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CHAPTER I

INTRODUCTION AND METAMATHEMATICAL
BACKGROUND

In this thesis axioms for set theory will be presented
which include the well-known axiom of choice, These axioms,
together with their associated primitives, defined terms,
and theorems will be referred to as the BGN (for Bernays,
G8del, and von Neumann) theory of sets, or just BGN. BGN,
without the axiom of choice and theorems requiring it, will
be denoted by BGN!. It will be shown that if a proposition
attributing a property to countable sets can be proved in
BGN, then it can be proved in BGN', by showing that the axi-
om of choice (Zermelo's form), when stated for countable
sets, is a theorem of BGN!?',

We remark at the outset that we are not claiming to prove
what is known as the "countable axiom of choice", The dis-
tinction between the "countable axiom of choice" and the
"axiom of choice for countable sets" is made in Chapter IV,

In order to show that Zermelot!'s form of the axiom of
choice, when stated for countable sets, is a theorem of BGN', .
we must set forth carefuliy the axioms and principal defini-

tions of BGN, But first we will need to develop some

1l



metamathematical ideas concerning axiomatic theories. An
informal approaéh, following R, L., Wilder [9], is well-
suited to our needs,
By an axiomatic theory we will mean a totality consist-
ing of the following,
1, Atformal ob ject language with primitive (undefined)
erms, ' '

2. A fundamental set of axioms expressed in the object
language.

3. Theorems deducible from the axioms by logic.

For convenience, the primitives and fundamental axioms
are called an axiom system and given a name, e,g., X, Ob-
Ject language statements which make "meaningful assertions
about the primitives are called X-statements. In proving
theorems, that part of logic known as "predicate calculus

with identity theory" will be assumed,

Definition 1,1 If X is an axiom system, an interpretation

I of X is an assignment of meanings to the undefined terms
of X in such a way that the axioms of X are all true for
these meanings, The concept arising from the interpretation

‘I is called a model for X, and denoted M(X,I),

Definition 1,2 An axiom system X is called satisfiable if

there is an interpretation I leading to a model M(X,I) for X,

Definition 1.3 If X is an axiom system and T is an X-state-




ment which can be proved by the rules of predicate calculus
with identity theory, using any or all of the axioms of X as
hypotheses, then T is called a theorem of X, We say "X im-

plies T".

Definition 1.4 An axiom system X is called consistent if

there are no two contradictory X-statements implied by X,

Without delving'into the. fine points of logic, we will
assume the following two logical principles, following

Wilder [9, p. 27].

Principle 1 Let X be an axiom system and I an interpretation

of X, If X implies an X-statement T, then T(I), the statement
resulting from T by replacing the undefined terms of X by

their meanings in I, is true of M(X,I).

In other words, every theorem of a satisfiable axiom
system, when interpreted, becomes a true statement about the

model arising from the interpretation,

Principle 2 Let X be an axiom system and I an interpretation

of X, Then there are no two theorems P(I) and Q(I) about

M(X,I) which are contradictory.

Using these two principles, we have a simple but impor-

tant metatheorem,

Metatheorem 1 Let X be an axiom system, If X is satisfia-

ble, then X is consistent,
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Procf Let I be an interpretation of X, and suppose that P
and Q are contradictory X-statements implied by X, Then
P(I) and Q(I) are true of M(X,I) by Principle 1, But by
Principle 2, this cannot be, So P and Q cennot be contra-

dictory, and hence X is consistent,

Definition 1.5 Let X be an axiom system and A be an axiom

of X, Let X' be X with A excluded, and let X" be X' with
the negation of A included. Then A is said to be indegeﬁd-
ent in X or independent of X! if both X and X" are satisfi-

——

able.

We will apply the metamathematical ideas just discussed
‘many times in what follows, The primary axiom system we

will deal with is of course the axiom system of BGN,



CHAPTER II

THE BGN AXIOMATIC

THEORY COF SETS

The nine axioms for set @heory which we will use have
their origins in the works of P, Bernays, K, GOodel, and J,.
von Neumann, and for this reason we will refer to them as
the BGN axiom system, Lest this chapter become in itself a
monograph on axiomatic set theory, it must be assumed that
the reader is familiar with the constructions of set theéry
which are not defined here., The axioms are, except for some
minor modifications, those given in E, J. Lemmon's monograph
[7], and the reader is referred there for a brief, concise
treatment of axiomatic set theory.

In the formal axiomatic BGN theory of sets there 1is one
primitive concept, that of a "class", The object language
has symbols x, y, u, v, etc,, which stand for variables
ranging over the domain of classes., Usually, class variables
wili be lower case, but some specific classes will be denoted
by upper case, for example, the set N of natural numbers, The

other symbols of the object language are

v for each (universal quantification)
-> implies (implication)

equals (equality)
5



~ not (negation)
€ is a member of (membership in a class)

All except the last are recognized to be standard symbols

from logic, Note that the logical symbols

3 there exists (existential quantification)

‘3!  there exists exactly one (unique existential
quantification) '

> if and only if (biconditional)

& and (conjunction)

or or (disjunction)

can all be defined in terms of V, —, and ~; the appropri-
ate definitions are understood to be a part of the theory by
the fact that predicate calculus with identity theory has
been assumed,

Parentheses will also appear in the object language, but
only for the sake of legibility, The convention, following
Lemmon, will be that parentheses are used sparingly; only
around statements of the form A — B, where A and B are ob-
ject language predicates, will parentheses be mandatory,

Having listed the symbols of the object language, we
must specify how the symbols may be combined in order to
form admissible strings of symbols. An admissible string
will be called a well-formed formula, or wff, The most

basic type of wff is defined first,

Definition 2,1 A primitive dyadic predicate, or p.d.p., is

a string of the form x = y or of the form x € y.



The rules of wff formation can now be stated,

1. Every p.d.p. is a wff,
2., If A and B are wffs, ~A and (A — B) are wffs,
3, If A is a wff and x is a class, then Vx A is a wff,

The rules of wff formation are concise. Note, for example,
that if A, B, and C are .wffs, then

dx ((A or B) & C) |
is a2 wff, for it is equivalenfrto

~Vx (~(~A —> B) or ~C)).

Now that the rules for manipulation"of the object
language symbols have been stated, we turn our attention to
the problem of defining derived (non-primitive) concepts in
the object language. We give below a policy on definitions
which follows that of Lemmon,

Formal definitions will be of two kinds: abbreviations
for classes and abbreviations for wffs, As for class defin-
itions, if we can prove a wff in the object language of the
form

1% A(Tyseeesyy)
where A is a wff in which the y; are free class variables,
then we are entitled to introduce a term 'r(yl,...,yn) to
stand for x, For esxample, assuming that an ordered pair
(x,y) of classes has already been defined, and assuming that
the wff

J1x YVt (t € x «»FJudv u € Y, &V €y, & (u,v) = t)

is provable, it would definre the cartesian product y3§( Voo



Formally, we would write

Definition y, X ¥, for x provided J!x YVt (t € x «—»3Ju Iv
1 2 v

uey, &ve y, & (u,v) = t).

As for wff definitions, if there is a particular wff
A(yl,...,yh) which we expect to use so much that it would
be cumbersome to write it out at each usage, we introduce
2 term to stand for it, For example, given the wff

3x3dy t = (x,¥)
we might want to abbreviate this by "opair t", Formally,

we would write

Definition Opair t fordx3dy t = (x,7).

The two types of definitions are then just metalanguage
statements assigning names, purely as a matter of conven=-
ience, to class variables (or constants) and wffs,

We are now ready to give the BGN axioms, together with
definitions of important terms used in the axioms and in that
which follows., First of all, we define what it means for a

class to be a set,

Definition 2,2 Set x for dw x € w,

If a class is not a set, we call it a proper class,

Definition 2.3 Prop x for ~set x,

The first axiom provides a wff condition sufficient for

equality of classes. That this wff condition is necessary



for equality of classes follows from identity theory; it need

not be postulated,

1., Axiom of Equality

Vx Vy (Vz (z € x<> 2 € §) > x =y).

The second axiom allows us to form a unique class from
every wff, If we were to postulate that 2 unique set could
be formed from every wff, the wff ~(x € x) would quickly
lead to Russell's antinomy. There is a good discussion of

this in the introductory chapter of Lemmon,

2. Axiom Scheme of Classification

For every wiff A (in which y does not occur)

Jiy Vx (x € y <> set x & A).

The second axiom is actually not a single axiom, but
rather an axiom "scheme": an axiom is obtained for each wff
A by application of the quantification rule of universal in-
stantiation, This axiom, unlike all others in the BGN sys-
tem, is not a pure object language statement, but is a mix-
ture of object language and metalanguage, The following

fundamental definition is a definition "“scheme",

Definition 2.l For every wff A (in which y does not occur),

{x: A} for y, provided 3!y Vx (x € y <> set x & A),

The symbolism {x: A} is called a class abstract, and
A is called the defining wff, Use of class abstracts will

effect a simplification of every subsequent class definition,
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Definition 2.5 {x,y} for {z: set x & set y —> z = x or

z =y},

Definition 2.6 {x} for {x,x}.

The third axiom allows us to form a set from any pair

of given sets,

3. Axiom of Pairs

Vx Vy (set x & set y —> set {x,v}).

We define the sum c¢f a class, and give the fourth axiom,

which postulates that the sum of every set is a set,

Definition 2,7 Ux for {y: dz z€ x & y € z}.

L, Axiom of Sums

Vx (set x = set Ux),

We define the inclusion relation for classes and the
power class of any class, so that the fifth axiom, the axiom

of powers, may be stated,

Definition 2.8 y C x for Vz (z € y— z € x).

Definition 2.9 & x for {y: set y & y < x},

S. Axiom of Powers

Vx (set x —> set Fx).

Definition 2,10 (x,y) for {{x},{x,¥y}}.
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Definition 2,11 Opair t for Ix dy t = (x,7¥).

Definition 2.12 Rel x for Vy (y € x — opair y).

Definition 2,13 Uni x for Vu Vv Yw ((u,v) € x & (u,w) € x

> v = W),

Definition 2,1l Func f for rel f & uni £,

Definition 2,15 f(x) for y provided func f & (x,y) € f.

Definition 2,16 Inj f for func £ & Vu Vv Vw ((u,v) € £ &

(wy,v) e £ —>u=w),

Definition 2,17 D £ for {u: Iv (u,v) € £} provided func f.

Definition 2.18 ® £ for {v: du (u,v) € £} provided func f,.

Definition 2.19 f:x —>y for func £ & OFf =x & fLf c 7.

Definition 2.20 flw] for {v:duu ew & (u,v) € £} provided

f:x —> vy,

Note that in the definition just given, f[x]) = & f, and

that we have not required that w C x,

Definition 2,21 Bij f for 3x 3y (f:x —>y & inj £ & R f = y).

Definition 2,22 f]u for {t:3x3Jy (t = (x,y) &t € £ &

X € u)} provided func f & ucC OF.

6. Axiom of Images

Vx V£ (set x & func £ — set fl[x]).
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Let set x & y € x, then if 1x is the identity func-
tion on x, 1.|y:y = x, so (1x|y)[x] =y is a set by the
axiom of images, So every subclass of a set is a set, We
call this result the "theorem of subsets",

The seventh axiom, the axiom of regularity, rules out
classes being members of themselves, and the provability of
cyclic strings such as x € y& y € z & z € Xx, Before stat-
ing this axiom, we will need to give some more definitions,

Note that the wffs

Jit Vx (x € t <> set x & x # X)

Jit Vx (x € t <> set x & x = x)_
contain no free variables, This simply means that the terms
in BGN that they define are constants, i,e,, particular
classes, Using Definition 2., we can then make the follow=-

ing definitions,

Definition 2,23 @ for {x: x # x}.

Definition 2.2 U for {x: x = x}.

The class @ is called the "empty class"; we defined it
now because it will appear in the axiom of regularity, The
definition of U, the "class of all sets", is a slight, but
enlightening digression, BGN, as an axiomatic theory of
élasses, is distinguished from most other set theories in
that it admits non-sets, or proper classes, such as U, In
most applications, however, proper classes do not appear,

It could be said that they are an unwanted side effect that
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appeared when set theory was cured of Russell's antinomy by

making a distinction between classes and sets,

Definition 2,25 x Ny for {z: z € x & z € y}.

7. Axiom of Regularity

Vx (x #8—~>3Jyyex&xnNy=g9).

The eighth axiom, the axiom of infinity, postulates the
existence of a set which has a subset behaving like the nat-

ural numbers, as we will show in Chapter III,

Definition 2,26 x Uy for {z: z € xor z € y}.

8. Axiom of Infinity

dx set x & e x & Vy (ye x -y U {y} € x).

In many versions of set theory, set # is postulated.
However, it follows in BGN as a theorem, since dx § € x by
the axiom of infinity, We now define the difference of two
classes, in order to be able to state the ninth and final

axiom of BGN, the axiom of choice,

Definition 2,27 x - y for {z: z € x & z £ v}.

9, Axiom of Choice

Vx 3f (£:Px - {g} > x & Vu Vv ((u,v) € £ > v € u)).

Our fundamental assumption, now that the axioms of BGN
have been stated, is that the axioms of BCGN' are satisfiable,

and therefore consistent, by Metatheorem 1, To complete the



exposition of BGN, we give a final definition which is used

in Chapter III.

Definition 2,28 Nx for {z2: Vy (y e x => z e y)}.

There are other equally good formulations of set theo-
‘ry., Two which are important here are Gddel-Bernays (GB)
set theory and Zermelo-Fraenkel (ZF) set theory, ZF is im-
portant to us because P, J. Cohen [3) established the inde-
pendence of the aiiom of choice (AC) from ZF! (ZF excluding
AC), and we will use some of his results in Chapter VI, Th
historical importance of GB is that G8del [5] showed that A
is consistent with GB' (GB excluding AC); its impoftance'he
is that Cohen [3, p. 78] shows every theorem of GB which
speaks only about sets, or set-theorem, to be a theorem of
ZF, Furthermore, Cohen'!s demonstration does not assume AC,
Hence ZF!' implies the set-theorems of GB!, Finally, as it
is easy to see from examination of Cohen (3, Chapter II,

Section 6] that GB! implies BGN', we have the following.

Metatheorem 2 ZF!' implies the set-theorems of BGN?',

This result will be used in Chapter VI,

1k
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CHAPTER III

COUNTABILITY IN BGN'!

In order to define countability in BGN', we will»need
to have a mddel in BGN' for the natural numbers, We there-
fore construct a couple (N*,s*) in BGN' which satisfies a
certain set of axioms for the natural numbers, In addition,
we will show that there is & partial order relation on N¥
that is a well-ordering, This last fact will be an essen-
tial part of the proof that the AC for countable sets is a
theorem of BGN!,

It has become conventional to associate axioms for the
natural numbers with the name of G, Peano, who published a
consistent and independent axiom system for the natural num-
bers in 189L., We therefore call the axioms we are about to
present the Peano system (PS), although they closely resem-
ble axioms for the natural numbers given by R. Dedekind [4]
in 1888,

The undefined terms of PS are a class N and a function
8, called the successoy function, There are three axioms,

which we now stazte.

Pl, s:N — N & inj s,
P2, Juue N - R s.

15
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'P3, Vx{(ueN-Rs&uex&xcClN&
VtE (t e x > 3(t) e x)) = x = N).

Axiom P3 is usually called the induction axiom,

Metatheorem 3 PS is satisfisble relative to BGN', i,e,, if

BGN! is satigfiable, then there is a model (N%,s*) in BGN!
for which P1l, P2, and P3 are all true,
Proof By the axiom of infinity, dx set x & # € x & Vy (y € x
—> v U {3y} € x), so define N*"as follows

N = N{x: Pex&Vt (t ex—>tUI{t}ex)}.

a2,

N” is a set by the theorem of subsets, since N* is a subclass
of every set x satisfying the axiom of infinity., Now define
s¥ = {x: da a e N & x = (a,a U {a})}.
Clearly s :N* —> N*, To show that s° is an injection, let
(a,a2 U {a}) and (b,b U {b}) be in s*, with a U {a} = b U {b}.
Then as 2 € a U {a}, a € b U {b}, and as b € b U {b}, b €
a U{a}, Soa=b, or (€ b & b € a), But if a € b & b € a,
{a,b} would violate the axiom of regularity: since (b € a —>
{p} € a N {a,b}) and (a € b — {a} b N {a,b}), it would be
false that 3t t € {a,b} and t N {a,b} = #. So a = b, s is
an injection, and P1 nolds, To show that P2 holds, note
that a € a U {a} for each a € N*, therefore each a U {a} is
not empty. So @ e‘N*, and yet g £ fl.s. To show that P3
holds, let x be an arbitrary class, let @ € x, let x g;N*,

and suppose Vt (t € x —> é%(t) € x). Then by the way N* and

A9,

s” were defined, N C x, so x = N as required,

Ky

The significance of Metatheorem 3 is that we now have
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in BGN!' a couple (N%,s*) which has the properties of the nat-
ural numbers, i.e., for the model (N ,s"), the axioms of PS
become theorems provable in BGN!. Note that N- and s~ form
a particular model for PS, while N and s denote the uninter-
preted‘primitives of PS,

We will summarize the development of PS leading up to
the well-ordering of (N,s); the results then hold for the
model (N*,s*). A good reference for an intuitive (versus ax-
iomatic) treatment is L. Cohen and G. Ehrlich {2]., It is im-
portant to explain beforehand exactly what is going on from
a set-theoretic standpoint, Cohen and Ehrlicht!'s treatment
of the natural numbers assumes, by their own admission, in-
tuitive set theory., Axiomatically speaking, they assume all
of BGN'! except the axiom of infinity. N and s always remain
primitive, In order to circumvent the need for the axiom of
infinity, they tacitly assume satisfiability of PS, So to
make their treatment fully axiomatic, all that is needed is
to throw in the axiom of infinity, then PS becomes satisfia-
ble via the model (N*,s*) in BGN?,

Hence, in the theorems about to be presented that lead
up to a well-ordering, PS and all of BGN! except the axiom of
infinity will be assumed (remember that BGN! excludes the ax-
iom of choice), Throw in the axiom of infinity at the end,
then by Metatheorem 3, all the theorems we have proved are
true about (N%,s*). We are therefore justified in dropping
the asterisk notation; henceforth (N,s) means the primitives

of PS and BGN' without the axiom of infinity, or the model
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(N*,s*) in BGN', as required in the context, Ve now develop

N up to a well-ordering.

‘N - fls.

Theorem 3,1 diu {u}

Proof By P2, dJu {u} € N - &s., It suffices then to show
that N - ® s € {u}., So let x = @ s U {u}, then clearly x
satisfies the hypotheses of P3, so that x = N, Thus if t

is any element of N not in ® s, then t must be in {u}.

We denote the unique non-successor by "1" (in the model
(N%,s*) for PS, as was shown in the proof of Metatheorem 3,

the non-successor»is #). P3 now becomes the following,
P3', Vx ((x SN &1€ex&Vt (tex—>s(t)e x))—> x =N).

Theorem 3,2 (Recursion) Vy Vg Ve ((e e y & g:y —> y) — Jif

(feN —> 5 & f(1) = e & VYn (£(s(n)) = g(f(n))))).

Proof Let f =MNw, where w= {t: t TNX y & (1,e) € t & Vn
Vb ((n,b) € t —> (s(n),g(b)) € t)}. AsNX y € w, w# 2.
Furthermore, f € w, and f C t for each t € w, Now let M =
{x: Jtb b e y & (x,b) € f}, We will show using P3' that M =
N, PFirst of all, 1 € M, as (1l,e) € f, and if (1,b) € f for
some b # e, then as (1,b) # (l,e), (l,e) € £ - {(1,b)}. And
if (n,c) € £ - {{1,b)}, (s(n),g(c)) € £ - {(1,k)}, as £ € w,
So by the way w was defined, f - {(1,b)} € w, But then f C
f - {{1,b)}, which is a contradiction, Now if n € M, then
d'b b€ y & (n,b) € £, As f € w, (s(n),g(b)) € £, We want
to show s(n) € M, Suppose noét, then (s(n),c) € £ for some

¢ # g(b). Then (l,e) is a member of f - {(s{n),c)}, and if
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(m,d) € f - {(s(n.),c)}, then (s(m),g(d)) € £, and (s(m),

t

g(d)) # (s(n),c), else m = n and g(d) # g(b), so that

(n,d) € £ and @ # b, contradicting that n € M, Thus f -
{(s(n),c)} € w, As this requires f < f - {s(n),c)}, we
have a contradiction, and hence s(n) must be in M aft‘er all,
SoneM-—> s(n) €M, and by P3', M = N, Hence f:N —> y
and f(1) = e. Now if n € N, 3!b (n,b) € £, so (s(n),gl(b))
€ £, and therefore f(s(n)) = g(f(n)). All that remains to
show is that f is unique, Suppose that h satisfies h:N—>y,
h(l1) = e, and VYn (n € N — h(s(n)) = g(h(n))). Let M =

]

{x: x e N & £(x) h(x)}., Then 1 € M, and if n € M, f(n) =

I

f(s(n)), and

h(n), so g(f(n)) = g(h(n)), therefore h(s(n))

so s(n) € M, Again, by P3', M = N, so that h = f,

Theorem 3.3 (Addition) 3J!f (fF:NX N—=>N & Vm Vn ((m,n) €

NXN-—=> f(m,1) = s(m) & f(m,s(n)) = s(f(m,n)))).

Proof Let m be any element of N, then by Theorem 3,2, with
y =N, e = s(m), and g = s, Jif, (fm:N —> N & fm(l) = s(m)
& Vn (n € N %fm(s(n)) = s(fm(n)))). So let £ =
{((m,n),f‘m(n)): (myn) e N X N}, Clearly f:NX N —> N, Also,
f(m,1) = fm(l) = s(m), and given n € N, f(m,s(n))= fm(s(n))
= s(fm(n)) = g(f(my,n)). To show that f is unique, let h
have the prcoperties of f, let m be any element of N, and let
N o= {x: x e N & f(m,x) = h(my,x)}., Then 1 € N,» for £(m,1)
= s(m) = h(im,1), and if p € N, then p € N and f(m,p) =
h(m,p), so f(m,s(p)) = s(f(m,p)) = s(h(m,p)) = h(m,s(p)).

Thus by P3!, Nm = N. So for a1l m € N and for all n € N,
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f(myn) = h(im,n), so that h = f,

The function f is just the familiar binary operation
of addition of natural numbers, Henceforth we will write
m + n for the value of f at any (m,n) € N X N. For the
function "+" so defined, we then have Vm Vn ((m,n) e N X N
>m+1l=3s(m) &m+ s(n) = s(m + n)),

Associativity and cormmutativity of "+" easily follow

from P3¢,

Definition 3,1 R for {x:dmdndJp (me€ N&n e N&p € N &

x=(mn) & (m=norm+p =n))}.

The relation R is just the familiar "less than or equal
to" relation on the natural numbers, Given (m,n) € N X N,

we will usually write mRn for (m,n) € R,

Theorem 3,k Vm Vn Vp ((m € N —> mRm) & (mRn & nRm —>m = n)

& (mRn & nRp —> mRp)),
Proof (1) Given m € N, let n = m and let x = (m,n), then
X € R by the way R was defined, so mRm,

(2) If mRn & nRkm, thenm = n orm + p = n for some p,
andn =mocrn + p!' =m for some p', Som=n or (Idp (m + p
=n) & dp!' (n + p' = m)), But the second disjunct cannot be
true, For if it were, then m + (p + p') = m, But it may be
shown, using P3', that for all m and n in N, m + n # n,

(3) If mRn and nRp, then m =n or3dq (m + q = n)
andn =p or 3q' (n + q' = p), So suppose m = n, then

m=p or 3q' (m + q' = p), so mRp., Or suppose dq (m + q =
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n), then either m + q = p, in which case mRp, or 3q' (n +
q' = p), in which casem + (q + Q') = p, so that mRp, As

in all cases we heve mRp, the proof of (3) is complete,.

Theorem 3,4 will be recognized as the assertion that R
is a partial order relation on N, We now define what it

means for an element of a subset of N to be a first element,

Definition 3.2 First x for a provided x CN & a € x & Vy

(y e x = aRy).

It is easy to see, by Theorem 3.4, that each non-empty
subset of N can have at most one first element, We will
show that each non-empty subset of N has at least one first
element, hence that R is a well-ordering of N. But first we
will need two lemmas. The first asserts that N is a "chain"
with respect to R, and the second asserts the principle of

"strong induction",

Lerme 1 VmVn (mé€ N & ne N —> mRn or nkm),

Proof Let m be an arbitrary set in N, and let M = {t: mRt
or tRm}, We show that 1 € M by skowing thet Vm (m e N —
1Rm), Let Q = {x:1Rx}, so that Vm (m € Q —> 1Rm); we must
then show that Q = N, Now clearly 1 € Q, and if arbitrary

n € Q, so that 1Rn, then as 1 + n = s(n), we have 1lRs(n),

so that s3(n) € Q, Hence by P3', Q = N, Now if n € Mh, then
s(n) € Mm’ for let n be any set in M , then mRn or nRm, so

that there are three cases to consider,
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Cagse 1, m = n, Then s(m) = s(n), so as a(m) =m + 1

by Theorem 3.3, we have mRs(n),

Case 2, dp (m + p = n). Herem + s(p) = s(m + p) =
s(n), and so mRs(n).

case 3, dp (n + p=m), Ifp=1, s(n) =n + 1 =m,
so s(n)Rm, If p #1, then p = s(Q) for some q € N by The=-
orem 3.1, So s(n) + g =4q + s(n) = s(q +n) = s(n +q) =
n + s(q) = m, by Theorem 3,3.. So again, s(n)Rm.

As in every case s(n) € M, M =N now foliows by P3t,

Therefore given arbitrary n € N, then n € M., so mRn or nRm,

Lemma 2 Vx ((x C N &1 € x &Vt (Vv (VRt = v e x) = s(t)
€ x)) > x=N),

Proof Let the hypotheses hold for arbitrary x, and let I, =
{t:t e x & Vv (VRt > v e x)}. 1 € I, for 1 e x and giv-
en any v with vRl, we have v = 1, so that v € x, Now suppose
n € I, for an arbitrery n, then Vv (vRn > v € x), so that
by hypothesis, s(n) € x, We show that the assumpticn that n
€I implies that s(n) € Ix' Given arbitrary v, if vRs(n),
then v = s(n) ordp (p e N & v + p = s(n))., There are three
cases to consider,

case 1, v = s(n), Then as s(n) € x, v € X.

Case 2, Vv + 1 = s(n). Then by Theorem 3,3, s(v)
v + 1 = s{n), so v =n by P1, and hence vRn, so Vv € X.

case 3, dqgq (v + s(q) = s{nn)). Then s(v + q) = v + s(q)
= s{(n), so that v + q = n by F1, Hence vRn, so that v € x,

So s(n) € x and Vv (vRs(n) —> v € x), i,e.,, s(n) € I..
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Hence Ix = N by P3!', and as Ix C x cN, it follows that

x =N,

Theorem 3.5 (Well-ordering) Vx (x €N —> (x = ¢ or J!la

a = first x)).
Proof It will suffice to prove that ¥Vx (x N —> x = §
or da a = first x)., Let x be any subset of N, and suppose
Va a # first x, Define y =N - xC N, Then 1 € y, else
1 would be in x, and hence thé first element of x, Now
for arbitrary t € N, suppose Vv (VRt —> v € y), and consid-
er s(t), If we can show that s(t) € y, or equivalently,
that s(t) € x, then y = N by Lemma 2, so that x = g, and
the proof will be complete,

Given any q € x, qRt is false, as this would imply
qQ €y, So by Lemma 1, we must have tRq, But as t = q is
also ruled out (as t é y), it follows from the definiticn

of R that 3p (t + p = q). Now if p =1, s(t) =t +1 =

q, so s{(t)Rq, and if p # 1, dr s(r) = p and s(t) + r =1r

+ 3(t) =s(r +t) =8(t +r) =t + s(r) = q, so that s(t)Rq.
Now if s(t) e x, then as we have just shcwn that Vq (q € x
—> s(t)Rq), s(t) would be the first element of x, As by

hypothesis x has no first element, we must have s(t) £ x.

We are now ready to define what it means for a class
in BGN!' to be countable, This definition is implied triv-
ially by the usual "finite or countably infinite" defini-

tion, and implies that definition, given the Recursion



Theorem and the Schroder-Bernstein Theorem, The latter

implication is proved in Appendix I,

Definition 3,3 Ctbl x for df f:x—=> N & inj f,.

Notice that by the theorem of subsets, flx] is a set,

Hence, by the axiom of images applied to the inverse.func-

1

tion £, f'lf[x] = X is a set, So every countable class

x in BGN!' is a set,



CHAPTER IV

THREE EQUIVALENT STATEMENTS OF THE
AXIOM OF CHOICE

In this chapter three statements of the axiom of choice

are given and shown to be equivalent.

Acl. Vx 3f (£:Px - {#} > x & Vy (ye Px - {8} = £(y)
€y

AC,. Vx (x # & 0 ¢ x—=>3dg g:x »>Ux & Vy (y€ x —

gly) € y)).

AC Vx (x # 0 &« 0 € x& VyVz (yex &z ex&y#z —>

3.
yNz=¢g)—=>duVv (ve x—= J!w {w} =uNv))

AC already stated as the ninth axiom of BGN, was first

1°?
published by E, Zermelo in 1904, in a paper in which he

proved that every set can be well-ordered [10], ACZ’ al -
though uvseful in its own right, is given here only to make
the proof that AC

implies AC, easier to follow, AC, is

1 3 3

the most commonly known form of the axiom of choice, and is
usually what people have in mind when speaking about the
axiom of' choice, When it does not matter which version of
the axiom of choice is referenced, the abbreviation AC will

be used, a&s has been done earlier, We now make the follow-

ing important distinctions,
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Definition lt.1 The "“countable AC" is A03 with the addition-

al hypothesis "ctbl x",

Definition 4.2 The "AC for countable sets", denoted ACl*,

is AC, with the hypothesis "ectbl x".

Therefore, in the BGN object language, Acl* is the
following.
AC,”. Vx (etbl x = 3f £:FPx - (#} >x&Vy (ye Px - (9]

—=f(y) € y)).

Theorem L AC, — AC, & ACz-—>-AC3 & A03-€> AC,.

5% Let AC; hold and let x be an arbitrary
class such that x # @ and # ¢ x. Then by AC,, Ir r:PUx - {4}

Proof ACl-%> AC

> x& Vy (y e Fux - {8} = £(y) € y). Since xC PUx - {2}
define g = f|x.

A02 —> ACB: Let A02 hold and let x be an arbitrary
class such that x # @, @ £ X, and Vy Vz (y € x & 2 € x &
y#2z—>yNz=g), Then by AC,, Jg g:x = Ux & Vy (y € x
—>g(y) e y). Let u = g[x], then given any v € x and any
weulNv, w=gi(s) for some s € x, If s # v, then vl s # 0
which contradicts the hypothesis that members of x are pair-
wise disjoint, So w = g(v), and as g is a function, w is
unique for each v, Hence Jiw {w} =u NN v,

AC,—>AC,: Let A03 hold and letvx be an arbitrary

3 1

class, If x = @, AC, is trivially true, so let x # @.  Con-

sider A, defined as follows,

A={y':dyye P x - {g} &y =yX {y}}.
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A #9, 0 A, and given y' and z!' in A with y' # z', we have
that y # 2z (as y =z —> y X {y} =2 X {z}), soy' N z' =

y X{y} Nz X{z} =(yNz)X({y} N{z}) =@, We can there-
fore apply AG3 to the class A: Ju Vv (ve A =>3Jiw {w} =

u Nv), So for each ye P x - {#}, there is an associated

y' =y X,{y} in A, and u 1 y' = {w} for some unique ordered
pair w, As we y', w= (t,y) for some t € y; let £(y) = t,
As w is unique for each y, t is unique for each y, There-

fore f is a well-defined function,

It is ACl* that we will prove to be a theorem of BGN',

By examination of the proof that AC1 implies ACZ, we see

that ACl% implies the following,

3%

o e Vx (etbl Ux & x # 8 & @ ¢ x — dg g:x —> Ux &

AC
Vy (y € x —=> g(y) € y)).

By examination of the proof thsat AC, implies AC3, we

see that ACZ* implies the following.

ACB*. Vx (ctbl Ux & x # 0 & § € x & Vy Vza (ye x &z € x &y
#2 2>y7yNz=@)—=JuVvive x —=Jlw {(w} =uflv)),

Hence AC:L':'r implies ACB*, so when in the next chapter we

show that EBGN! implies ACl*,

Ac3'", We point out again that Ac3

we will have that BGN! implies

is not the countable AC,



CHAPTER V

THE DEMONSTRABILITY OF
Ac,™ IN BGN'
We now prove the main result, that the axiom of choice
for countable sets, as stated in Definition 4.2, is a the-

orem of BGN'?',
l *
Proof Let x be an arbitrary class, and suppose ctbl x,.

Metatheorem 5 BGN' implies AC

Then by Definition 3.3, 3g g:x—> N & inj g, If x = §, then
the theorem holds tfivially, so let x # #. Then FPx - {#} #
g, as Px - {#} = ¢ implies x = @. Therefore let y be an
arbitrary set in &x - {#}; then as y # @ and yCx, glyl #
# and glyl € N, As the set N is well-ordered by R, gly)

has & unique first element a, i,e,, d!a a € gly] & Vt (t e
gly] — aRt)., Denote this unique element by noe Then as g
is an injection, g‘l(ny), where g‘l is the inverse function
g‘l:g[x] —> X, is a unique element of y for each y in the
'set £x - {#}. Now we can define

f={t:Iyye Px- {#} &t = (y,g-l(ny))}.

Clearly, I 1is the required function,

It is important to point out how we have avoided the
use of AC, spedifically AC3. True, we have an infinite (and

28
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uncountably so, if x is countably infinite) collection
{glyl: ye £x - {#}} of non-empty sets, and we are choos-
ing from each gly)] an element ny. ACB woul.d be needed to
assert that ny is unique if we had no criterion for the
choice other than that each gl[y] is non-empty., However, by
well-ordering, we can assert the uniqueness of ny, by taking
it as the unique first element of gly)]. In other words, we
have a concrete way to specify uniqueness, Thus use of AC
has been avoided, as we have seen that the well-ordering of
N by R derives from the properties of N via the axiom of
infinity and other axioms of BGN',

Finally, note that the defining property of f is a wff,
so that f is a well-defined class by the axiom scheme of

classgification,



CHAPTER VI

CONCLUSIONS AND REMARKS

e
ki

1
it follows by Metatheorem 2 that it can be proved in ZF?',

Since by Metatheorem 5, AC is a set-theorem of BGN'!,
We make two observations related to P. J. Cohen's proof [3]
of the independence of AC from ZF!?,

First of all, Cohen's proof puts AC in a position with
respect to ZF' which is analogous to that of the "parallel
postulate" with respect to the other axioms of plane Euclid-
ean geometry: we can assume it or its negation; either way
we get a relatively consistent theory, But if we assume its
negation, i,e,, if we work in a set theory based upon ZF'!
and the negation of AC, then by Metatheorem 5 and the equiv-
alence results of Chapter IV, AC

1

sets x, and A02 and AC3 still hold for sets x with countable

still holds for countable

sum Ux,

Secondly, examination of AC,", i.e., A03 for sets x
with countable sum Ux, possibly leads one to the following
argument : since the sum of a countably infinite set of
countebly infinite sets is countably infinite (we call this
theorem "C3"), and this can be shown in BGN or ZF without

using AC, we have that BGN' implies the countable AC. The

argument is invalid, P, Suppes [8, p. 158] asserts that all
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known proofs of CS assume AC, Ail elementary analysis texts
we have seen give roughly the same proof of CS, and none
acknowledge that AC has been used, Since the proofs are u-
sually given in such a way that the dcpendence upon AC is
not clear, we give in Appendix II a proof of CS in which the
use of' AC is explicitly shown, What is presently important
is thaf it is in fact impossible to prove CS in ZF or BGN
without using AC, |

For suppose CS were a theorem of ZFt!, then it would be
a true statement about every model for ZF!, But Cohen [3,
P. 146] has found a model for ZF' in which the coﬁtinuum is
the sum or a countably infinite set of countably infinite
sets, In other words, CS is false in this model. 'Hence
it is impossible to prove CS in ZFt, Now suppose CS were a
theorem of BGN', then as CS is a set-theorem, ZF! would im-
Ply CS by Metatheorem 2, Hence it is impossible to prove

CS in BGN'!,



APPENDIX I

Let N, = {t: tRk} for each k in N, where R is the re-

k
lation on N given in Definition 3,1, We define "finite x"

to mean "Jk df f:N, —> x & bij f" and "“countably infinite

k
x" to mean "3f f:N —> x & bij f". Then we can give, for
sets in BGN', the usual definition of countability, whiéh

we denote by 'ctbl!",

Definition Ctbl' x for finite x or countably infinite x.

We now show that countability as defined in Definition

3,3 implies the notion of countability just given,

Theoren A,1l Vx (ctbl x —> ctbl!' x).

Procf Let x be arbitrary, and let ctbl x, so that
df f:x —> N & inj f.

Case 1, Jt (t e N & Vy (y € £f[x}) —> yRt)). Then fl[x]
g;Nt, so by the easily shown fact that every subset of a
finite set is finite, f{x] is finite, with say, h:N, —> £ x]
for some k in N and bijection h., Thus f'lh:Nk—+> x and
bij f-lh, and hence finite x.

Case 2, Vt (4 € N or dy (y € f[x] & ~yRt)). Then
let g:f[x] —> rlx] be defined as follows: for each t € f{x],
g(t) = first {y: y € £flx] & ~yRt}. Then by Theorem 3,2,
3th h:N —> £[x], h(1) = first f[x], and for each n in N,
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h(in +1) = g(h(n)) = first {y: y € £f[x] & ~yRh(n)}. It
can be shown using P3!' that h is an injection, So
£7lhiN —> x is an injection, Therefore, by the Schrdder-
Bernstein Theorem, Jf' £':N — x and bij f', So countably

infinite x.

J., L, Kelley [5, pp. 28-9, 276] gives a proof of the
Schréder-Bernstein Theorem which does not use AC, The
underlying set theory of Kelléy, as given in his Appendix,
is quite similar to BGN, which is not surprising, since

both evoived from Goédel-Bernays set theory,



APPENDIX II1

Theorem A,2 Let F = {An: n € N} be a countably infinite

collection of pairwise disjoint, countably infinite sets,
Then UF is countably infinite,
Proof Let x € UF, then 3dn x € An, and n is unique because

the A, are pairwise disjoint., Now x is the mth element of

k
An’ for some m, and m is obviously unique. This follows
because as A is countably infinite, an £ :N —> A and

Y is a bijection, So f "counts" A_ and allows us to

tag x as the mth e1ement of A . Let f(x) = (myn), then we

have shown how to define an injection f:UF —> N X N, so

that UF must be countably infinite,

But let Tn = {g: g:N —> An,& bij g}. This is certain-
1y an infinite set, We have asserted that from the set T =
{Tn: n € N}, which is a non-empty, countably infinite col=-
lection of infinite, pairwise disjoint sets, we can form a
set consisting of exactly one element fn from each set Tn
in the collection, without specifying any kind of proce-
dure to make a unique choice of fn’ We can only appeal to
the "countable axiom of choice": if T is a countably infi-
nite collection of pairwise disjoint infinite sets, then
there is a set consisting of exactly one element from each

set in the collection,
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Theorem A,2 is not quite the theorem CS which was
stated in Chapter VI, but theorem CS follows immediately
from Theorem A,2 and the fact that to any countably infinite
collection of sets there corresponds a countably infinite
collection of pairwise disjoint sets with the same sum, A

proof of this last fact may be found in Apostol [1; p. 35}.
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