noise'' in the channel the message
may be distorted and the n-tuple received will not necessarily be the
one that was originally sent. An error occurs if a zero is changéd
to a one, or.a one is changed to a zero. 1If any odd combination of
these errors occur, it can be detected simply by summing the ones on
the message word received. In any case when errors occur there is no

way of determining what the original message was.



Under such circumstances we would . like-to know if we can choose
a subset of Vn(GF(Z)) which gives a "maximal probability" for guessing
the actual message word from the information contained in a received
word which has been distorted. While the basic problem of mathemati-
cal coding is to develop maximal error detection and correction
capabilities, there are other engineering problems-that also enter
into the problem. That is, a code must offer efficient methods for

encoding and decoding.



CHAPTER 2

Section 1

Let K = GF(2). Take . G to be any cyclic group of odd order, then
the order of G and the .characteristic of the field K are relatively
prime. This implies that the group algebra, KG, is semisimple by
Theorem 1.1.3. Furthermore, KG is .a commutative ring, which is also
a principal ideal domain. .KG can be written as the direct sum of
minimal two-sided ideals according to Theorem 1.1.5. These ideals

are generated by primitive idempotent generators.

Theorem 2.1.1. Let n be any odd integer and let K = GF(2). If G

is a cyclic group. of order n, then

KG = K[x] / < x-1> ,

where the ismorphism is a ring isomorphism.

Proof: The isomorphism we present is also a K-isomorphism.

Define ¢ : KG -~ K[x] / < x"-1 > by

n-1
o Z
i-0

i i n
aig > I a x + < x -1 >

where G = < g > . Now

n-1 i n-1 1 n
¢(a + b) = ¥ a,x + .I b.x +<x-1>.
- i=0 i=0 *
= ¢(a) + ¢o(b)



n-1 . n-1 .
where a = ¥ a,g1 ,and b = I b,g1 . Also
. i . i
i=0 i=0
n-1 1 n-1 .
¢a - b) = (( T ag) (I beh),
i=0 j=0 I
n-1 n-1 {41
= 2 & ab,xd+<xt-1>,
i=0 j=0 * %

¢(a) * ¢(b) ,

where exponent addition is mod n. Thus ¢ is a ring homomorphism,
n n-l i
which is onto K[x]/< x -1 > . Let a = Z a8 € KG, such that
i=0
n i n
¢(a) =0+<x-1>. So, ¢(a) =X a x + < x -1 > . But deg ¢(a)<n,
which implies a = 0. Therefore, ¢ is a ring isomorphism.

We now introduce a theorem which gives the polynomials which

- . . n .
generate minimal ideals in K[x]/< x -1 > .

Theorem 2.1.2: Let pl(x)v° PZ(X) . e ps(x) = x"-1 be the
factorization of x -1 into irreducible monic polynomials in K[x].

We have:

i) Each irreducible monic. factor pi(x) generates a maximal
ideal over K[x]/< x"-1 > ;
ii) For pi(x), (an irreducible monic factor of xn—l),

NN
Pl(x) pz(x) o . . pi(x) ¢ e . ps(x) generates a minimal

ideal over K[x]/< x-1> .

Proof: i) K[x] is a principal ideal domain, and if < pi(x) >

. . . n
is not maximal in K[x]/< x -1 >, then there exists an ideal I

such that < pi(x)3>$; I. There exists an ideal I in K[x], by



correspondence, such that <pi(x)5 I. However, pi(x) is irreducible

and .therefore < pi(x) > is a maximal ideal in K[x]. This implies

that there are no ideals between < pi(x) > and K[x]/< -1 > .

Therefore, < pi(x) > 1y a waxiwal ideal.

For the proof of ii) we consider (xn—l)/pi(x) = zi(x).

Let E-be a minimal ideal in < zi(x) > . Associated with J there
is an ideal J in K[x]; let g(x) be a monic polynomial of minimal

degree in J, then in K[x],
n
x -1 =k®egx + rx)

where deg r(x) < deg g(x) >. However, (XPFJ) € J, since

JC K[x]/< x™~1 >. Therefore
(x"-1) - k(®)gx) & J,

which implies. that r(x) € J. But, since g(x) is of minimal
degree f(x) must be zero, and g(x) divides‘xn—l. However, the
only element of < zi(x) > which divides x -1 isfzi(x), Therefore,
< z,(x) > is a minimal ideal in K[x]}/< x"-1 > .

Q.E.D.

e c————

In addition to the above result we have, < zi(x) >N< zj(X) >

is < Zi(X)Zj(X) > , which is the zero ideal if i # j. This is
because x -1 divides zi(x)zj(x). The dimension of the ideal
< Zi(X) > is exactly the degree of pi(x). Therefore; the

dimension of the direct sum of the ideals generated by the

zi(x)'s is n. Consequently,



S
RK[x]/< x™=1> =@ <7z
i=1

k(x) > hd
Example 2.1.3. Let G = 0(3), (i.e., the cyclic group of order three).

We consider the polynomial x3-l. Then
3
K o (3) = K[x]/< x7-1 > .

This ring is semisimple and a principal ideal domain with a mutli-

plicative identity. Factoring x3—1 we have

x3—1 = (x2+x+l)(x—l).

There are two minimal ideals. One is < x-1 > , which can be
written as < x+1 > , and < x2+x+l > . The ideal <.;:I > is
composed of elements

x2+x+ < x3—l >,
x2H+ < xo-1 > ,

X_'_|"l+fj‘< X3—1—51> R

Ok < xo-1 > .

This ideal is. of dimension 2 over GF(2). On the other hand the
ideal generated by x2+x+l is of dimension one, as is easily
verified. Thus,

K[x]/< x°-1 > = < 51 > @ < x4x+l > ,

2
but (x2+x)(x +x) ='x2+x s SO x2+x is the idempotent generator of

the ideal < xt+l > . Finally we can write

K[x}/< x3—1 > =< x2+x > @ < x2+x+1 >,



10

where x2+x + x2+x+1 = 1 . This shows that x2+x , and x2+x+1

are the idempotent generators. Note that in general the method of
Theorem 2.1.2 does not yield the idempotent generators of the minimal
ideals.

Example 2.1.4. Let G = ¢(7). Factoring x7-l in GF(2) yields,

X+ = (b1) (oFx 1) (xobxtl) .

There are three minimal ideals, generated by the polynomials

X4+X2+X+l R

x4+x3+x2+l s

(e+1) (o HL)

(x+L) (x kL)
and,
(x3+x2+l)(x3+x+l) = x6+x5+x4+x3+x2+x+l .
An easy calculation shows that the first and the last determine idem-
potent generators of the minimal ideals. However, x4+x3+x2+l is
not an idempotent. In fact, it can be shown.that the idempotent

generator of the ideal <'x4+x3+x2+l > is x6+x5+x3+l . Therefore,

K[x]l/ < x7-1 > =< x4+x2+x+l > @ < x6+x5+x3+1 > @ < x6+x5+x4+x3kxz+l>{

A direct calculation shows that the pairwise products of these
idempotents are zero. It should be noted that the decomposition of
x-1 into irreducible polynomials over. GF.(q), in general, is by no
means trivial. 1In case it is accomplished, the decomposition doesn't
necessarily yield the idempotent generators. We shall explore a

method in Chapter.3, which will provide an algorithm which gives the

idempotent generators.
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Section 2
We are now ready to discuss some of the practical aspects of

cyclic coding.

Definition 2.2.1. i) A subset G of- Vn(FG(q)) is called a linear

code if it is a vector subspace of Vn(GF(Q))a
ii) A code is cyclic if it is a linear code, and
if every cyclic shift of a code word is a

code word.

Example 2.2.2. Let t:‘= {(011), (101), (110), (000)}. It is clear that
this set satisfies Definition 2.2.1 ii). Thus C:ris a linear code
which is also cyclic. In other words . if o is the permutation (123),

then 0(101) = (101), a(ll0) = (011l), and 0(011l) is (101). Note that

Ci,is exactly the code generated by x2+x given in Example 2.1.3.

Cyclic codes have been important in coding almost from the
beginning. Cyclic codes were first identified by Prange in 1956.
The first class of cyclic codes was discovered by Hémming and are
named after him. They were followed in 1960 by the discovery of the
class of BCH codes, which are cyeclic codes over GF(2), and contain
the Hamming codes as a subclass. The generalization of BCH codes
are referred to as Reed-Muller codes. These codes are over the
field of GF(q).

Up until now the practical use of.error correcting codes has
not attained the promise it appeared to hold in the early years of
development. The first obstacleencounteredin implementing a code
is the encoding procedure. An efficient method for encoding

information to be sent over a channel must be found. Another



obstacle involves decoding the information so that it can be put into
useful form.

In 1960 Petersen [7] developed an efficient method decoding
BCH codes. For cyclic codes éncoding is a simple procedure involving
matrix multiplication. If we choose a code which is not cyclic, the
encoding procedure is generally much more complicated. It is
precisely for this. reason that cyclic codes have been emphasized
in the field of error correcting codes. But the nice encoding
properties of cyclic codes, which are a result of the fact that they
are ideals in the group algebra KG, necessarily imply less desirable
properties. For instance, cyclic codes do not achieve maximal
distance properties. That is because they are a vector subspace;
they are also more "tightly" packed than they need be. Petersen's
method for decoding cyclic codes is efficient and workable. However,
the number of operations needed to decode a word received with an

error increases as a small power of the code length.

12



CHAPTER 3

Section 1

Throughout this chapter, K = GF(g), q prime, and ]GI =n ,

where (q,n) = 1. If G is an abelian group, then

KG

i
Heéuwn
=

3
where Mﬁ is a two-sided ideal generated by a primitive orthogonal
idempotent. Each Mj is a vector subspace of KG. Each element
b Mﬁ can be written as

n

b= I b(gi) g » b(gi) € K.
i=1

This determines a unique n-tuple (b(gl), b(gz), e o e s b(gn)).

In this way each.Mj determines a linear code. If J is any ideal
of dimension .k over K in KG, then. the ideal J is associated with

a (k,n) code.
Section 2

If G is an abelian group, then we can decompose G into the

direct product of primary cyclic groups,

13



each G . 1is cyclic. The number of irreducible representations of

pi- 1

G over C is equal to the number of conjugacy classes. Consequently,
there are |G| irreducible representations of G over the complex
numbers. The set of irreducible characters in this case can be

identified with the set of irreducible representations.

For G 0. = < a, > , consider the mappings defined by
p, i .
i
%
Xy (a,) =& , a primitive 1 th root of unity,
i
and
Xai(aj) =1, fori#ij.

For each i,xa can be extended to an irreducible representa-
i
tion of G in an extension field L of K. which is algebraically

closed. Any irreducible character from G into L can be written as

the product of some of the Xa 's. For example, if X is an irreduc-

i
ible character, where

'

xa) =C , i=1,2,...,s,

then

o, a,
1 P. 1

il
~
Y
~

-

p.
1
(x( ai) )

i
>
~

V]
[N
i)
e

14



O,
This implies that . is a Py 1 th root of unity. Thus,

vy
N

By %4
X(ai) = E\“n/ s O i Bi < Pl ]
k k k
_ 1 2 s
and for g = a; 3, .. eoag s
I Ik
_ 1 s
X(g) = X(al aS )
s B.k
=1 o@® T
i=1
s k k k
1 2 s
= I x (a a | )
i=1 afy T 2 °
i
Bi Bi
where ¥ 8 (ai) =& 7= (X, (a;))
a, i i

i

Consider the isomorphism ¢ : G » G*, (where G* is the group

of all irreducible characters on G into L), defined by

T g > Y .
ngg

That is, if g =

I =3n

k
a, i , then
. i
i=1

‘Xg(X)=X k. O X & .. x  ®, x€CG
a; 1 a2 2 aS s

Since multiplication of characters is defined according to the
generators of G, it is easy to verify that y is an isomorphism.
From this point on G and G* will be identified with each other.
We list some properties of the irreducible characters of abelian

groups.

15



Theorem 3.2.1:

lg] ifh=1

i) & x, (h) = 5
g€G © 0, otherwise
11) Iy () = {IGI if h=1
g€G 0, otherwise

Proof: If h =1, then x (h) = 1 g€G. Therefore, I X (1) = l6].
g g€G °

If h # 1, assume

¥ x.(h) =0, €L,
g€G ©

then

) o= T ®) X @)

X, (h)

]
™
><
w
~
=3
v
|
™
1]
Q

This implies that o = 0 .

For the proof of ii), consider g =

e
et

I =20 Il 30

[ mld
[

then

o o k.
i 1) e -Hb X l,(ai 1) 5



and

Xg () = Xy (8)- (3.1)

Using 1) and (3.1) yields ii).

Q.E.D.
From the development of the group characters ¥ _ (h)x_  (h)=Y
: g g g8
1 2 1°2
This fact along with (3.1) implies
Xp (81 X, (8p) = X, (8y8,) (3.2)

As in [5] we adopt the notation

Xh(g) = < h,g > .

The first position specifies the character and the second position
specifies the element being operated on.
We extend the characters to a set of linear functions from

KG into L. Define for a€KG.

xh(a)=<h,a> < h, I ongg>,

2€G

z oy < h,g > .

Il

Section 3

MacWilliams [6] was first to investigate abelian codes over
GF(2). 1In her paper, she formulates the method for constructing

the orthogonal idempotent generators. In the cyclic case, the

17

(h).



idempotent generators were written as polynomial in K[x]/< -1 > .
Camion [‘/] also investigated the structure of the ideals of the
group algebra, and discusses in some detail how the structure of the
polynomials, which generate the ldeals, relates Lu the structure
of a code.

From the theory of semisimple algebras there exists a set of

orthogonal idempotent generators,{el,...,es} such that
< > < >0 . . . < > =
ey @ e2 ® eS KG ,
and

ey + e2 + .. .+ eS =1,

with e, ej =0, fori#j. Ifaé€cx e, > , then

a.* 1l=a( ey + . . .+ e,

i + .. .+ es) =3 - e; - (3.3)

Thus, ei acts as the identity on the ideal < ei > . Furthermore,

(epi=e, , (3.4)

1

and *f a€KG

n
5 q _ q
(i=1 aigi) (algl) + a(algl

but since we are over GF(q) , ¢ = 0. So
- q q - q
(T o807 = (oq8))° + (I ag)” .

i=1
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By induction,

Let v be the exponent of G, then (q, V) = 1, since q and

the order of G are relatively prime. Therefore,

qr =1 mod v, for some integer r . (3.5)

Definition 3.3.1: The minimal gq-power subset of x€G is

2 k(x)-1
Q(X)={X3Xqixq:"‘3xq }:

where k(x) is the least integer, such that

qk(X) = 1 mod .(the order of x). (3.6)

Each q-power subset is closed under the operation of raising

elements fo the q-power. Hence,

G=aMUAE) V. . UGk

where each x,

1+ is chosen from G \Q(1) v Q(xl) U. ... LJQ(Xi) .

k(x)

q

Now from (3.6), x = x, and k(x) is the smallest integer

for which this is true. On the other hand, the next smallest

integer for which this is true is 2k(x), and in fact, r must be

a multiple of k(x), for each x € G. Otherwise,

r mk(x) + b
x1 = g1 , 0<b < k(x),
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and

mk (x) b

But since k(x) is minimal, b = 0, and k(x) divides r.

Section 4

If L is an extension field of K = GF(q), which contains all of
the V the roots of unity, then the smallest such field is GF(qr).
This is true since r is the smallest integer such that vl qr -1,
(that is the multiplicative group of the field GF(qr) contains an
element of order V). So let L = GF(qr).., For each x€EG £ x,a >€

GF(qr) where a€KG. Also,

]

<x,a"*b> < x, L L GgBh g+ h>,

gh

I
™
e
Q
w

< x,a > < x,b > .,

Denote by LG the space of. all formal sums é a(g)g , where
a(g) €L, with addition defined as in LG. We define two
multiplications ( * , *# ). The "dot" multiplication is as defined

for LG, but the "star" multiplication is componentwise. For

instance,

('/g a(g)g) * ( é b(g)g) = X a(g) b(g)g -



We will denote the ring consisting of the set LG with multiplication
by "star" as LG
y L °
, G
We introduce the Mattson Solomon mapping. Define p : KG ~ L* .

where ¥ a€ KG

]

L < %,a>x
%G

u (a)

1

L (2 a(y) < x,y >) x .
€6 v&G
Theorem 3.4.1.: The M-S mapping is a ring isomorphism from KG
. G
into L* .

Proof: 1It is clear that U is a vector space isomorphism since

u (Kla + Xzb) I < x, A

a + Xzb > x ,
x€G

1

I < x, Ala >x+ I <x, Azb > x ,
x€G x€G

Alu(a) + )\zu(b) .
. . -1 G
We define the mapping u from L, into LG by

uhl () =1/n £ < x_l,oc > x ,

for each ‘OLELi . Let a Y a(z)x €EKG, then

£G

I

L < x,a>x,

*x€G

u o (a)

and

U—l(u(a)) =1/n ¥ < y—l, T <xa>x>y,

y€G x6G

21



1/n % Z,<X,a><y_l,x>y’
vEG x€G

i/n Z & < x,ay—l >y,
vEG ¥€C

/n & L az2)y I<zxylz>
VEG 2€EG XEG

The sum is nonzero if and only if y = z, so

r a(z)z .
zEG

@)

Thus | is one-to-ome. In additionm,

u(a - b) I < x,ab > x ,

x€G

il

L < X,a>»<zx,b>x,

x€G

il

u(a)* u(b) .

In fact, if g, = 1, then

u(g_),

i

Z < x’gl > X’
x€EG

L x
x€G

Q.E.D.

This is the identity. under ."*" multiplication. To denote the

"

product of u(a) with itself k times we writc

IO Nl

22



Whereas, u(a) to the k-th power under the "dot" product will be

uEn® .

Let o = y(a), for some .a in KG, then

n
q (Z(gi,a>gi)q

o -
i=1

- q

= L < g.:a>q-g. Py
. i i
i=1

since we are over GF(qrj, Thus,
n
o= v < g.,a > q g q ,

. i i
=1
- q

-z <gla> g%,
s i i
i=1
n

= <gta>gt.
. i i
i=1

B.ut this is simply the sum over the elements in G, so aq =0 .

Therefore, whenever o is an image under the M-S mapping, the 'dot"

product of o with itself g times is o . On the other hand,

suppose ol = o s

which is < x,0 >

. G
for some. ¢ in L then

* ?

<xo>l=<x, I aly)y>?,
yEG

2 aym? < x,yl>
vE€G '

< x,aq >

for each x€G.
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Lemma 3.4.2. Let o0& LS , such that al = o , (under the "dot"
product), then u_l(oc) KG.

Proof: Let ocq = o , and let a€&LG, such that

a=1/n I <X_l,0l,>X,

*E€G

but

a(x) s

.a(x)(l .

Thus a(x) € GF(q), (i.e., oc(x)q D a(x) EGF(q), since the
multiplication group of GF(q) is the only subgroup of the
multiplication group of GF(qr) of order q — 1). This implies

a€KG, and u_l is the inverse mapping from the image of u onto KG.
Let u[KG], denote the subspace of Li which is the image of KG
under the M-S mapping. From Theorem 3.4.1., KG and u[KG], are

isomorphic as rings.

Theorem 3.4.3. The minimal ideals of u[KG]* are generated by

elements of the form

ki-l qJ
ni = .Z (Xi) bl
j=1



where the xi's are taken from the decomposition of G dinto minimal

g-power subsets.

q _ o
=n; » so ﬂiell[KG]*, since n, is just

Proof: Note that,vni
the sume of elements in a.g-power subset. The elements in the
ideal < nl > are of the torm

k.-1 k

3 .
= 1 q i

where ki.= k(xi) . It is clear that this sum is in u[KG]* , since
a = ai . Furthermore, there are no ideals properly contained

Since, if there were, its idempotent would not

in <]’]i>*.

contain all of the elements of Q(xi) in its formal sum. In this
case, it could not be in QM[KG],. In additionm,

n, +n,+...+n = I x, (3.7)
1 2 s <€C

which is the "#" multiplication identity in M[KG], , and

ny * nj = 0. Therefore, the ni's generate minimal ideals and

u[KG]* =<ng >, @& < n2 > . . . 0< ns >

* *

1

by (3.7).

Q.E.D.

Corollary 3.4.4. The minimal ideals of KG are generated by

orthogonal. idempotents of the form



-1 kot -
W) =1 I (T <@

h
1,}{:'L 547 ) g -
g&c  j=1

Proof: Since u[KG]* =~ KG. The result is an immediate consequence

of the isomorphism u~1 .

Q.E.D.

-1
Let e, = U (ni), then

-1 -1 -1
e, +e,+ ... +e u (nl) + u (nz) + ...+ U (ns)

1 2 s

= U (nl + nz + ... + ns)

= 1 .
Also,
. _.-1 . .1
e; e, = U (ni) u (nj)
-1
= E3
u (n:.L nj)
=0
and
2 _ -1, 2
el =M (ni )
= e, .
1

Therefore, we have found the set of primitive orthogonal

idempotents of KG.
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Section 5

Definition. 3.5.1.
i.  Let H be a gq-power subset, the annihilator of H is

AlH] = {bEKG | < x,b > = 0V x€H} .
ii. Let R be a subset of KG, the annihilator of R in G
An[R] = {x€¢G l < x,a > = 0Na€R} .
If a€KG and H is a q~power subset with b€ A [H], then
< x,ba > = 0, ¥x€H.
Therefore, A[H] is an ideal. If x€An[R], then
< x,a>=0, M a€R.

Therefore, < x,a >9 = 0, and this implies that < xq,a >=0,
which in turn implies that quAn[R] . So An[R] is a g-power
subset. The annihilator of any q-power subset is an ideal, and

the annihilator of any subset of KG is a g-power subset.

Lemma 3.5.2. If H is a q-power subset of G, then the dimension

of the ideal A[H] over K is n - |H]| .

Proof: Consider X = u( A[H]), since A[H] is an ideal, X is a

subspace of u[KG]* . By definition,

ATH] = {bEKG | < x,b > = 0 ¥xEH} .

is
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If b € A[H] and x€ H, then < x,b > = 0. This implies that u(b)
doesn't contain x in its formal sum. For G = Q(xo) \}Q(xl) .

?W
UQ(XS), let H = Q(xi), where 1€ {0, 1, ... , s} .

Elements in X have the form

where Bi is defined as

k-1 o k,
Bi= jio _(cixi) s ci€GF(q ) .

Accordingly, the number of unique Bi's is IGF(q 1)I , since

each unique element of the field defines a unique Bi . Therefore,

the number of unique elements in X is

|X| = I q i = ql

where 1 = X ki . But

Q.E.D.

Theorem. 3.5.3. (MacWilliams and Mann): If R is an ideal in

KG, its dimension over K is equal to

dim(R) = n - | An[Q] | .
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Proof: Let IR be an ideal of KG, and let a€ TR, such that
< a>=MR. Let d be the dimension of IR, over K. Define the

matrix A by

ij
Clearly,
At = A
and
At = /< g -1,g. >).
.Sk 3

The set {agl, agys +vc s agn} spans IR as a vector space

over K, since < a >= 1R . A typical vector in the set is

n
ag, = I a(g,) g.g.
i j=1 i 74
a -1
= I a(g g) g
j=1
Where gk = gigj = gjgi . Define
_ -1
M= (algy &)
then
n -1



n
< >

it

n
< > < >

= < gi,gj > < a,gj > .,

Next,
(A—ZM‘A) =7/n;<‘g—1g >< g, ,g. ><g.,a>
m, ] oy Pm BT T BB T By
i=1
- -1
= < > > .,
I/ X <g’ g8y > < asgy
i=1
n —
<- > i if 1 = 1
But 151 <8, gj,gi is nonzero if and only if g gj, which
yields

-1
W)= < a6

The resultant matrix is zero off the diagonal and nonzero along
the diagonal if and only if <.a,g > # 0. Therefore the rank
of M is the same as the number of characters which are nonzero

on a. Hence

dim R =n- | An[ R ]| .

Q.E.D.

Theorem 3.5.4. (Delsarte): There is one—-to—-one correspondence

between the q-subsets H of G, and the ideals R in KG. The

correspondence is

R = A[H] and H=An[ R ] .
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Proof: Let TR be an ideal in KG. Let H = An[ R ] , then
dim R=n - |H|

by Theorem 3.5.3., but
dim A[H] = n - IH]

by Lemma 3.5.2. Since R is annihilated by H, R & A[H] , which
implies that R = A[H] .
On the other hand, if H is a gq-power subset, we let

R = A[H] . Now

]

dim A[H] = n - |H|

n- | An[bA[H] [
by Theorem 3.5.3. So

H = An[ A[H] ] .

Q.E.D.

For any x € G, G\Q(x) is a maximal g-power subset,
in the sense that there are no q-power subsets between G and
G\Q(x). If R = A[G\Q(x)] , then R is a minimal ideal. This
follows directly from the fact that G\Q(x) is maximal, and any
ideal contained in R is annihilated by G\Q(x). The only q-power

subset which properly contains GN\Q(x) is G, which corresponds to

the zero ideal according to Theorem 3.5.4.



CHAPTER 4

Section 1

One reason for considering the class of abelian codes is
that they contain, as a subclass, the cyclic codes. MacWiliiams
was able to demonstrate some properties of cyclic codes by using
machinery developed for abelian codes. In addition, we can
extend our discussion of cyclic codes to Tensor product codes,
and we shall demonstrate some of the properties of these codes.

As in Chapter 3, take G to be an abelian group of order n.
Let S be a subgroup of G. Let |[S| =n_. Consider the coset
decomposition of G,

¢c=xsUks .. .Uka ,

where n = wn o . For each a € KG,

W nS
a= 2 = o.. k.s., .

i=1 j=1 M *tJ

Next, consider the projection mapping T from KG=* KG, with

(4.1)

wi(a) =

no~Bs
Q
w
1}

S
i=1 ij "1i7]

Lemma 4%.1.1. If we let 121 be the image of an ideal O\ under the
mapping T, then Z?i is isomorphic to an ideal of KS.
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Proof: First, note that (4.1) is strictly a sum over the elements

of 8. Next,'V' s €8

sm.(a) =k, I° a..s,s ,
i iy 1373

ﬂi(s . a) .
Also,** a,bE’bi > Ty acts as a homomorphism under addition, that is
Wi(a) + ﬂi(b) = ni(a +b) ,

which is iniii. Therefore, tzi is an ideal in XKS.
Q.E.D.

It is also clear, from (4.1), that

kﬁ_ :ﬁ , ()-I-.Q)

i 1 i

whenever kl is the identity in G. Furthermore,

W W 1
a= I ﬂi(a) = I kiki
i=1 i=1

T (a) , (4.3)
i

but kil ﬂi(a) is in Yil’ When we write vectors of KG as
n-tuples as in (4.1), the ordering produces n-tuples which
contain w ns—tuples of Zil placed end to end. In particular,

choose H to be a cyclic subgroup of G, where H = < h > is of



order ny . For W an ideal of KG, Ell determines a cyclic
code of KH. Now, *fa,fiti., by (4.3), k£1 ﬂi(a)é Zzl , and

-1 i

wlag (a) = z8g.. nd |
i i jzp 1

we have

W .
a= I gH B thi
i=1 j=1

Definition 4.1.2. A quasicyclic code is a linear subspace of
V(GF(q))n in which A|n, and A cyclic shifts of a code word

is another code word.

Under this construction, it follows that if the n-tuples
of G are "properly ordered" , then the code associated with
the idealv\ﬁ_is quasicyclic. As MacWilliams points out the
quasicyclic nature can be seen in many ways. For instance,

consider the ordering from (4.4%)

2 Ty i
( hkl’ h kl’ .« +« ., h kl, hk2, , h kw )
then oy cyclic shifts of
W n .
o ozhog, . bk
i=1 =1 Y

accomplishes

(4.%)
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. w-1 .
3 B, bk + 3 H N (%.5)
=1 "I i=1 j=1 S

We note that = Bi ] h? is an element of til’ for each i,

1

therefore (4.5) represents an element of @ .
Section 2

Definition 4.2.1. If ti.is an ideal generated by a € KG, then

we define the generator matrix of  as

gi g..
J
where a =X a_ g, , a_ € K.
g; 1 g
The first row of M(&) is
(a F] a E] . . . E) a ) 3
gl g2 gn
This is just the n-tuple associated with a. The second row
of M(§) is
(a -1 ,a-1 ,...,a-1_),
g5 8" 8, 8, g5 8y

35,

which is the n-tuple associated with g, * @ But 818, 858, - - . , gpa

span < a > in KG. Therefore, the matrix M(® ) generates all of the

n-tuples associated with the ideal < a >.
Definition 4.2.2. Given two matrices A and B, with
A= (a,.), B = (blk) s

then the tensors or kronecker product of A with B is the matrix



r—‘B B
811% - 8o
- a2lB . a22B
AxB =
atlB at2B

The tensor product of the vectors

vy = (al, , as) and v, =
is denoted by the vector
(albl, alb2, e e, albt’ a2bl,

36

.

alSB

asz
(4.6)

atsB

-t
(bl, b2, . e e, bt)

. a2bt’ , asbl, ., asbt)

Definition 4.2.3. Let Q(a) ={ g€ G | ng) #0171 .

Theorem 4.2.4., (MacWilliams):

of subgroups S and T.

Suppose G is the direct product

Suppose a is an idempotent of XS, and b is

an idempotent of KT, then the ideal formed by the kronecker

product

<a>x<b>-=

{xxy|x€<a>,y€<b>}



in KG, is < ab > .

Proof: If a is idempotent in KS and b is idempotent in KT, then
(a-b)(a+b)=a*b-b-a=a-b-a=a-b

§
So ab 1is idempotent. Let ﬁ= < a > and B~ =<Db>.
Let n = [S] and n, = |T| . The first row of M(g) is the

ns-tuple associated with the vector a. On the oﬁfrer hand the

first row of M( ) is the n,-tuple associated with b in KT.

t
Thus, the first row of M(&) X M(f}) is the n-tuple associated
with a * b in KG. The second row of M(&) ¥ M(j}) is the
n-tuple associated with a* t,b. The third is associated with

a t3b, and the n, +1 th row is the n-tuple associated with

8,2 . tlb, and so on. Therefore, this matric generates the ideal
< ab > . But M(Y&) generates < a > , and M(ﬁ) generates < b > .
Therefore M(&) x' M(B.) necessarily generates < a 3 X < b >

as a vector space. Thus
<ab>=<a>)'(v<b> .
Q.E.D.

Let A(G) be defined as in Chapter 3, Section 5. Similarly,

for S < G, the matrix

NS) = (g (s))
1

where the ‘1‘5 represents the irreducible charactérs of S.
i
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Corollary 4.2.5. The set of nonzero characters of a - b is

Q(ab) = { v, o, | Y, € Q(a) and ¢, € (D) } , (4.7)
i J i J

where Y X ¢, = Xg g
i i 173

If we order the elements of G according to

8,t,, 8,6, « . ., 8.t , 8,t,, s s s e e s e e e
17 172 i) nT 2°1 22 2 nT g Dp

then for g = Sitj’ g is the [(i—j_)nT + j] th element in the
listing. The (§,k) th element in A(G) is X (gk), whereas

the (§,k) th element of A(S) X A(T‘) is found by taking-
;‘ = (il._l)nT + j'_ >

which implies since J < N,

%l = 1/nT 1 +1 ,
and

j¢ = 1—nT[ l/nT ]

Therefore,

2

'Xgl(gk) ~ st (5,8
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which is the (},k) th element of AS) % AT). Now,

NG) --<ab> - K1(@) is
[AS) % AT)] [<a>%<b>] [£(8) % NT)] (4.8)
which is
[N8) <a> £1(8)] X [AT)< b>> £1(1)]

The left hand side of the product is a diagonal matrix with
nonzero's in those places associated with the nonzero characters
of a. The right hand side.of the product is also diagonal and
has nonzerces in those plaqes corresponding to nonzero characters
of b. Their kronecker product is diagonal and has nonzeroes

in those places corresponding to the characters of (%.7).
Q.E.D.

Remark 4.2.6. This corollary and Theorem 4.2.%. imply that
dim < ab > =dim < a > * dim < b > .

The method of kronecker products allows the construction-
of abelian codes with some desirable properties from cyclic
codes.

Example 4%.2.6. Consider the code of Example 2.2.2. The matrix

generator of the code‘(1 is



1 1 0
0 1 1
1 0 1

The knonecker product of this code with itself is

1 1 0 1 1 0
0o 1 1l x  Jo 1 1 =
1 0 1 1 0 1

£ 1 0 1 1 0 0 0 cﬂ

0 1 1 0 1 1 0 0 0

1 0 1 1 0 1 0 0 0

0 0 0 1 1 0 1 1 0

0 0 0 0 1 1 0 1 1

0 0 0. 1 0 1 1 0 1

1 1 0 0 0 0 1 1 0

0 1 1 0 0 0 0 1 1

U 0 1 0 0 0 1 0 1J

This matrix generates a code of dimension four over a
vector space of dimension nine. The code can correct all
single errors, and some double errors. The original codet?,1
corrects no errors. Sending the code E?1 over a channel twice
is more efficient than the kronecker product code and still

corrects all single errors. The idempotent generator oft?_1

40,
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is x + x2 . The kronecker product code is generated by the

idempotent (x2 + x) (y2

according to Theorem 4.2.

be generators of G and X

the group G, an ordéring

then the ideal generated

matrix

FB 0 0 0
0 0 0 0
0 0 0 1
0 0 1 0
1 0 0 0
0 1 0 0
0 1 0 0
0 0 1 1
1 0 0 0

L

+ y) in KG, where G = o¢(3) x o(3),
5, (where we have taken x and y to
= QF(2) ). If there is imposed, upon

such that

by (xy + ngg) has the generator

—_
1 0 0 0 1
0 1 1 0 0
0 0 0 1 0
0 0 0 1 0
0 0 0 0 1
0 0 1 0 0
0 1 0 0 0
0 0 0 0 0
1 0 0 0 0

Under the decomosition G =< x> x<y >, it is clear

that the above code is not a knonecker product of an ideal inAKZi78’

K < y»>, but if we let

G=<xy>8<y>, then it is a



kronecker product of the ideal < xy + x2y2 > in K< xy > with the
ideal K< y > . Camion shows that every abelian code is a
kronecker product code when we observe the code under a proper

decomposition of G.

Definition 4.2.7. A code is separable if it can be written as

the kronecker product of cyclic codes.

Camion showed that not all abelian codes are separable, but
on the other hand, every abelian code is equivalent to a separable
code. Therefore, it is sufficient for our purposes to consider

the class of separable codes.

Theorem 4.2.8. (MacWilliams): Let c € KG, and QKG(C) be the
set associated with the nonzero characters of < ¢ > in KG.
Let G=8xT, withns=!s! and ny, = |T| . Let a and b be

idempotents of XS and KT respectively. If
QKS(a) QKT(b) = QKG(c)

then ¢ = ab.

Proof: Ilet c = )

TN
2

. sitj' From the M-S mapping

-1
ny, . = z. x _(c) x (s.t.)
1,] g Q(c) g g 1]

Thus, since xg(c) =1,
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1 -1
ny. . = T )X P (s, ) ¢_(5.")
2 xeaq) yeam ¥t T
Let
n
a = 1/ns 55 X wX(s£1) s,
i=1  x€ Q(a) :
and let
n
T -1
b= 1 z ) t, t
/By | bty %
J=1 y€ Q(b)

We have that a and b are idempotents of KS and KT respectively,

from Theorem 3.4.3. Thus c = ab.

Q.E.D.

Section 3
Let G be a finite group of order n.

Definition 4.3.1. A linear code Ei will be called a G-code if
for ti an n-tuple code, the vectorsof € are labled with elements

of G, and for each n-tuple code word

we have



is also a code word.
All codes obtained from the ideals of group algebras
are G-codes. In fact, Delsarte shows that the G-codes can
be identified with the ideals of KG. Abelian codes are a special
case of G-codes. If A is an automorphism of G, then the

mapping

a = T  alg)lg ~ Ala) = z a(g) Alg) (4.9)
g €G g E€G

is an automorphism of KG.

Theorem 4.3.2: Let € Dbe a G-code of G. Every automorphism,
acting as a permutation on the coordinates of the code words
transforms € into an equivalent G-code.

Proof: Since € is a G-code, there exists an ideal aCKG,
which corresponds to f . If A is an automorphism of G, then
A(Q) is an ideal of KG isomorphic to Q. Also, A(Q) is
only a permuatation on the coordinates. Thus, the distance and
weight properties of the code Q’, associated with A(a), must

be the same as those of the code Q .
Q.E.D.
Let A be an automorphism of G, and consider for h &G
< gAh) > =x, (a(n)) .
From our definition of irreducible characters

xg(A(h)) = Xg (h)
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for some g' € G. This relation defines a mapping which we call

AT , (i.e. AT(g) =g', ¥g e G). This is written symbolically

as

< g, Ah) > =< AT(g),h > . (%.10)

Theorem 4.3.3:

i) If A is an automorphism of G, then AT is an automorphism

of G.
T

11) (AT =2 ana (aB)T = BT AT,
Proof: 1) Suppose AT(y)’.= AT(y') , then
< AN(y),g > = < AT(y'),g >,
Mzeq, and

< y,A(g) > =x y',A(g) > ,

Vg € G. But this is true if and only if y = y'. Thus, A

is one-to-one. Next, for g,g' € G,

< X,AT(gg') > =< A(x),gg' >,

= < A(x),g > < A(x),g' >,

< x,0%g) > < x,a%(g") >

< x,A%(g) a¥(g") >

Hence, AT(gg') = AT(g) AT(g') , and AT preserves products.
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Thus, AT is an automorphism. To prove the second part of theorem,

we note that AT is an automorphism which implies
< 2T (x),y > = < x, (AT (y) >. Or.11)
On the other hand,
< AMy),x > =< y,AT(x) > =< AT(x),y > . (4.12)
Thus, (4.11) and (4.12) imply that
< x,A(y) > =< x,(AT)T(y) >,
¥x,y € G. In addition,

<x, )7y > = < Bx),y> ,

< B(x),AT(y) >,

T.
< x84 b)) >

Whicéh is what we set out to prove.

Q.E.D.

Again let r be the least integer such that the exponent

of G divides g -1. Define



Then the Bi's are automorphisms of G, and

i qi ‘qi
<xq,y>=< X,y > S Xy o> .

i

1B:.LA(x) = x4,

Thus B, = Bi’T, and if A is any automorphism of G, A
Thus, the Bi's are contained in the center of the group of auto-=
morphisms of G. Furthermgrg, the inverse automorphism of Bi

is Br—i’ and BiBj(x) = qu+3 = Bi+j(x)’ where addition is mod r.
The set of Bi's is clearly a normal subgroup in the group of
automorphisms on G. The subsets of G, which are invariant

under the automorphism subgroup containing the Bi's, are the
sets we have defined as g-power subsets of G.

Lemma %.3.4., If A is an automorphism of G, then

< g,A(a) > =< AT(g),a >,

Veeo andVa e xo.

Proof: For g€ G and a € KG,

< g,A(a) > = r a(k) < g,A(k) > ,
k G

= 3 alk) < AN,k > ,
k G

=< A%g),a >

Q.E.D.



From this proof it is also clear that
T
< A(g),a > =< g,A (a) >,
‘V’gé ¢ and¥ a e xC.

Theorem 4.3.5. (Delsarte): The automorphism A of G transforms
the ideal Qin KG, into the ideal QJ if and only if the auto-

morphism defined by
transforms the annihilator of Q into the annihilator of Q\' .
Proof: We let A(G) = Q' = {A(a) | 2a€(®R }. Then

MIQU] = {x€G | < x,A(a) >=0, ¥ 2eQ@ 1},

(x€G | <xA (b)) >=0, ¥ be@},

An[ (R ]

11

xed | < @ HI),p>=0, ¥bveQr .

Thus, if x & An[Q], then (A_1 )T(x) 'is in the annihilator of

Q'. In fact, this argument is reversible.

Q.E.D.
Remark: (((AT)_1)T)_1 = ((a HHHT = A, and
{AB)' = ((AB)—1)T = A'B'" , for A and B automorphisms of G.
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From the above theorem, an ideal is mapped to itself under A

if ‘and only if its annihilator is mapped to itself under A'.

Definition 4.3.6. Let L(G) denote the automorphism group of G,
and Lq('G) the largest subgroup of L(G) whose elements all

transform every ideal of KG into itself.

Let B éLq(G) , and A € L(G), and suppose B(@®) = @ . Let

x € A((AR), then
ABA™ (x) € A(R).

Thus, ABA™! transforms A@) into A(Q) and is therefore in

Lq(G), which is thereby normal in L(G). We state without proof:

Theorem 4.3.7:
i) The group Lq(G) has order r; it consists of all auto-
morphisms of the form Bi;
ii) The factor gréup L(KG) = L(G)/Lq(G) acts as a permutation

group on the minimal ideals Qj in KG.
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CHAPTER 5

Example 5.1.1. Let G = (8), and let K= GF(3). Then

G = go,g1,...,g7 , Where g0=1. The 3-power subsets
are 1 s g,g3 , €5:8¢ 5 &) > and gs,g7 . Therefore,
there are three minimal ideals of dimension 2 and two of
dimension 1. Now , 32 = 1 mod8, and so L= K( )= GF(9),
where is a primitive eighth root of unity. The field

GF(9) consists of the elements 0,1,2, , +1, +2,2 +1,
2

2 +2 , where = +1. The group characters are
=1, = = 41 = 2 1
go(g) gv;(g) , g2(g) +1 g3(g) +
= 2
(g)=2 (g)=  +2 g (g) e
=2 ,
According to the M-S mapping
_ -1
ey = 2( g; -89 &5 )>
= 2( g0+g1+g2+g3+g4+g5+g6+g7),
- -1
e, = 2( g; » E+&3 &5 ),

appling the above characters to this formula yields,
ey = gp+t &+ g3+ 2gh+ 2g5 f'2g7.
The other idempotents are found similarly, and are
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e, = g0+2g2+gh+2g6,

)
|

3 = 2go+g1+2g2+g3+2gh+g5+2g6+g7,

e4 = g0+2g1+2g3+2g4+g5+g7,

and e.+e_ +e +e3+eh = 1 in KG. The minimum Hamming weight of e, is 6.

0 "2
The minimum weight of & e, Y is 4, and the minimum weight of < &), >

is 6.
Example 5.1.2. Let G =g(2) g(2) g(2). Let K = GF(3), then for g0=1,

the multiplication is defined as follows

TABLE I

g, & gy 8 &5 &3
g7 g7 gO

The exponent of G is 2, and 3= 1 mod 2. Therefore, the M-S mapping

is from KG - KG. The 3-power subsets are { go},{ g1},{ g2},... { g7}.
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eg = 2 (gy+ g +e,+g +85+ g5+ 8, )

e 2 (2 g; ) + g,

3 i#j J
All minimal ideals are of dimension 1. The minimum weight of the ideal
< ej‘> < ek> is 2, for j,k # 0., Therefore, this group generates poor
codes over GF(3).
Example 5.1.3. Let G = o(4%) o(2), and let K=GF(3). Consider o(4) = < g >
and o(2) =< g, > .- The exponent of G is 4, and 32 =1 mod 4, so r=2, and
L = GF(9). The 3-power subsets are { go},{ 81,83 },{ gg},{ g5:87 };{ g6}~.
The idempotents are
6= 2 (gy+ & + 8y + 83+ 8, +8 +8+8 )
e, = gy + 2g2 + g, + 2g6 s
e, = 2g0 + g+ 2g2 + g3 + 2gh + g5 +2g6 + g7 ,
e3 = 2g0 + 2g1 + 2g2 ¥ 2g3 + g + g5 + g + g7 s
e, = g+ 2g2 + 2gu + g¢ >
and
e5 = 2g0 + gyt 2g2 + g3 + qu + 2g5 + gg + 2g7 .

The ideals < e, > and < &) > are both of dimension 2 over GF(3), and

both have minimum Hamming weight 4.

Up until now, we have discussed only abelian G-codes. We consider

G to be the group of quaternions of order 8. So, G = { 1,i,i2,i3,j,j3,

K,k5 } with ij=k, jk=i,ki=j, andiji=k>. Let K= GF(3), then
2 + 2i2+ 21 + 2i3+ 2j + 2j3+ 2k + 2k3 s

e, = 2+ i2 s

®
)

e, = i i3+ j+ j3+ k + k3
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are the idempotents generators of the minimal two sided ideals in KG.
The minimum weight of < e, > 1s 2, while the minimum weight of < e3 >
is k4.

The other group of order 8 is the dihedral group. The minimal two
sided ideals of the group algebra generated by the dihedral group of
order 8 have the same properties as the quaternion group algebra. This
exhausts all possible G-codes which are ideals in group algebras of
dimension 8 over @F(3). The cyclic group o(8) afforded the best distance
properties. The ideals of Example 5.1.1 were of dimension 2 with minimum
weight 6. The next best code is given by Example 5.1.%. The minimum
weight of the code of dimension 3 was 4, which is less than the weights

of the code given in Example 5.1.1, but the code of Example 5.1.4% can

send three times as many different messages.
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