UNIVERSITY JOF
e ras University of Nebraska at Omaha

Omaha DigitalCommons@UNO

Student Work

12-1-2006

Dynamics of Random Boolean Networks Governed by a
Generalization of Rule 22 Of Elementary Cellular Automata.

Gary L. Beck

Follow this and additional works at: https://digitalcommons.unomaha.edu/studentwork
Please take our feedback survey at: https://unomaha.az1.qualtrics.com/jfe/form/
SV_8cchtFmpDyGfBLE

Recommended Citation

Beck, Gary L., "Dynamics of Random Boolean Networks Governed by a Generalization of Rule 22 Of
Elementary Cellular Automata.” (2006). Student Work. 3549.
https://digitalcommons.unomaha.edu/studentwork/3549

This Thesis is brought to you for free and open access by
DigitalCommons@UNO. It has been accepted for

inclusion in Student Work by an authorized administrator r
of DigitalCommons@UNO. For more information, please l ,;

contact unodigitalcommons@unomaha.edu.

http://www.unomaha.edu/
http://www.unomaha.edu/
https://digitalcommons.unomaha.edu/
https://digitalcommons.unomaha.edu/studentwork
https://digitalcommons.unomaha.edu/studentwork?utm_source=digitalcommons.unomaha.edu%2Fstudentwork%2F3549&utm_medium=PDF&utm_campaign=PDFCoverPages
https://unomaha.az1.qualtrics.com/jfe/form/SV_8cchtFmpDyGfBLE
https://unomaha.az1.qualtrics.com/jfe/form/SV_8cchtFmpDyGfBLE
https://digitalcommons.unomaha.edu/studentwork/3549?utm_source=digitalcommons.unomaha.edu%2Fstudentwork%2F3549&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:unodigitalcommons@unomaha.edu
http://library.unomaha.edu/
http://library.unomaha.edu/

Dynamics of Random Boolean Networks
Governed by a Generalization of Rule 22
Of Elementary Cellular Automata

A Thesis
presented to the
Department of Mathematics
and the
Faculty of the Graduate College
in partial fulfillment

of the requirements for the degree

Master of Arts

University of Nebraska at Omaha

By
Gary L. Beck

December 2006

UMI Number: EP74747

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,
a note will indicate the deletion.

" Dissartation Publishing

UMI| EP74747
Published by ProQuest LLC (2015). Copyright in the Dissertation held by the Author.

Microform Edition © ProQuest LLC.
All rights reserved. This work is protected against
unauthorized copying under Title 17, United States Code

ProQuest LLC.

789 East Eisenhower Parkway
P.O. Box 1348

Ann Arbor, Ml 48106 - 1346

Thesis Acceptance

Acceptance for the faculty of the Graduate College,
Univefsity of Nebraska, in partial fulfillment of the
Requirements for the degree Master of Arts in Mathematics,

University of Nebraska at Omaha

Commiittee

D). Jishache.

Dora Matache, Ph.D.
Graduate Thesis Advisor
Assistant Professor, Department of Mathematics

Jack Heidel, Ph.D.
rofessor and Chair, Department of Mathematics

7

L/ " N ijgxélou THD.
Isaacson Professor an' iirector, HPER Biomechanics Laboratory

Graduate Committee Chair: @e JW
Steve From, Ph.D.

Professor, Department of Mathematics

Date: Not G bor NN

Table of Contents

Table of Contents

Abstract

Acknowledgements

1 Introduction

1.1
1.2

1.3
1.4
1.5

Cellular Automata« . v i i e e e e e
Elementary Cellular Automata..
1.2.1 Elementary Cellular Automata Classes
Random Boolean Networks
Transition Functions,
Overview of the Relevant Literature and Motivation for the Current

1.5.1 Relevant Work in the Literature
1.5.2 Current Work Inspiring this Research

2 The Boolean Model

2.1

Iterations of the System and the Model
2.1.1 Fixed Connectivity
2.1.2 Variable Connectivity,

3 Analysis of the Dynamics

3.1

3.2
3.3

Statistical Analysis L o
3.1.1 Fixed Connectivity
3.1.2 Variable Connectivity
Bifurcation Diagrams and Lyapunov Exponents
Fixed Points and Delay Plots
33.1 FocusonFixedPoints

O O

13

17
25
26
30

3.3.2 Delay Plots and Attractors 53

4 Conclusions 59
5 Directions for Further Investigation 61
Bibliography 64
Appendices 72
A Fixed Connectivity Matlab Code 73
B Variable Connectivity Matlab Code 78
C Additional Codes for Model Simulations 84
C.1 Randomly Assigned Parents 84
C.2 k Nearest Neighbors Parents 86
C.3 Probability Model Code 86
C.4 Matlab Code for Randomly Selecting a Single Rule 88
D Lyapunov Exponent and Bifurcation Diagram Matlab Code 90
D.1 Lyapunov Exponents and Bifurcation Diagrams 90
D.2 Derivative Function Code for Lyapunov Exponents 96
E Fixed Points 99

F Delay Plots 103

Abstract

Dynamics of Random Boolean Networks Governed by
a Generalization of Rule 22 of Elementary Cellular Automata
Gary L. Beck, M. A.
University of Nebraska, 2006
Dora Matache, Ph.D., Thesis Advisor
This study considers a simple Boolean network with N nodes, each node’s state
at time ¢ being determined by a certain number of k£ parent nodes. The network
is analyzed when the connectivity k is fixed or variable. This is an extension of
a model studied by Andrecut [4] who considered the dynamics of two stochastic
coupled maps. Making use of the Boolean rule that is a generalization of Rule 22
of elementary cellular automata, a generalization of the formula for providing the
probability of finding a node in state 1 at a time ¢ is determined and used to generate
consecutive states of the network for both the real system and the model. We show
that the model is a good match for the real system for some parameter combinations.

However, our results indicate that in some cases the model may not be a good fit,

thus contradicting results of [4]. For valid parameter combinations, we also study the
dynamics of the network through Lyapunov exponents, bifurcation diagrams, fixed
point analysis and delay plots. We conclude that'for fixed connectivity the model is
a more reliable match for the real system than in the case of variable connectivity,
and that the system may exhibit stability or chaos depending on the underlying
parameters. In general high connectivity is associated with a convergence to zero of

the probability of finding a node in state 1 at time &.

Acknowledgements

I would like to thank Dr. Dora Matache for being such an incredible educator. Her
mentorship during this process has been appreciated more than I could ever express
here.

Dr. Fredrick McCurdy, my friend and inspiration, is an example of the educator’s
educator. His thirst for knowledge truly inspired me to pursue this trek.

I would also like to thank Dr. Steve From for being a great sounding board for
me during my years in graduate school. As a non-traditional student, it was helpful
to have him as an advisor to keep me going even when I was ready to give up.

I would also like to thank Drs. Steve From, Jack Heidel and Nick Stergiou for
serving on my thesis committee, giving up a great deal of time to review this work
and providing feedback to make this a very complete product.

Finally, my partner, Will Dallaghan, deserves the biggest thanks of all for having

to deal with me since I began this journey in 1999.

Chapter 1

Introduction

As advances in technology aid in unraveling the complexities of life, more studies are
being conducted pgrtaining to questions surrounding genetics, evolution, biological
processes, and computational systems. The premise that a system can be analyzed
based on its behavior, not on isolated situations, provides the theoretical construct
behind the study of the dynamics of complex networks. Identifying and understanding
the dynamics of how these networks interact lead to developing mathematical models
to reflect reality. The complexities of some of these systems present difficulties in
developing optimal solutions.

This section introduces the general concepts behind elementary cellular automata
and the various rules governing them. We will also describe how random Boolean
networks are used to model certain systems. This information will help understand

the process by which our work was derived.

1.1 Cellular Automata

‘Computers not only enable mathematicians and scientists to solve some of these
complex problems of network dynamics, they also raise additional questions, such as
the concept of artificial self-reproduction [3]. John von Neumann is credited as being
the first to demonstrate automata, or cells, capable of self-replication given the proper
logic and initial conditions [48]. Cellular automata also provide simple models for a
variety of physical, chemical and biological systems.

Cellular automata consist of a network of elements existing in some geometric
lattice structure. These structures may be in one or multiple dimensions. They are
mathematical representations of physical systems with a discrete number of states
per cell. Cellular automata operate through application of transition functions, or
updating rules, associated with each cell of the automata. As a result, the network
exhibits evolution as these transition functions are applied simultaneously. The goal
of the study of these cellular automata is to elucidate general features of behavior
and perhaps devise generalized rules of behavior.

As Stephen Wolfram notes, any system with multiple identical discrete elements
undergoing deterministic local interactions may also be modeled as cellular automaton
[51]. Examples of natural phenomenon that may be modeled as cellular automata
include snowflake growth, biological functions of simple organism transformations

into complicated forms, and some mathematical systems found in number theory.

1.2 Elementary Cellular Automata

The simplest class of cellular automata may be further explained using one-dimensional
lattices with two states per cell. This class also takes into consideration the near-
est neighbor rule for the dynamics of the system and closed networks with periodic
boundary conditions. This class is known as elementary cellular automata (ECA).
One-dimensional cellular automata consists of a line of cells, each cell having a neigh-
bor to the left and to the right. The cells exist in two states. In binary terms, the
values of these cells is either 0 or 1, which is equivalent to Boolean values of FALSE
or TRUE, respectively. For the figures of these network strings, the 0 and 1 states
are represented by white and black cells, respectively (See Figure 1.1).

As a one-dimensional network evolves, the state can be visualized in two dimen-
sions. As successive application of the logic guiding the transition, known as transition
functions, additional rows are added for each complete mapping. Because the evolu-
tion of the system is actually recursive mapping of the transition function, each row
represents a time step; e.g., the system at time step ¢; evolves to the system state at

time step t, [3].

EEE EE(] EOE EBOO O=m ORCO OOs OO0

Figure 1.1: Elementary cellular automata input structure for a possible transition
function. White indicates the cell is OFF; black cells are ON.

Such recursive mapping results in dynamical system that may be qualitatively
studied. The most basic qualitative features of dynamical systems are the attractors
that are found over a period of time, whether it be over a discrete period of time
or to infinity. The initial conditions that evolve to a given attractor are referred to
as basins of attraction; the understanding of the numbers of attractors and how the
basins partition the state space is essential for comprehending the function of the

system under investigation [6].

1.2.1 Elementary Cellular Automata Classes

Based on the extensive work Stephen Wolfram has conducted with ECA, standard
classifications based on the behaviors of the rule sets are used to group the various
ECA rules [50]. It is possible for elementary cellular automata to produce all types of
behaviors in any given system. Initial conditions required to produce these behaviors
need not be complicated. Wolfram’s four classes of behavior are - I, II, ITI, and IV.
For Class I, system states rapidly evolve to a steady state. Rules in this class yield
trivial behavior because their evolution is very predictable. Class II demonstrates
simple behavior. This class of systems evolve into non-uniform states or evolve by
alternating among a limited number of states periodically. Since cellular automata

are deterministic systems, it is almost certain that any cellular automata evolution

will eventually become periodic. Being sensitive to initial conditions and slight per-
turbations is a hallmark of Class III because there appear to be no attractors and
the states are random [29]. In the case of Rule 30, it is inherently chaotic with the
exception of all but a trivial set of initial conditions. Class IV is a mix of Class II and
ITI, demonstrating simple and random behaviors, comparable to a transition from

solid to liquid. It is a complex transition from order to chaos.

1.3 Random Boolean Networks

For a more general system than cellular automata, a random Boolean network can
function as a model for a large class of biological networks [53], neural networks [1]
and genetic systems ([45], [46]), as well as chemical processes [23]. Boolean network
models have been used extensively in modeling networks in which the node activity
can be described by two states, ON and OFF, "active and nonactive”, ”responsive
and non-responsive”, "up-regulated and down-regulated”, and in which each node is
updated based on logical relationships with other nodes, called parents. In fact, Stu-
art Kauffman originally developed random Boolean networks as a model for genetic
regulatory networks [26]. They have been referred to as N — K models or Kauffman
networks.

The dynamics of random Boolean networks may be ordered, chaotic, or complex

[26] depending on values of nodes () and connections (k). Diverse properties of ECA

and random Boolean networks have been used to model phenomena in physics [41],
biology ([21], [27]), cognition [30], artificial life [50], artificial neural networks [28],
and music [9]. In general, random Boolean networks are good models for complex
systems ([14], [53]).

The similarity between random Boolean networks and cellular automata consists
of a set of nodes operated on by other nodes (called parents). Cellular automata
consists of an infinite number of nodes in a spatial structure ([3], [52]); Boolean
networks are finite but not arranged in any spatial manner ([23], [26], [33], [34]).
Network connections may be nonlocal wherein the input and logic can be different
for each network element. These elements change their values from input according
to given Boolean rules. Therefore, the possible alternative network constructs can
take into account all possible connection and rule schemes, making random Boolean
networks generic. Therefore, if the specific structure or function of a system is complex
or unknown, general properties found in a particular random Boolean network model

may be applied to understand its processes [14].

1.4 Transition Functions

The operation of the cellular automata and Boolean networks is controlled by condi-
tional logic that maps a neighborhood of cells into a single state, known as transition

functions. When cellular automata networks have complete connectivity, cells evolve

based on the states of all the cells in the network. However, elementary cellular
automata have a neighborhood with radius of one cell, r = 1. Given this type of
connectivity, a cell will transition to a new state at time ¢ + 1 based on its state and
those of its nearest neighbor at time ¢.

For automata with k£ possible states and a neighborhood of r cells, there will be
k?>+1 combinations of cell states which form the transition function input. Consider
elementary cellular automata with two possible states, 0 or 1, with a neighborhood
of three cells. The number of combinations of cell states is 23 = 8 (See Figure 1.1).

Because each of these neighborhoods can evolve to one of two states, there are
k***' possible sets of transition functions. For elémentary cellular automata, this
means there are 22° = 256 possible sets of rules. Specifically, for each combination
of cell sequences, a decimal value equivalent is assigned [3]. Each of these decimal
equivalents represents a single bit in an eight-bit byte. With the values of cells
equalling 0 or 1, evolution of the cell states can be simplified into a rule number
that defines the logic of the transition function. Figure 1.2 demonstrates the coding

process Anderson defines for Rule 22. Transition functions impact the evolution of

EEE EEC EOE E00 OEm OO0 OO 000
4 4 1 4 } 4 4 4
O O O u O " = O
0-2" 0-2¢ 0-2° 1.2* 0-2% 1.2%2 1.2' 0-2°

Figure 1.2: Demonstration of a transition function and corresponding bit value. The
decimal representation of this binary value is 22.

cellular automata by the sum of the weights of the neighborhood. A totalistic rule for
a (k,1) automaton would take the form f(a,b,c) = r(a+b+c) mod k, where r is the
function of integers modulo £ [37]. For ECA under a totalistic rule, the next state
for the element depends only on the sum of total number of bits from its assigned
neighborhood at time ¢ : s(t). The neighborhood has k; + 1 elements, the current
element, and k; parents. Therefore, s takes values from 0 to k; + 1 and the totalistic

rule is described by a Boolean function
Tk, (8) : {0,1,...,k; + 1} — {0,1}

According to Wolfram [50], transition functions impact the evolution of cellular
automata by a proportionate number of elements in the neighborhood.

This understanding of ECA evolution provides the basic foundation for how cel-
lular automata may be uséd to model real networks. With the aid of computers,
it is much easier to conduct research in this field. What follows is a discussion of
research that has been published as well as work that is ongoing to provide a bet-
ter understanding of the application of developments in ECA and random Boolean

networks.

1.5 Overview of the Relevant Literature and Mo-

tivation for the Current Work

As was mentioned in the Introduction, the investigation of dynamical systems and
their application in various systems is being extensively studied. Dynamical networks
in biology are found everywhere from the brain to ecology [53]. The mapping of the
human genome sparked even more interest in the function and behavior of genetic
regulatory networks ([11], [21], [45], [46]), neural networks [1], artificial neural
networks [28], chemical [23], organizational [47], and physical networks ([31],
[32]). In fact, scientific discoveries generate new questions about the accuracy of
mathematical models and the function of the processes they model. Therefore, the
need for theoretical approximations and concepts to understand the avalanche of data

is urgent.

1.5.1 Relevant Work in the Literature

In the study of Boolean networks, much work has been published on the subject.
From the initial work done by Kauffman [25], use of random Boolean networks to
model network dynamics has been studied to great extent. The following discussion
details some of the current applications in a variety of fields. This is a select review

of the literature to demonstrate what has been researched to date.

10

For example, in the field of neurobiology and psychiatry, the study of measures
made on patterns of chaotic motion on topological manifolds has provided an objec-
tive means of researching topics such as personality and character. Using techniques
derived from the analysis of differential equations and their maps in phase space, elu-
sive personality behaviors such as obsessive-compulsive disorders have been studied.
In one study [30], use of computer testing demonstrated a divergence of Lyapunov
measures which differentiated the study participants into obsessive-compulsive and
borderline character disorders. The model was meant to demonstrate the mechanisms
of cause and effect. Contrary to the memory capacity of the brain, expanding dynam-
ical systems lose memory and settle into basins of attraction. Therefore, attempts'at
using this type of research as a predictor of personality behaviors may be premature.
However, further research is being done in the field by Mandell and others.

Pure simulations are not representative of real systems. The presence of ”noise”
in a system may result in changes in systemic behaviors. Multicellular structures
require extreme error tolerance to evolve over time. Studying the topology and ro-
bustness in biological and genetic regulatory networks has demonstrated that effects
of fluctuations on the system are largely dependent on reliability measures ([7], [19],
[21], [27], [42]). Incorporating redundancy into the role of robustness [17] aids in
slowing the evolution of dynamical systems, which is a more accurate reflection of

genetic regulatory networks. In this approach a model was developed to generate a

11

copy of certain elements in the system. The redundancy of links was investigated
and shown to have no affect on network stability. However, introducing redundant
nodes allowed the model to evolve gradually over time, providing a ”smoothness” to
the map.

Because of their convenient and easily understood structure, Boolean networks

are used extensively to model complex networks. These have been studied as discrete

time and continuous time networks. Use of discrete time random Boolean networks -

to model genomic networks is important, but also has limitations due to convergence
to basins of attraction. Introduction of continuous time delays for system updates is
necessary for more accurate models [40], which is a network of state variables wherein
the relationships among state variables are dictated by Boolean relations with delays.
However, as with the initial work by Kauffman [25] on genetic regulatory networks,
synchronous updates have been shown to be unrealistic and thus asynchronous up-
dating schemes continue to be studied to more accurately reflect reality.

Along with genetic and biological regulatory networks, circadian and other biolog-
ical rhythms are important components of intracellular functions. Because random
Boolean networks have been associated with cyclical behavior they have been associ-
ated with molecular clocks. In one study [43], random asynchronous updates of the

network are implemented by updating a node at random using a uniform probability

12

with replacement and repeating the operation over time. In this study, the asyn-
chronous random Boolean networks were capable of producing rhythm and found a
circular functional structure producing travelling waves. Even in the face of pertur-
bations and errors, the system fell back to the same attractor as long as the functional
topology held. This work is now being explored in the neuronal dynamics related to
changes in mental processes [41].

Because biological, social, chemical and other physical networks are so complex,
understanding these complex systems is crucial. Although random Boolean net_,works
are good models to use, there is work being done with cellular automata to further
define complexity. One study by Sanchez and Lopez-Ruiz [44] compared two one-
dimensional cellular automata evolving under Rules 22, 30, 90 and 110 by plotting
two rules and the difference of each plot, which exhibit a synchronization transition
zone. This process allowed the authors to identify a complexity measurement, which
for these rules, indicated the highest complexity is reached on the borders of the
synchronization region at a consistent probability.

All of these studies have assumed a particular ECA rule or random Boolean net-
work model to examine system dynamics. In generating a time series of binary strings,
Voorhees used an induction algorithm to make unbiased best guess estimates of the

cellular automata rules. For induction in this study, the emphasis was to extract

13

order from a noisy data stream by focusing on the randomness of the data. The gen-
eral conclusions indicated that it may not be possible to identify particular cellular
automata rules in a noisy deterministic process [49].

These and many other studies have specifically targeted random Boolean networks
or ECA rules to garner understanding of real networks. What we reported is a
fraction of the work that has been published. The next section details specific work

in dynamics of ECA and random Boolean networks.

1.5.2 Current Work Inspiring this Research

The previously mentioned work that has been investigated with cellular automata
and random Boolean networks is a small sample of what has been done and so much
more needs to be done. Utilizing classes of cellular automata outlined by Wolfram
[50], various authors have developed Boolean models for real networks. For example,
Andrecut and Ali [5] introduced a mean field model for the case of a synchronous
Boolean network with fixed number of parents governed by a generalization of the
ECA Rule 126. The mean field approach assumes that the parent nodes act indepen-
dently and that the network has a relatively large number of nodes.

It is known that certain elementary cellular automata rules can generate complex
patterns in the evolution of cellular automata [50]. For example Rules 22 and 126

are Class III elementary cellular automata rules in Wolfram’s characterization. As

14

observed by Matache and Heidel [34], both Rule 126 and Rule 22 have a natural
and simple interpretation in terms of the growth of cell colonies. For Rule 126,
complete crowding of live, ON, cells causes death, OFF, in the next generatiqn.
Complete isolation of a potential cell prevents birth in the next generation. A similar
interpretgtion holds for Rule 22; however, it is not quite as absolute. We attach a
graph of pattern formation plots for both ECA Rules 126 and 22, to identify the
differences in the long term behavior (Figure 1.3). We start with a network of 200
nodes in which only one node is ON (black) at time ¢ = 1 and in which the evolution
from one time step to another is given by one of the two rules. The time evolves
downward and we iterate the network 400 time steps. We can see the similarities
as well as the differences in the graph below. Therefore, it is of interest to focus
attention to generalizations of these two rules to networks that have a fixed but
arbitrary number of nodes. Rule 126 has been extensively studied in ([4], [12], [34],
[35], [36]) for networks with fixed or variable number of parents, synchronous or
asynchronous. However, an extension of Rule 22 has not been investigated in this
context so far. In this study we propose a generalized ECA Rule 22 and identify the
dynamics of a network governed by variants of this generalization for some of the
admissible parameter combinations.

Continuing his previous work, Andrecut [4] recently published a paper investigat-

ing mean field approximations for Boolean networks governed by the class of totalistic

16

mandatory.

In this study we will show that from this perspective the model presented in [4]
-is not generally applicable for synchronous updates: We will indicate certain Boolean
rules and parameter values that will generate a mismatch of higher order iterates
despite the perfect match of the first iteration, thus compromising the possibility
of using the claimed mathematical model as a tool for a study of the dynamics of
the corresponding real network. At the same time we will indicate the ranges of
parameters for which the model is suitable for modeling the real system and perform
a statistical analysis to understand what the significant parameters are that generate
‘the mismatches. We will also note that even though the model is generated under the
assumption of random neighborhoods for each node, it can still approximate alternate
cellular automata under certain circumstances; that is when the neighborhoods of the
nodes are chosen locally. For the cases when the model and the reality indiéate a
good match we will analyze the dynamics of the system using tools from the theory
of dynamical systems and chaos. We will explore bifurcation diagrams, Lyapunov
exponents, fixed points, and delay plots.

Before the analyses can be addressed, we will first describe the model for ECA
Rule 22. In the next section we will fully explain the model development and provide

a proof of our equation.

17

Chapter 2
The Boolean Model

Consider a network with IV nodes. Each node ¢,, n = 1,2,..., N can take on only
two values 0 or 1. At each time point ¢ the system can be in one of 2V possible states.
The connectivity of the nodes is fixed throughout the evolution of the system, but
the nodes are allowed to have different numbers of parent nodes. Thus the nodes can
be grouped into classes of size M containing all the nodes with a fixed connectivity
ki, j=1,2,...,J. It follows that ZLl M; = N. The parents of a node are chosen
randomly from the remaining N — 1 nodes and do not change thereafter. More
precisely, if a node has k& parents, then a set of k¥ nodes is chosen from the remaining
N — 1 nodes with probability (_'i:lj The nodes can be updated synchronously or
asynchronously. At each time point ¢, a proportion a(t) € [0,1] of nodes is updated.
The case a(t) = 1 corresponds to a synchronous network. This will be our main focus
in this study. Future work will focus on asynchronous networks.

We assume that all the nodes in each class of nodes with a fixed number of parents

18

k; update according to the same randomly chosen rule at a given time point ¢. This
implies that all the nodes in a certain class have the same collection of possible
predictors.

_ A totalistic cellular automata rule depends only on the number of 1s in the neigh-
borhood of a node. Given a node ¢, with k; parents, a totalistic rule for that node

can be expressed as a pair of Boolean functions
(re’,77) : {0, 1,2, k;}* — {0, 1}

such that
rii(s) if ca(t) =0

n(t+1) =
@+ rii(s) if ea(t) =1

where s is the sum of the values of the parents of node ¢, at time ¢.

For example, ECA rule 22 specifies that a node becomes 1 at time ¢ + 1 if and
only if the sum of the values of the three nodes at time ¢ is equal to 1. That is exactly
one node is 1 at time ¢ and the others are 0. This translates into the following values

for the functions (rés | ¥y,
(r5,73) : {0,1,2}* — {0,1}

with
r2(0) =0, r3(1)=1, r3(2)=0

r{(0) =1, r}(1)=0, r{(2)=0

Observe that this is the same as saying that if s + ¢,(t) = 1 then ¢c,(t +1) = 1,

otherwise it is 0.

19

Similarly, ECA rule 126 specifies that a node becomes 0 at time ¢ + 1 if and only
if the sum of the values of the three nodes at time ¢ is either 0 or 3. This translates

into the following values for the functions (re?, 77):
(r5,7}) : {0,1,2}* — {0,1}

with
r3(0) =0, r3(1) =1, r5(2)=1

r2(0)=1, r¥(1)=1, r%2)=0
Observe that this is the same as saying that if s + ¢,(t) = 0 or 3 then c,(t + 1) =0,

otherwise it is 1.

—A general model for the probability p(t + 1) of a node being in state 1 at time
t + 1, given p(¢) has been obtained by Andrecut [4]. This model is applicable to
the class of legalistic rules and in a more general setting for the class of so-called
probabilistic Boolean networks in which a node can be updated according to more

than one Boolean rule. The model can be expressed as follows.

J
(1) p(t+1) =D cign, (?)
where
k;)
gx;(8) = [1 — a(®)]p(t) + a(t) Y 1(p(t), 75’ (), 71" (5)) Pa; (p(t)),

y(®(t), 757 (), 71 (8)) = (1 — p(t))ry’ (s) + p(E)ry’ (),
and

Poay0(0) = ()01 = pl0)~

20

Here k;,j = 1,2,...J are the possible values for the number of parents, c;,j =
1,2,...,J are the proportions of nodes with k; parents (and therefore ZJ‘LI cj = 1),
and «a(t) is the proportion of nodes to be updated at time t.

The sum s will be used in this work to express the sum of the values of nodes in
the neighborhood of a selected node c,.

The model above is obtained as follows. Consider the number of nodes with

connectivity k; that change their state using the totalistic rule r4,;(s), then we have

k;
@ No?,a(8) = ¢ No(®)[1 = p()] D 75’ (5) Puok, (p(2))
© NEo(8) = N (Op(OL — 3278 (s + 1) Poy (o(8)]
. kj
(4) No,o(t) = e;No(8)[1 = p(8)][1 = D75’ (5) Payk; (p(2))]
) N1 (2) = &, M()p(t) 3 (s + 1) Pus, (0(0)

s=0
Thus, N:f_)l is the number of nodes with connectivity k; changing their state from 0

to 1 at time ¢. Similarly Nf’ 7.0 is the number of nodes changing their state from 1

to 0. The same principle applies for Ni?., and N;?,,. We assume the parent nodes
act independently. To confirm this, it is important to check that these quantities

equal N. Observe that Ng?,, + No?,, = N (t),5=1,2,...,J and NP+ NP, =

21

ij(t),j =1,2,...,J. Therefore, we have

J
(6) > [NoLa(8) + NELo (1) + NoZo(t) + Ni2,, (8)] = N

Jj=1

Consequently, the formula for probability that a node is in state 1 at time ¢t +1 is

plt+1) = Z[N:’_u(w + N7, ()]

k;
= 0 (1L = aOlp(e) + () 2 Pass (PN = PO (5) + P07V (5 + 1)

which is exactly the model (1).

The elementary cellular automata Rule 22 maps a node ¢,(t) to state 1 at time
t + 1 if and only if exactly one node has value 1 in its neighborhood then the next
time step has value 1. In other words, if exactly one-third of the nodes as presented
in Figure 1 are in state 1 in the neighborhood of the selected‘node. Note that the
neighborhood includes the node itself. We propose to extend this rule to a network

of size N by using the following general rule:

1 if d <d
(7) calt +1) = EET s

0 if otherwise
where s is the total number of 1s in the neighborhood of node ¢,, and k is the
connectivity of the node. Here 0 < d; < dp < 1 are fixed parameters. The rule
basically states that the node is turned ON if and only if the proportion of 1s in its

neighborhood is within given bounds. Otherwise the node is turned OFF. We will

22

make use of this rule as well as a variant of it in which the value of the node ¢, is not
included in the sum s and thus the fraction ;37 becomes ; in rule (7).

Observe that if the network has 3 nodes and d; = dy = % the rule is exactly the
elementary cellular automata Rule 22. Hung et al. [24] have introduced a different
generalization of Rule 22, namely a node is turned ON if and only if a single node
is ON in the neighborhood of the node under consideration. They use this rule in
the context of synchronization of stochastically couple\d random Boolean networks.
Another direct generalization of Rule 22 would be to use the same proportion for a
network with N nodes. The interpretation implies if in a node’s neighborhood at
most one-third of the nodes are in state 1 then the node becomes 1 at the next time
point. Another possible generalization is to use the rule that when the proportion
of nodes is exactly one-third then the node is turned ON, otherwise it is OFF. We
note that the generalization provided in (7) allows us to extend the study to a wider
variety of totalistic rulgs than the extensions of Rule 22 specified above.

Let us start with rule (7) and provide the exact model for the probability of a

node being in state 1. The notation [z] is used to indicate that x is an integer.

Proposition: Under the assumption of a Boolean network evolving according to

rule (7) and with the characteristics specified in model (1), the probability p(t + 1)

23

of a node being in state 1 at time ¢ + 1 given p(t) can be written as

J
p(t+1) = [1— a(®)lp(t) + a(t) Y c;g;(t)

i=1
where
(k411
)= > (s)p(t)’(l —p(&)~~e
s=[d (k;+1)]+1
k. i e
ey) PO = plemiits
1\
(8) + ([d"(kkj+ 1)]) p(8)EEAI(] _ p(r))bl 141
2\"j

The values 0 < & < d} <1,j5=1,2,...,J are the fixed proportions in rule (7) and
they can vary for nodes with different number of parents. However, all the nodes with
a given number of parents evolve according to the same rule.

Proof. Observe that under the rule (7) we have the following formula for the

updating rules ¢’ (s) used in model (1).

. 1 if dd<2-<d
re’(s) = P e

0 otherwise

Given that s is an integer, we can rewrite this in terms of the actual values of s as

shown below.

N 1 if [d(k;+1)]+1<s<[d(k;+1)]
T’ (s) =
0 otherwise

Similarly one can see that

" 1 if [di(k;+1)] < s < [d(k;+1)] -1
7’ (s) =
0 otherwise

24

Thus, the function gx;(t) in model (1) becomes

kj kJ'
g, (8) = (1= p(®) Y g’ () Pk, + 0(8) Y _ 3 (5) Py,
s=0 s=0

(d}(k;+1)] [(k;+1)]-1
=@1-p@t) Y, Pu+pt) >, Puy
[d] (k;j +1)]+1 [d] (k;j+1)]

[d)(k;+1)]-1

= D Pu +p®Pgienn, + 1 P) P i
[(k;+1)]+1

which yields the final formula.
[
For this study, we focus on synchronous updates of the system. As such, since
a(t) is the proportion of nodes to be updated at time ¢, for synchronous updates the

proportion will be a(t) = 1. Therefore,

J
p(t+1) = [1 - a(®)lp(t) + a(t) D_ ¢;0;(t)

simplifies to model (1) as
J
pt+1) =Y c;g;(t)
Jj=1
In the next section we use Matlab to generate consecutive states of the model and

system in order to identify how well the model matches the reality. We will examine

multiple iterations using a variety of parameters.

25

2.1 Iterations of the System and the Model

It is useful to provide simulations of the model to determine if the system matches the
model over time. All the simulations in this work are performed using Matlab and
represent synchronous networks (See Appendices A-C for Matlab programs). A match
between model, graphically depicted as a continuous line, and system, graphically
depicted as individual plots, are considered true if the system closely follows the
behavior of the model, even if it is only loosely mimicking the model behavior. The
analysis of asynchronous networks will make the object of future research.

In this section we fix the network size to N = 128 for simplicity. However, to
further validate findings for some of the iterations, 256 nodes were used to determine
a match for the model and Boolean system. Those we report on matching appear
to be more of a fit when we use N = 256, but for those we report on that do
not match the model and system continued to demonstrate no match. For each
parameter combination we perform various iterations from 1 up to 256 iterations of
both the model and the system to surpass transient behavior and we plot the results
on the same graph for comparison to identify behavioral trends. We perform such
comparisons for the case in which the connectivity & is fixed for all nodes, as well as for
the case when two connectivity values k; and k; are allowed in the network. Moreover,
we consider the case of random selection of parent nodes, as well as the case of

generalized ECA where the parents of node ¢, are {c k2 Cp_ki1se 5 Cnoly Catls Cpy %c}

26

for k even, where N is the network size. Although in the construction of the model it
is assumed that the parents are chosen randomly, we will see that in some cases the
model is a good approximation for the non-random parent selection specified above.

In each simulation we fix the parameters d; and d; as well as the proportions ¢;
and c; when applicable. Values for d; and d; are chosen to observe behavior when
distances ds —d; are small, medium and large. We also consider the cases when d; = 0
or d, = 1. Observe that when both these conditions hold, that is, dy = 0 or dy = 1,

then c,(t +1) =0 or ¢,(t + 1) = 1 and we recover the ECA Rule 126.

2.1.1 Fixed Connectivity

For the case of a fixed connectivity k, the simulations are conducted to observe behav-
ior for small, medium, and large values of the difference d; — d;. Values of parameters
are chosen as follows: d; = 0.1,0.2,0.3,0.4,0.5 and d» = 0.4, 0.6, 0.8, 1.0. It should be
noted that initial iterations using intervals of 0.05 for distances d; and d, yielded little
difference and were thus simplified to intervals of 0.1 for all simulations. Connectivity
values include k = 1,2, 4, 8, 16, 32, 48 for simplicity. Although an extensive number
of simulations has been performed, in what follows we provide typical graphs and a
summary of the findings regarding the (approximate) ranges of parameters that yield
a good match versus a mismatch of the model and the system.

Figure 2.1 is representative of trends in the model and Boolean system iterations

28

Table 2.1: Model and System Trends for Fixed Connectivity: & Randomly Assigned
Parent

k dy» — d; Model /System Description
1<k<4 0.1-0.7 horizontal line
4<k<8 0.2-0.9 dynamic model
k>38 any distance convergence to 0

albeit it loosely. Finally, when & = 16 we observe both model and system converge
to 0 over time. Table 2.1 presents a summary of the trends observed in Figure 2.1
observed in the various simulations. These are indicative of those plots that yielded
a good match between the model and the system and do not include information
about systems that do not match the model after 256 iterations. For k¥ < 4 and
0.1 < d; —d; < 0.7, those matching after 256 iterations tend to be stable. For any
distance dy — d; > 0.2 the model exhibits more dynamic behavior. When £ > 8 and
4 < k < 8, the model and system converge to 0 regardless of the value of dy — d;.
The next set of plots in Figure 2.2 represents trends similar to those of the model
and Boolean system for random parent assignment; however, these iterations use the
k nearest nodes for parent nodes when N = 128. As it is shown, the first iteration
vields excellent match in all cases. After 256 iterations, the model and system exhibit
stability as evidenced by the horizontal line. The case k¥ = 8 demonstrates a more
chaotic behavior after 256 iterations. The system behavior tracks the model closely

enough; it should be noted this particular parameter was tested at N = 256 wherein

30

Table 2.2: Model and System Trends for Fixed Connectivity: k Nearest Neighbor
Parent

k parents do — d; Model/System Description
k<2 <0.5 convergence to 0

2 < k €4 | any distance horizontal line

4 <k<8 0.3-0.8 dynamic model
k>8 any distance convergence to 0

demonstrates matching behavior by the system. However, after 256 iterations the

models are dynamic but the system converges to 0 for both parent types.

2.1.2 Variable Connectivity

For the case of variable connectivity k, we allow two possible values for the number
of parents k; and ky. The simulations were conducted to cover small, medium, and
large values of the differences di — d} and d2 — d? corresponding to the two Boolean
rules used. The actual parameters ranged as follows: d! = 0 — 0.6, d} = 0.1 — 0.9,
d? =03 —-0.9, and d2 = 0.4 — 1.0. Although an extensive number of simulations
has been performed, in what follows we provide typical graphs and a summary of the
findings regarding the (approximate) ranges of parameters that yield a good match
versus a mismatch of the model and the system. Figure 2.4 is representative of trends
in the model and Boolean system iterations when N = 128 with randomly assigned
parents. As it is shown, the first column 1s for single 1terations to show the match

between the model and system. The second column represents trends in the model

33

Table 2.3: Model and System Trends for Variable Connectivity: £ Randomly Assigned

Parent

d; — d! d? — d? | M-values Model /System Description
0.1—-0.5|0.1~-0.6 | all values | primarily at 0 with plateau region
0.1—-0.5]0.1-0.6 | all values horizontal line
0.1-04101-0.6 > % dynamic model
0.1—-0.5|0.1-0.6 | all values convergence to 0

assigned parents, the matches for k nearest neighbor are more sparse. In the first line,

after 256 iterations a stable region is present; the model and system are at 0 for small

and large values of p(t). The second line demonstrates a dynamic model and loosely

matching system. This is again checked with N = 256 which demonstrates a better

match between model and system with increased nodes. As with the other iterations,

the third line displays when this model and system go to 0. Table 2.4 presents a

summary of parameters and brief description for k£ nearest neighbors. As mentioned

for randomly assigned parents for variable connectivity, the table displays the relative

uncertainty with which these trends occurred. As with fixed connectivity, not all of

Table 2.4: Model and System Trends for Variable Connectivity: k Nearest Neighbor

d; — di d: — d? | M-values Model/System Description
0.1-0.5|0.1-0.6 | all values convergence to 0
0.2—-0.4| 0.1 —0.6 | all values | primarily at 0 with plateau region
03-04[01-06] > dynamic model

the plots provided a match or a close approximate match after 256 iterations. In order

to demonstrate these mismatches, Figure 2.6 is included to display these dynamics.

36

Chapter 3

Analysis of the Dynamics

3.1 Statistical Analysis

To begin the analysis of the dynamics of the model with the Boolean system, sta-
tistical analyses are conducted to determine what parameters influence the Boolean
system behavior, if any at all. We use contingency tables to record and analyze the
relationship between two or more categorical variables. We include a quick review of
the test. We let 6;; be the probability of the jth (column) outcome for the ith (row)

population of an r X ¢ table, the null hypothesis test implies
01 =025 = -+ = 0Oy

for every j = 1,2,...,c. The alternative hypothesis is 8;;,02;, .. .,6,; are not equal
for at least one value of j.
Let f;; denote the observed frequency for the cell in the ith row and the jth

column. The rows total f;. and the columns total f.;. The sum of all cells is denoted

37

f. With this notation, the estimated probabilities of 6;. and 6.; are

s i
6, =&
f
and
L
6, =11
Tf

With e;; calculated, we can then determine the Chi-square value by the following

equation

2 _ N\~ i — i)’
X =D
i=1 j=1)
If this value is greater than Xi,(r—l),(c—-l) then the null hypothesis must be rejected
[39]. It should be noted that in each of our contingency tables, Chi-square testing is

used for simplicity even though some sample sizes may be better served using a test

for smaller populations.

3.1.1 Fixed Connectivity

For the purposes of this study, rows consist of whether the system and model match
after 256 iterations and the columns represent the parameter whose relation to the
result we are testing. For example, Table 3.1 specifically displays the data when dz —

d; = 0.2 for k randomly assigned parents, the incidences of matches and mismatches

38

Table 3.1: x?2 Test for Fixed Distance with Randomly Assigned Parents

k 1(2|4]|8|16 (24|32 |48 | Total
Model/System Not Match [0 [0 |1[1| 0 [0] 0 | O 2
Model/System Match 212 (1f1]1212]|2]2 14

For fixed distance ds — d; = 0.2 with randomly assigned parents, x?> = 6.86 exceeds
the test statistic of x3 g5, = 2.167

are counted for different values of k. Since the Chi-square result exceeds the test
statistic, we reject the null hypothesis that & is independent of match or mismatch
results. Using this technique for different groups by fixing connectivity k& or distances,
multiple tests are conducted. In Tables 3.2 and 3.3, we fix k and calculate the number
of matches and mismatches for each distance d;—d;. For the case of fixed connectivity,
contingency tables are generated for both randomly assigned values of k£ as well as

k nearest neighbors for fixed k iterations. For k£ randomly assigned parents, Table

Table 3.2: x? Test for £k Randomly Assigned Parents

d; —d; 01]02]03]04[05]06]0.7]08]0.9] Total
Model/System Not Match | 1 | 2 | 5 | 3 | 4 | 3 [3 |1] 1 23
Model/System Match 12 114 |19 (13 |17 |13 (10| 4 7 109

3.2 demonstrates X3 g5, s = 1.84 which is less than the test statistic of 2.733, thus we
cannot reject the null hypothesis of independence of £ with model/system matches.
This indicates the relationship between system and model matches is not dependent

on values of dy — d;. Table 3.3 details the results of k-nearest neighbors, which also

39

shows we cannot reject the null hypothesis because X4.95,1,8 = 2.66 < 2.733. Therefore,
for fixed connectivity of £ randomly assigned parents and k-nearest neighbors, the

model and system dynamics are not dependent on distance. When additional Chi-

Table 3.3: x? Test for k-Nearest Neighbors

de — d 01(02]03]04|05({06|0.7]0.8{0.9]| Total
Model /System Not Match | 1 | 3 |-5 | 56 | 5 | 4 | 3 | 1 | 2 29
Model/System Match 12 {13 |19 (11 (16|12 |10 | 4 | 6 | 103

square tests are conducted fixing the value of d; — d; and testing for independence of
connectivity k, for all distances for bbth k randomly assigned parents and k-nearest
neighbors, we reject the null hypothesis that connectivity has no relationship to the
dynamics of the model. The Chi-square test statistic x3g5;7 = 2.17 is exceeded for
all distances 0.1 —0.9. Therefore, for fixed connectivity and either parent type, we can
conclude model and system matches or mismatches are dictated by the concentration

of parent nodes. Thus values of k£ have more impact than values of d; — d;.

3.1.2 Variable Connectivity

Statistical analyses for variable connectivity are more involved, requiring a variety of
contingency tables to test the results. Individual parameters are fixed; i.e., M-values
of ky, k; distance, k, distance. Tests are run to determine what relationship each has.

on the dynamics of the model and system. We also fix two parameters to test the

40

Table 3.4: x2 Test of d} — dj for Randomly Assigned Parents when M-values Fixed

Match | 0.1 (0.2 0.3 0.4 |0.5 | Total | Mismatch | 0.1 | 0.2 | 0.3 | 0.4 | 0.5 | Total
= | 4]13[1B]7[3] 30 Z oJ1[1[2]0] 4
> (3 13Jw{7]3] 29 =5 1]l1]1]21]0 5
16 16
T 4 | 3]10]7]3] 27 % 0 (1142710 7
22 4[4 7] 4]3] 2 24 0o Jo|7]s5 0] 12
16 16
44853] 24 = 0OJ]o[6]4a4]0o] 10
%’l 4 1486][3] 25 % o[fo[6 3]0 9
= 4 |4 [7]6 3] 24 X oJo[7]3]0o] 10
2 44 7[6]3] 24 28 0o Jo]7[3]0] 10
=2 |44 75][3] 23 2 0olo]7]4[0] 11

2 14385]3] 23 g 0l1[6[4a4fo0] 11
;14]3]6]5[3] 2 D 0|1]8J]4]0] 13
2 13456 [3] 21 =Y 1{o[9]|3]o] 13
T 13256 [3] 19 = 1 [2]9]3]0 15

relationship of the third to the match or mismatch of the system to the model. In

what follows is a discussion of the findings for ¥ randomly assigned parents followed

by findings for k-nearest neighbors. When we fix the M-values and test the null

hypothesis that model/system matches are independent of distances di—d} and d}—d}

for k randomly assigned parents, the null hypothesis is rejected for all k; distances

because Chi-square results for all parameters tested exceeded x3 g5, 4 = 0.711 (Table

3.4). When 3 < k; < ¥ for distance dj — d? (Table 3.5), we are unable to reject

the null hypothesis that matches in the system are independent of distance d} — d3.

Fixing distances dj — di and d2 — d? to test the independence of M-values, we reject

the null hypothesis 0.3 < d2 — d? < 0.5. Additional testing to provide more specific

41

Table 3.5: x? Test of d2 — d? for Randomly Assigned Parents when M-values Fixed

Match |0.1/0.2]|03(0.4]0.5(0.6| Total
z 6 [7] 7]6]3]3] 3
=3 5 | 7175 [3]4] 31
— 5 /6|66 4]2] 29
2 5 5[5 [5[3]1] 24
a 55654 1] 26
L 5 |5 | 7] 5]4]1] 27
3 5|/ 5] 6[5]3]2] 26
27 415|653]2] 26

s 415 [6[5]3]2] 25
Ly 4 4]6|5]3]3] 25
X 4 146 4]3]2] 23
=X 3|55]6][3]1] 23
o 445431] 21

Mismatch | 0.1 [0.2 { 0.3 {04 | 0.5 | 0.6 | Total

x oJo|l1]1]1]1 4
3N 1]o]1[2[1]0 5
T 1| 1]2[1[0]2 7
e 1232]1]3] 12
Y 1| 2]2[2]0]3] 10
o 1| 2]1[2]0]3 9
5 1] 2]2]2[1[2] 10
P 2221127 10
2N 2 (22212 1
Uy 23] 2]2]1]1]| 1
3 2 [3[2[3]1]2] 13
BN 3[2[3]1]1]3] 13
v 2 [3[3[3J]1]3] 15

*x? = 0.935 and **x2 = 0.767 are less than x2 = 1.145 so we cannot reject the null
hypothesis.

Table 3.6: x% Test of dj — d} for k-Nearest Neighbor when M-values Fixed

42

Match { 0.1 [0.2 | 0.3 | 0.4 | 0.5 | Total | Mismatch | 0.1 [0.2 0.3 (0.4 | 0.5 | Total
N
3 4 1312132 24 5 0l1]2]6 1] 10
e 32 |1n[1]2] 19 % 1 [2[3[8]1] 15
i 2 |3 [7| 2]2] 16 e 2 |1 77 [1] 18
= (2]2]5]2 2] 13 2 2 2|97 [1] 21
=X [3]2]6[2]2] 15 =2 1287 [1] 19
% 3] 2[6]2]27 15 % 1 [287 [1] 19
2 3131 [3]2] 12 - 1 [1](13[6 1] 22
3324 [2] 14 o 1 [1f12]5]1] 20
o3l 2]3[4][2] 14 2 1 [2115 1] 2
= 3] 2 [3 |42 14 i 1 [2115 1] 20
;312241 12 a 1 [21215 2] 22
2 | 3]2[3[4]1] 13 =N 1 [2115 [2] 21
= |31 4|5]1] 14 = 1 [3]10]4]2] 2

insight for these results involved fixing two parameters; i.e., M-value and distance

d} — d}, M-value and distance d2 — d2, distances d} — d} and d2 — d2. We randomly

selected di — d} and d2 — d? equal 0.3 or 0.4 for additional testing. The results show

that when § < M < 3N and d} — d} = 0.3, the distances d} — dj have no relation

to the system and model matches. Yet when M-values and distances d3 — d3 are

fixed, the d} — d} parameter is influential on the real system matching. Therefore,

our studies show when § < M < 3¥, d} —d} = 0.3, and 0.3 < dj — d} < 0.5 no single

parameter has greater influence on the model behavior.

The analyses for k-nearest neighbors indicate that for all distances and M-values

the dynamics of the system and model are dependent on all parameters tested. Fixing

43

the M-values against distances d} —d} and d? — d? show the null hypothesis is rejected
for all values because Chi-square results exceed x? = 0.711 (Table 3.6) and x? - 1.145
(Table 3.7). When dj —d] distances equalled 0.2 and 0.5, the Chi-square test indicates
the M-values for these two values do not have a relationship to the dynamics of the
model and system. Concurrently, when d2 — d? equals 0.1 and 0.4, the Chi-square test
indicates independence for the M-values as well. However, given the samples sizes
and the fact the Chi-square results were so close to the test statistic, we can infer that
if the sample size from which to choose would have been larger the null hypothesis
would be rejected for all four values.

Because of the results, we fix two values to further identify if particular parameters
truly do not have a relationship to the dynamics of the model and system. We fix
M-values and k; distance, M-values and k5 distances, and k; and k. distances. These
results confirm our hypothesis. Matches and mismatches between model and system
after 256 iterations may occur at any point regardless of parent type. This implies
this particular model is unpredictable and may make for a less than optimal model
for use in testing real systems.

Based on our analyses, when connectivity is fixed, values of £ have more impact
on the model and system matching. This is true for £ randomly assigned parents
and for k-nearest neighbors. In contrast, when connectivity is variable, model and

system matches cannot be definitively attributed to distances d} — d} and d3 — d? or

Table 3.7: x? Test of d3 — d? for k-Nearest Neighbor when M-Values Fixed

Match {0.1(0.2[{03{04|0.5]|0.6| Total
T 5 | 7|5 4[2]3] 26
= 471 4]2[2]2] 21
- 316 13]2]3] 1] 188
2 314 [3]2[2]1] 15
=X 31453]1]1] 179
e 3146]2]1]1] 17
o> 3134]3]0] 1] 142
= 3[3[5]3J0]2] 16
2 3[3]4]4]0]2] 16
2L 3[3]4]4]0] 2] 16
ot 3[4]3]2]0]2] 14
BN 343][3]0]2] 15
T [35 [3[3]1]1] 16
Mismatch [0.1 | 0.2 (0.3 0.4 | 0.5 | 0.6 | Total
[Z 1|0 [3[3[2 1] 10
v 1[fof]3[]3]2]1] 10
= 31|55 1]3] 18
25 3355 23] 2
= 3133413 [3] 19
I = 31325133} 19
| = 3| 4]4]4]4]3] 22
H ot 3434427} 20
2 344134271 20
oy 34413 [4]2] 2
=X 3355 [4] 2] 22
BN 335442 21
= 32543]3] 20

45

M-values.

3.2 Bifurcation Diagrams and Lyapunov Exponents

In this section we present bifurcation diagrams and corresponding Lyapunov exponent
computations for some of the parameter values that yield a good match of the model
and the system. The goal is to provide a basic understanding of the dynamics of the
system.

Bifurcation diagrams are graphical tools that allow us to understand if the system
‘ exhibits periodic points in the long run or chaos. To generate a bifurcation diagram,
we first fix all the parameters except & which is allowed to vary. For each value
of k the model is iterated a number of times to pass the transient phase and then
the resulting values of p(¢) are plotted on the vertical line passing through k for
many initial conditions. For example, if the resulting plot is one single point, then
the system exhibits one fixed point which attracts all the orbits, and therefore it is
stable. If the resulting plot for a specific value of k is two points, then the system
has a stable period-2 orbit. The passage from one fixed point to a period-2 orbit
indicates a period-doubling bifurcation. On the other hand, if for a fixed value of
k the resulting plot is a collection of points with no visible order, then there is a
possibility of higher order periodic orbits or chaos.

In addition, to supplement the results from the bifurcation diagrams, one needs to

47

another, and {zg, z1, ..., z,} represents the trajectory of zy under the map f. Because
we are calculating Lyapunov exponents for the function defining the system, time
delay estimates and embedding dimensions are not estimated. When the Lyapunov
exponent of an orbit is negative, the implication is that a stable orbit is attained.
Conversely, when the Lyapunov exponent is positive, the implication is that chaos
is present, provided the orbit is not asymptotically periodic [2]. Any orbit that is
attracted to a sink is asymptotically periodic. It should be noted that Lyapunov
exponents are undefined for some orbits, particularly an orbit containing a point z;
with f’(z;) = 0 causes it to be undefined.

Observe that in the case of the model (1), to compute the Lyapunov exponents

we first need the derivative of the function

J k; .
(10) f(0) =D ¢ |(1—a)p+ad [(1-p)rg’(s) +pry’(s) (’f;)psu _ph| =

J k; k.
= (-ap+ado Y0 - +mP (%)ra-ph

j=1 s=0

Then

(11)

J
f'(p) = (1—a)+aZcj{[—ré‘f(0)+rff'<0)1<1—p>'°f—[(1—p)r§f (0)+pry (0)]k;(1-p)* '+

kj—1

+3 [{—r:ff(s> b)) - g

s=1

+[(1 = p)rg’ (s) + pry’ (s)] (k;) [sp* 1 (1 — p)ki—* — p*(k; — s)(1 — p)" 7| +

48

+[—rg’ (k) + 7 (k)P + [(1 = p)rg? (ky) + pry? (k) hp ! }

We use the formula (10) in the computation of the Lyapunov exponents (9).

In the simulations we fix the number of nodes to N = 128, and we iterate the
system 1000 time points before plotting the bifurcation diagrams. Matlab is used
to generate the simulations (See Appendix D for Matlab program). We vary the
connectivity values k between 1 and 12 for both the case of a fixed connectivity for
all nodes, and the two-dimensional case of two different allowable connectivity values
(recall that for larger values of & both the system and the model converge to the
origin). Given that the values of k are integer, the diagrams show separated vertical
lines, and the diagrams cannot be refined. We use the initial point pg = 0.2 for the
Lyapunov exponent computations, but any other choice would yield a similar result.
Observe that again a = 1, so the system is synchronous.

In Figure 3.1 we present the evolution for a network whose parameters provide
a match after 256 iterations for fixed connectivity (As seen in Figure 2.1). When
d; = 0.1 and d; = 0.4 we can see as the value of k increases (k > 4), the Lyapunov
exponents become positive indicating sensitivity to initial values for these parameters.
When d; = 0.2 and dy = 0.8 and k£ > &, the dynamics of the model become chaotic.
In the second line, as k increases the points indicate more chaotic behavior in these
bifurcation diagrams.

We note that similar graphs are obtained for other parameter combinations.

49
3.3 Fixed Points and Delay Plots

3.3.1 Focus on Fixed Points

It is useful to understand how the fixed points of the map behave. To do this we need
to solve the equation f(p) = p where f(p) is given in formula (10). Observe that this

equation can be written as follows:
J kj k
k 1 k 3 j S P —
(12) p= >0 pr) + o) (V) ra - pee
=1 =0

We can only deal with this equation numerically. Observe that p = 0 is automatically
a fixed point since by the way the Boolean rule was defined we have r’(jj (0) = 0 because
if all the nodes are zero then the output is a zero. We will analyze this case in more

detail. For other fixed points we will use a procedure that will be described later.

By replacing p = 0 in formula (11) with k; > 1, we obtain

fo=01-a)+ad. cj{[—r{:f (0) + ¥ (0)] — kjry’ (0) + kjrf:f‘(l)}

j=1

Since r(’,cj(O) = 0 and when o = 1 (that is the system is synchronous), this then

simplifies to
J

k; kj
£10) =Y 5[(0) + kyry? (1)]
i=1
Since the functions rgj and rfj can take on only values 0 and 1, there is a total of
four possible combinations for any given k;. For simplicity we will discuss in detail

the special case when the rules are the same for all connectivity values. That is the

values ry’ and 7+ are either 0 or 1 for all k;.

50

e Case 1: r7(0) = (1) = 0 for all k;.

Then observe that |f'(0)| = 0 < 1; therefore the origin is stable. Observe that
if the values of k; are large enough and the values of the corresponding d’ in
the generalization of Rule 22 are also large enough, then this case is satisfied
automatically. This is in agreement with the previous observations that in many

cases, the probability p(t) converges to 0.

e Case 2: r(0) = 0 and 7t (1) = 1 for all k;.

Then |f'(0)| = ijl c;jk;. For example, for single connectivity k, the stability
condition |f'(0)| < 1 is equivalent to |k| < 1, which is not possible since k > 1.
In this case, 0 is unstable. For two values of connectivity £, > 1 and k9 > 1,

observe that
caky + Cgkz <l<& Clkl + (1 — Cl)kg = k2 + Cl(kl — kz) <1.

If k; > ko then clearly this quantity is at least k2 > 1 and thus the origin is

unstable. If k; < k9 then the condition becomes

ky — 1
612 .
ko — ki

Since ¢; < 1 we have that ko — 1 < ky — k; — k1 < 1 which is not possible.

Thus c1ky + cpky > | and therefore the origin 1s unstable.

51

In general, observe that

J
S:cjkj :Clk1+62k2+"‘+6_]_1k_]_1+(1—Cl — Cg — "'—CJ_]_)k_] =
Jj=1

=Cl(k1 —-k‘J)+02(k2—kJ)+"'+CJ_1(kJ_1 —kJ)"'kJ.

We can always order the connectivity values such that k; > ko > -+ > kj.
Thus all the terms k; — k; are nonnegative in the expression above and thus

the entire expression is at least £; > 1. Thus the origin is unstable.

e Case 3: r'?(0) = 1 and ré? (1) = 0 for all k;.

Then f'(0) = E}I::l c; = 1 which indicates f'(0) = 1. Thus we cannot make

decisions about the stability of 0.

e Case 4: r7(0) = r (1) = 1 for all k;.

Then f'(0) = 3_7_, ¢;(1+k;) = 3] ¢;+ 37 ¢k = 14+ 37, ¢;k; > 1 which

means that the origin is unstable.

In conclusion, for the special case when the Boolean rules are chosen such that
the values rfj(O) and rgj(l) are the same for all connectivity values k;, the origin
could be stable or unstable per the cases above, and there are situations in which we
cannot make a decision based on the value of f'(0).

In order to find the fixed points according to the formula (12) we have set up an

initial Matlab program to solve the equation numerically. However, due to certain

53

the range (—1, 1) generate instability.

To demonstrate this, we plot fixed points for distance parameters d; and d; iden-
tical to those used to model fixed connectivity with various values of k& using Matlab
(See Appendix E for Matlab program). In Figure 3.2 when k = 2, the fixed points
are in the approximate interval (a;,as). The fixed points in this range are stable.
Notice the fixed points in the approximate ranges of (0,a;) and (as, 1) fall outside
the range of (—1,1) and are thus unstable. Conversely, when & = 4 there is a much
smaller range of stable points. Notice the approximate ranges (a;,as) and (b, by).
These fixed points are stable. Fixed points falling in the approximate ranges of (0, a,),
(a2, b1), and (bs, 1) are unstable. Given these examples, the reader can thus ascertain
the stable and unstable regions on the remaining plots in Figure 3.2 as well as those
in Figures 3.3 and 3.4. Notice when k£ = 16 in Figure (11), the origin is stable. Ad-
ditionally, in Figure 3.3, when k > 4, the origin is stable for these parameters; the

origin is stable for all £ parameters in Figure 3.4.

3.3.2 Delay Plots and Attractors

For some of the parameter combinations that yield a match of the model and the
system, three dimensional delay plots were generated by plotting p(t) versus p(t — 1)
and p(t — 2) for a set of 1000 consecutive time points, and for various values of

the parameters as specified in the graphs using Matlab (See Appendix F for Matlab

59

Chapter 4

Conclusions

The original motivation for the probability density rule (7) is that it generalizes
the elementary cellular automata Rule 22. This rule says it is turned ON if and
only if its precursors have a single on node. If a more generalized one-dimensional
cellular automata is set up in the same manner, whether k (constant) is fixed or k
nearest neighbors are ON or OFF, then its easy to show that its density function
either approaches a limiting value or a periodic orbit. For example, this behavior
is exhibited in Figures 3.6 and 3.7 for random Boolean networks. We show that if
a network is operating under a generalized Rule 22 and considering the number of
nodes per precursor, then the rest of the network demonstrates a simplified behavior.

This study generalizes a cellular automata model proposed by Andrecut [4] for
a Boolean network with a unique Boolean rule for all nodes. By using the mean
field approximation, Andrecut demonstrates excellent agreement between the map

model dynamics and the real Boolean network dynamics by considering only the first

60

iteration. This work allows for fixed and variable number of parents for each node as
well as analysis of the dynamics over time. An algorithm for simulation of the model
is introduced and simulation results show that for fixed connectivity with randomly
assigned parents the model fits the real Boolean system with more frequency than for
k nearest neighbors.

However, when the synchronous updating schemes are run for variable k£ with
the different parent types, the model did not fit the real Boolean system with as
much success as previously reported by Andrecut. The reason for this is that the
model used in this paper is obtained through a mean-field approach in which parent
nodes are assumed to act independently. In reality there are correlations between the
parents and therefore there can be a build up of correlations over time. This aspect
is not captured in the model. Our results are further confirmed by the results of the

Lyapunov exponents, bifurcation diagrams, and delay plots.

61

Chapter 5

Directions for Further
Investigation

The next phase of this research will be analyzing asynchronous updates of the ECA
Rule 22, since this is of importance in modeling systems composed of multiple in-
teracting components. Along with this, generalizing this model to allow for multiple
Boolean rules to be used in consecutive states of the system would be of interest. This
would provide a much more realistic model for biological cellular networks whose up-
date schemes are dependent upon various protein interactions ([23], [27]). The
approach to this would be to change the unique Boolean rule to be used based on
other cellular automata rules [50] which could lead to interesting new models and
dynamic behaviors.

Other work is being conducted by introducing "noise” in the system to deter-
mine the stability of the system to perturbations ([19], [30]). In scale free networks

perturbing a very highly connected node is expected to have a much greater impact

62

than perturbing a node with low connectivity. The work by Goodrich et al. [19]
has shown that introducing noise into a system using ECA Rule 126 actually demon-
strates a stabilizing effect on the dynamics of the system. This is done by introducing
a perturbation into the system by changing the value of a node. Additional nodes may
be altered to see if the system stabilizes or becomes chaotic. Thus, it would be of in-
terest to further this work with ECA Rule 22 for both synchronous and asynchronous
update schemes. A natural step would be to consider one-step or multiple-step corre-
lations between the nodes. This would provide a more realistic approach especially for
parameter values that did not yield a good match of the model and the real network
in this study.

Also, taking into account the topology of the network as opposed to randomly
selecting the parent nodes is another avenue of study. As observed by Marr and
Hitt ([31], [32]), it is known that the variation of topology of the network from
random to regular or scale-free network has a clear impact on pattern formation in
binary cellular automata. Embedding the topology in the network model could lead
to interesting results regarding the effect of topology on the dynamics of the system.

In the case of statistical analysis, it may be possible to obtain more accurate sig-
nificance using logistic regression. This technique involves binary dependent variables

wherein no assumption about the distribution of independent variables is made. The

63

goal of logistic regression is to correctly predict the outcome fbr individual cases us-
ing the most parsimonious model. This may work if it is assumed that distance or
connectivity is assumed independent ([8], [10]). It may also be helpful to run trend
anal};ses to potentially predict when the model and system will match.

There are many possibilities for further study of this model and its behavior under

different conditions.

Bibliography

[1] Aldana M., Cluzel P., A Natural Class of Robust Networks, PNAS 100 (2003),

p. 8710-8714.

[2] Alligood K.T., Sauer T.D., Yorke J.A., Chaos: An Introduction to Dynamical

Systems, Springer-Verlag (1996).

[3] Anderson R.J., Characterization of Performance, Robustness, and Behavior Re-
lationships in a Directly Connected Material Handling System, Doctor of Phi-
losophy Dissertation, http://scholar.lib.vt.edu/theses/available/etd-04182006-

130843 /unrestricted /Intro-to-Ch6-M2.pdf, 2006.

[4] Andrecut M., Mean Field Dynamics of Random Boolean Networks, J. Stat.

Mech., P02003 (2005).

[5] Andrecut M., Ali M.K., Chaos in a Simple Boolean Network, Internatl. J. Mod.

Phys., 15 (2001), p. 17-23.

65

[6] Bagley R.J., Glass L., Counting and Classifying Attractors in High Dimensional

Dynamical Systems J. Theor. Biol., 183 (1996), p. 269-284.

[7] Bornholdt S., Rohlf T., Topological Evolution fo Dynamical Networks: Global

Criticality from Local Dynamics, Phys. Rvw. Letters, 84 (2000), p. 6114-6117.

[8] Brannic M.T., Logistic Regression, http://luna.cas.usf.edu/ mbran-

nic/files/regression/Logistic.html.

[9] Burratson D., Variety, Pattern and Isomorphism, Proceedings of the Third It-

eration Conference, Monash University, 2005.

[10] Connor E.F., Logistic Regression, http://online.sfsu.edu/ efc/classes

/biol710/logistic /logisticreg.htm.

[11] Coutinho R., Fernandez B., Lima R., Meyroneine A., Discrete Time Piecewise
Affine Models of Genetic Regulatory Networks, J. Math. Biol. 52 (2006), p. 524-

570.

[12] Deng X., Geng H., Matache M.T., Dynamics of Asynchronous Random
Boolean Networks with Asynchrony Generated by Stochastic Processes, submit-

ted, http://www.unomaha.edu/~dmatache/Papers/ARBN_stochproc.pdf.

[13] Dougherty E.R., Kim S., Chen Y., Coefficient of Determination in Nonlinear

Signaling Processing, Signal Processing, Vol. 80, 10 (2000), p. 2219-2235.

[14]

[15]

[16]

[17]

[18]

66

Gershenson C., Classification of Random Boolean Networks, In: Standish R.K.,
Bedeau M.A., Abbas H.A. (eds.), Artificial Life VIII, The 8th International Con-

ference on the Simulation and Synthesis of Living Systems (2002), p. 1-8.

Gershenson C., Introduction to Random Boolean Networks, In: Bedau M., Hus-
bands P., Hutton T., Kumar S., Suzuki H.(eds.) Workshop and Tutorial Proceed-
ings, Ninth International Conference on the Simulation and Synthesis of Living

Systems (ALife IX) (2004) p. 160-173.

Gershenson C., Broekaert J., Aerts D., Contextual Random Boolean Networks,
In: Banzhaf W., Christaller T., Dittrich P., Kim J.T., Ziegler J. (eds.), Advances
in Artificial Life, 7th European Conference, ECAL 2003, Dortmund, Germany

(2003), p. 615-624.

Gershenson C., Kauffman S.A., Shmulevich 1., The Role of Redundancy in the
Robustness of Random Boolean Networks, In: Rocha L.M., Yaeger L.S., Bedau
M.A., Floreano D., Goldstone R.L., Vespignani A. (eds.), Artificial Life X, Pro-
ceedings of the Tenth International Conference on the Simulation and Synthesis

of Living Systems (2006), p. 35-42.

Goodman R.A., Random Boolean Networks with the Number of

Parents Generated by Certain Probability Distributions, Presented

[19]

[20]

[21]

[22]

[23]

[24]

67

at the 2006 University of Nebraska at Omaha Mathematics Sym-
posiums, http://www.unomaha.edu/ wwwmath /minigrants/2005-

2006 /RayGoodmanReport.pdf, 2006.

Goodrich C.S., Matache M.T., The Stabilizing Effect of Noise on the Dynamics

of a Boolean Network, Submitted.

Gutowitz H.A., A Heirarchical Classification of Cellular Automata, Physica D.

45 (1990), p. 136-156.

Hallinan J., Wiles J., Evolving Genetic Requlatory Networks Using an Artificial
Genome, In: Chen Y.P.P. (ed.), Second Asia-Pacific Bioinformatics Conference

(APBC2004), Volume 29 of CRPIT, Dunedin, New Zealand (2004), p. 291-296.

Harvey 1., Bossomaier T., Ttme Out of Joint: Attactors in Asynchronous Ran-
dom Boolean Networks, Proceedings of the Fourth European Conference on Ar-

tificial Life (ECAL97), MIT Press, 1997, p. 65-75.

Heidel J., Maloney J., Farrow C., Rogers J.A., Finding Cycles in Syncrhonous
Boolean Networks with Applications to Biochemical Systems, Intl. J. Bifurcation

Chaos Appl. Sci. Eng. 13 (2003) 535-552.

Hung Y-C., Ho M-C., Lih J-S., Jiang I-M., Chaos Synchronization of Two
Stochastically Coupled Random Boolean Networks, Physics Letters A, 356, 2006,

p. 35-43.

68

[25] Kauffman S., Complezity and Genetic Networks, Exystence Project News (2003),

http://sandi.soc.surrey.ac.uk/.

[26] Kauffman S.A., Self-Organization and Adaptation in Complex Systems, In: The
Origins of Order: Self-Organization and Selection in Evolution, Oxford Univer-

sity Press, New York (1993), p. 173-235.

[27] Klemm K., Bornholdt S., Topology of Biological Networks and Reliability of In-

formation Processing, PNAS, 102 (2005), p. 18414-18419.

[28] Kurz M.J., Stergiou N., An Artificial Neural Network that Utilizes Hip Joint
Actuations to Control Bifurcations and Chaos in a Passive Dynamic Bipedal

Walking Model, Biol. Cybern. 93 (2005), p. 213-221.

[29] Lindgren K., Cellular Automata, Lecture notes published on

http://frt.fy.chalmers/se/cs/cas/courses/infortheory /pdfs /ITCS-06.pdf (2003).

[30] Mandell A.J., Selz K.A., Nonlinear Dynamical Patterns as Personality Theory

for Neurobiology and Psychiatry, Psych., 58 (1995), p. 371-390.

[31] Marr C., Hiitt M-T., Topology Regulates Pattern Formation Capacity of Binary

Cellular Automata on Graphs, Physica A, 354 (2005), p. 641662.

[32] Marr C., Hiitt M-T., Similar Impact of Topological and Dynamic Noise on Com-

plex Patterns, http://arxiv.org/PS_cache/cond-mat/pdf/0509/0509199.pdf.

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

69

Matache M.T., Heidel J., Probabilistic Boolean Networks Under Legalistic ECA

Rules, in preparation.

Matache M.T., Heidel J., Random Boolean Network Model Ezhibiting Determin-

istic Chaos, Phys. Rev. E 69, 056214, 2004, 10 pages.

Matache M.T., Heidel J., Asynchronous Random Boolean Network Model Based

on Elementary Cellular Automata Rule 126, Phys. Rev. E 71, 026232 (2005), 13
pages.
Matache M.T., Asynchronous Random Boolean Network Model with Variable

Number of Parents based on Elementary Cellular Automata Rule 126, IJMPB 20

(2006) p. 897-923.

McIntosh H.V., Linear Celluarl Automata, http://delta.cs.cinvestav.mx/

~mcintosh/oldweb/lcau/lcau.html, 1990.

Mesot B., Teuscher C., Deducing Local Rules for Solving Global Tasks with Ran-

dom Boolean Networks, Physica D. 211 (2005), p. 88-106.

Miller 1., Miller M., John E. Freund’s Mathematical Statistics, 6th Edition,

Prentice-Hall, New Jersey (1999), p. 438-441.

Oktem H., Pearson R., Yli-Harja O., Nicorici D., Egiazarian K., Astola J.

A Computational Model for Simulating Continuous Time Boolean Networks,

70

Proceedings from the Workshop‘ on Genomic Signal Processing and Statistics,

http://www.gensips.gatech.edu/proceedings/Contributed /CP2-11.pdf, 2002.

[41] Pezard L., Nandrino J.L., Dynamic Paradigm in Psychopathology: ”Chaos The-

ory”, from Physics to Psychiatry, Encephale, 27 (2001), p. 260-268.

[42] Rohlf T., Bornholdt S., Self-Organized Pattern Formation and Noise-Induced

Control Based on Particle Computations, J. Stat. Mech. (2005) L12001.

[43] Rohlfshagen P., DiPaolo E.A., The Circular Topology of Rhythm in Asynchronous

Random Boolean Networks, Biosystems 73 (2004), p. 141-152.

[44] Sanchez J.R., Lopez-Ruiz R., Detecting Synchronization in Spatially Extended
Discrete Systems by Complexity Measurements, Discrete Dynamics Nat. Soc. 3

(2005) 337-342.

[45] Shmulevich I., Dougherty E.R., Kim S., Zhang W., Probabilistic Boolean Net-
works: A Rule-Based Uncertainty Model for Gene Regulatory Networks, Bioin-

formatics, Vol. 18, 2 (2002), p. 261-274.

[46] Shmulevich I., Dougherty E.R., Zhang W., From Boolean to Probabilistic Boolean
Ne’t'works as Models for Genetic Regulatory Networks, Proceedings of the IEEE,

Vol. 90, 11 (2002), p. 1778-1792.

71

[47] Thompson M.J., Use of Cellular Automata Models to Ezamine Complezity of

Organizational Behaviors, Masters Thesis, University of Weston, Sidney, 2005.

[48] von Neumann J., The Theory of Self-Reproducing Automata. University of Illinois

Press, 1966.

[49] Voorhees B., Emergency and Induction of Cellular Automata Rules via Proba-

bilistic Reinforcement Paradigms, Complexity 11 (2006) p. 44-57.

[50] Wolfram S., A New Kind of Science, Wolfram Media, Champaign, 2002.

[51] Wolfram S., Cellular Automata as Simple Self-Organizing Systems, http:
www.stephenwolfram.com/publications/articles/ca/82-cellular/1/text.html,

1982..

[62] Wolfram S., Computation Theory of Cellular Automata, Commun. Math. Phys.

96 (1984) p. 15-57.

[63] Wuensche A., Basins of Attraction in Network Dynamics: A Conceptual Frame-
work for Biomolecular Networks, In Schlosser G., Wagner G.P. (eds), Chicago

University Press, Chicago, 2004, pp. 288-314.

Appendices

72

73

Appendix A

Fixed Connectivity Matlab Code

The following code is used to generate iterations of the model and system for fixed
connectivity.

clear;clf;

N = 128; kparam = [8 10 16 22 32];

dl = [0.2 0.3 0.4];

d2 = 1*ones(1,length(dl));

IT = 5

fontsize=14;

P1,1 = [1];

M = N;

numpointsonxaxis=N;

initialproportions = linspace(0,1,numpointsonxaxis);

initial values for iterations xt = N;

numplot=1; for kindex = 1:length(kparam)

k = kparam(kindex);

KK = num2str(k);

clear pa

pa = parentsrandom(N,k,M); or pa = parentsCA(N,k,M);

for dindex = 1:length(d1) dlparam = d1(dindex);

d2param = d2(dindex);

D2 = num2str(d2param);

flag = 0;

if dlparam ==

if d2param ~=1

R1,1=[0 ones(1,floor((k+1)*d2param)) zeros(1, k - floor((k+1)*d2param))];
R1,2=[ones(1,floor((k+1)*d2param)) zeros(1,k-floor((k+1)*d2param)) 0];
else

R1,1=[0 ones(1,k(i))];

R1,2=[ones(1,k(i)) 0];

end

flag = 1;

74

75

end

if d2param == 1

R1,1=[zeros(1,floor((k+1)*d1param)+1) ones(1, k - floor((k+1)*d1param))];
R1,2=[zeros(1,floor((k+1)*d1param)) ones(1,k - floor((k+1)*d1param)) 0];
flag = 1;

end

if lag == 0;

R1,1=[0 zeros(1,floor((k+1)*d1param)) ones(1,loor((k+1)*d2param)-
floor((k+1)*d1param)) zeros(1, k-floor((k+1)*d2param))];
R1,2=(zeros(1,floor((k+1)*d1lparam)) ones(1,floor((k+1)*d2param) -
floor((k+1)*d1param)) zeros(1,k-floor((k+1)*d2param)) 0];

end

clear v prob

steps = IT+1;

v = cell(steps,N);

prob = cell(1,steps);

L=1,

for i = 1:length(initialproportions)

for m=1:N

u = rand;

if u <= initialproportions(i)

v1l,L(m) = 0;
else
vl,L(m) = 1;
end
end

probl,1(L) = sum(v1,L);

for step = 1:IT+1

vstep+1,L = oneiteration(vstep,L,xt k,P,R pa);
probl,step+1(L) = sum(vstep+1,L);
end

L=L+1;

end

p = sort(probl,1/N);

pl = pbnmodel(N,p,xt,k,M,P,R);
saveiterate(1,1:length(pl)) = pl;

for it=2:IT+1

pl = pbnmodel(N,p1,xt,k, M,P,R);
end

saveiterate = pl;

subplot(length(kparam),length(d1),numplot);
plot(p,saveiterate,’r’,’LineWidth’,1);

hold;
plot(probl,1/N,prob1,IT+2/N,’.’,"MarkerSize’,5);
axis([0 1 0 1]);

axis off;

hold off;

numplot = numplot+1;

end

end

7

78

Appendix B

Variable Connectivity Matlab

Code

The following code is used to generate iterations of the model and system for variable
connectivity.

clear;clf;

N = 128;

k = [10 32];

Mvalues = N/8:N/16:7*N/8;

D1,1 = [0];

D1,2 = [0.5];

D2,1 = [0.5];

D2,2 = [1];

rulelbound = [1 1J;

P1,1=[1];

P2,1=[1];

IT =1,

numpointsonxaxis = N;

initialproportions = linspace(0,1,numpointsonxaxis);
xt = N;

[pline, pcol] = size(P);

iterate = num2str(IT);

fsize=14;

numplot=1;

subplotline = ceil(length(Mvalues)/2);
subplotcol = 2;

for mindex = 1:length(Mvalues)

M = [Mvalues(mindex) N-Mvalues(mindex)];
pa = parentsrandom(N,k,M);

pa = parentsCA (N,k,M);

for i=1:pline

if rulelbound(i) > 0

79

80

for j = 1:rulelbound (i)

flag = 0;

if Di,1(j) ==

if Di,2(j) ~= 1

Ri,1(j,:)=[0 ones(1,o0r((k(i)+1)*Di,2(j))) zeros(1, k(i) -
floor((k(i)+1)*Di,2(j)))];

Ri,2(j,:)=[ones(1,foor((k(i)+1)*Di,2(j))) zeros(1,k(i)-

floor((k(i)+1)*Di,2(j))) 0;

else

Ri,1(j,:) = [0 ones(Lk(i))];

Ri,2(j,:) = [ones(1,k(i)) O;

end

flag = 1;

end

if Di,2(j) == 1

Ri, 1(j,:)=[0 zeros(1,floor((k(i)+1)*Di,1(j))) ones(1, k(i) - floor((k(i)+1)*Di,1(j)))];
Ri,2(j,:)=[zeros(1,Aoor((k(i)+1)*Di,1(j))) ones(L,k(i) - floor((k(i)+1)*Di,1(j))) Ol;
flag = 1;

end

if lag == 0;

81

Ri,1(j,:)=[0 zeros(1,foor((k(i)+1)*Di,1(j))) ones(1,Aoor((k(i)+1)*Di,2(j))-
floor((k(i)+1)*Di,1(j))) zeros(1, k(i)-floor((k(i)+1)*Di,2(j)))];
Ri,2(j,:)=[zeros(1,floor((k(i)+1)*Di,1(j))) ones(1,foor((k(i)+1)*Di,2(j)) -
floor((k(i)+1)*Di,1(j))) zeros(1,k(i)-floor((k(i)+1)*Di,2(j))) 0];

end; end; end

if rulelbound(i) < length(Pi,1)

for j = rulelbound(i)+1:length(Pi,1)

Ri,1(j,:) = [zeros(1,floor((k(i)+1)*D1i,2(j))+1) ones(1,k(i)-floor((k(i)+1)*Di,2(j)))];
Ri,2(j,:) = [ones(1,floor((k(i)+1)*Di,2(j))) zeros(1,k(i)-floor((k(i)+1)*Di,2(j))+1)];
end; end; end

clear v prob

steps = IT+1;

v = cell(steps,N);

prob = cell(1,steps);

L=1; for i = 1:length(initialproportions)

for m=1:N

u = rand;

if u <= initialproportions(i)

vl,L(m) = 0;

else

vl,L(m) = 1;

end

end

probl,1(L) = sum(v1,L);

for step = 1:.IT+1

vstep+1,L = oneiteration(vstep,L,xt,k,P,R,pa);
probl,step+1(L) = sum(vstep+1,L);
end

L=L+1;

end

p = sort(probl,1/N);
saveiterate(1,1:length(p)) = p;

pl = pbnmodel(N,p,xt,k,M,P,R);
saveiterate(2,1:length(pl)) = p1;

for it=3:IT+1

pl = pbnmodel(N,p1,xt,k,M,P,R);
saveiterate(it,1:length(pl)) = p1;

end
subplot(subplotline,subplotcol,numplot);

plot(p,saveiterate(IT+1,:),’r’);

82

hold;
plot(prob1,1/N,prob1,IT+1/N,’.’);
axis([0 1 0 1]);

numplot = numplot+1;

hold off;

axis off;

display(M);

end

83

84

Appendix C

Additional Codes for Model

Simulations

C.1 Randomly Assigned Parents

This is the code for randomly assigned parents, which is labeled parentsrandom in
the code for both fixed and variable connectivity.

function pa = parentsrandom(N,k,M)

pa = cell(1,N); for n = 1:M(1)

u = randperm(N);

pal,n = u(l:k(1));

for i=1:k(1)

if paln(i) == n;
pal,n(i) = u(k(1)+1);
end

end

pal,n = sort(pal,n);
end if length(M) > 1

for j = l:length(M)-1

for n = M(§)+1:M(j)+M(j+1)

u = randperm(N);
pal,n = u(1l:k(j+1));
for i=1:k(j+1)

if pal,n(i) == n;
pal,n(i) = u(k(j+1)+1);
end

end

pal,n = sort(pal,n);

end; end; end

85

86

C.2 £k Nearest Neighbors Parents

This is the code for nearest neighbors assigned parents, which is labeled parentca in
the code for both fixed and variable connectivity.

function pa = parentsCA(N,k,M)

pa = cell(1,N); u = [I:N 1:N 1:N]; for n = 1:M(1)

pal,n = sort([u(n+N-floor(k(1)/2):n+N-1) u(n+N+1:n+N+k(1)-floor(k(1)/2))]);
end if length(M) > 1

for j = l:length(M)-1

for n = M(§)+1:MG)+M(j+1)

pal,n = sort([u(n+N-floor(k(1)/2):n+N-1) u(n+N+1:n+N+k(1)-floor(k(1)/2))]);

end; end; end

C.3 Probability Model Code

This is the code for the probability model labeled pbnmodel.

function poftplusl = pbnmodel(N, p, xt, K, M, P, R)

[J,col] = size(R); clear fk for i=1:length(p)

for j=1:J

clear binomial

for s = 0:K(j)

binomial(s + 1) = nchoosek(K (j), s) * p(3)* * (1 — p(z))&KG)-9),
end

B = binomial;

[linephicolphi] = size(Rj,1);

if linephi > 1

for count = 1:linephi-1

binomial = [binomial; B};

end

end

Fk(j) = sum(sum((binomial. * ((1 — p(3)) * Rj,1 + p(%) * Rj, 2))'). x Pj,1);
end

poftplusi(i) = p(i) * (1 — zt/N) + zt/N? x sum(M. * fk); end

87

88

C.4 Matlab Code for Randomly Selecting a Single

Rule

This is the code for a single rule for randomly assigned parents, which is labeled
oneiteration in the code.

function vtplusl = oneiteration(v,xt,K,P,R pa)

format long for jindex=1:length(K)

Prob = cumsum(Pjindex,1);

z = rand;

m=1;

while z > Prob(m)

m = m+1]1;

end

rulechoice(jindex) = m;

end U = randperm(length(v)); vupdated = sort(U(1:xt));
vunchanged = sort(U(xt+1:length(U)));

vtplusl(vunchanged) = v(vunchanged); for index=1:length(vupdated)
s = sum(v(pal,vupdated(index)));

classnumber = length(pal,vupdated(index));

jindex = 1;

while classnumber ~= K(jindex)

jindex = jindex+1;

end

if v(vupdated(index)) ==

vtplusl(vupdated(index)) = Rjindex,1(rulechoice(jindex),s+1);
else vtplusl(vupdated(index)) = Rjindex,2(rulechoice(jindex),s+1);

end; end

89

90

Appendix D

Lyapunov Exponent and

Bifurcation Diagram Matlab Code

D.1 Lyapunov Exponents and Bifurcation Diagrams

The following codes are used to generate Lyapunov exponent and bifurcation diagrams
for fixed connectivity.

clear; clf;

N = 128; d1 = [0.2 0.3]; d2 = [0.8 0.8];

P1,1 = [1];

M = N;

numpointsonxaxis=N;

91

xt = N;
Numberiterations = 2%
initialpoint = 0.2;

Mink = 1;

Maxk = 12;

stepk = 1;

fsize=14;

linew=1;

numlines = 2; numcolumns = 2;
markerpoints=>5;
numplot = 1;

for dindex = 1:length(d1)
dlparam = d1(dindex);
d2param = d2(dindex);
D1 = num2str(dlparam);
D2 = num2str(d2param);
step = 1;

for k = Mink:stepk:Maxk
flag = 0;

if dlparam ==

if d2param ~=1

R1,1=[0 ones(1,loor((k+1)*d2param)) zeros(1, k - floor((k+1)*d2param))];
R1,2=[ones(1,floor((k+1)*d2param)) zeros(1,k-floor((k+1)*d2param)) 0];
else

R1,1=[0 ones(1,k(i))];

R1,2=[ones(1,k(i)) 0];

end

flag = 1;

end

if d2param ==1

R1,1=[zeros(1,loor((k+1)*d1param)+1) ones(1, k - floor((k+1)*d1param))];
R1,2=[zeros(1,floor((k+1)*d1param)) ones(1,k - floor((k+1)*d1param)) 0};
flag = 1;

end

if lag == 0;

R1,1=[0 zeros(1,floor((k+1)*d1param)) ones(1,floor((k+1)*d2param)-
floor((k+1)*d1param)) zeros(1, k-floor((k+1)*d2param))];
R1,2=[zeros(1,floor((k+1)*d1param)) ones(1,floor((k+1)*d2param) -
floor((k+1)*d1param)) zeros(1,k-floor((k+1)*d2param)) 0];

end

92

f = initialpoint;

h=f;

hprime = pbnmodelderivative(N, h, xt, k, M, P, R);
hh = log(abs(hprime)); |

for i=2:Numberiterations

h = pbnmodel(N, h, xt, k, M, P, R);

hprime = pbnmodelderivative(N, h, xt, k, M, P, R);
hh = hh + log(abs(hprime));

end

K(step) = k;

Hh(step) = hh/Numberiterations;

step = step+1;

end

subplot(numlines,numcolumns,numplot);

plot(K,Hh, LineWidth’ linew+1) hold on x = linspace(Mink,Maxk,100);
plot(x, zeros(size(x)),’r-’,’LineWidth’ linew);

hold off; xlabel(’k’,’FontWeight’,’bold’,’FontSize’ fsize);

ylabel("LyE’,’FontWeight’,’bold’,’FontSize’ fsize);

93

title(d1=’, D1, d2=",D2],’FontWeight’,’bold’,’FontSize’ fsize) axis([0 Maxk -40 5]);

numplot = numplot + 1;

end

for dindex = 1:length(d1)

dlparam = d1(dindex);

d2param = d2(dindex);

D1 = num2str(dlparam);

D2 = num2str(d2param);

display(’Starting bifurcations’); display([’d1=",D1,’ d2=",D2));
numpointsp = 100;

‘iterations = 1000;

toplot = 5;

pl = linspace(0,1,numpointsp);

for k = Mink:stepk:Maxk

flag = 0;

if dlparam ==

if d2param ~=1

R1,1=[0 ones(1,foor((k+1)*d2param)) zeros(1, k - floor((k+1)*d2param))];
R1,2=[ones(1,floor((k+1)*d2param)) zeros(1,k-floor((k+1)*d2param)) 0];
else

R1,1=[0 ones(1,k(i))];

R1,2=[ones(1,k(i)) 0];

94

end

flag = 1;

end

if d2param ==

R1,1=[zeros(1,floor((k+1)*d1param)+1) ones(1, k - floor((k+1)*d1param))];
R1,2=[zeros(1,floor((k+1)*d1param)) ones(1,k - floor((k+1)*d1lparam)) 0];
flag = 1;

end

if flag == 0;

R1,1=[0 zeros(1,foor((k+1)*d1param)) ones(1,floor((k+1)*d2param)-
floor((k+1)*d1param)) zeros(1, k-floor((k+1)*d2param))];
R1,2=[zeros(1,floor((k+1)*d1param)) ones(1,floor((k+1)*d2param) -
ﬂoor((k+1)*d1pa,ram)‘) zeros(1,k-floor((k+1)*d2param)) 0];

end

subplot(numlines,numcolumns,numplot);

ph = pl;

for j = l:iterations

ph = pbnmodel(N, ph, xt, k, M, P, R);

end

Ah = k*ones(size(ph));

95

96

for j = 1:toplot

ph = pbnmodel(N, ph, xt, k, M, P, R);

plot(Ah,ph,’.’,"MarkerSize’,markerpoints);

hold on;

end

end

xlabel(’k’,’FontWeight’,’bold’,’FontSize’ fsize);
ylabel(’p(t)’,’FontWeight’,’bold’,’FontSize’ fsize);

title(['d1=", D1,” d2=",D2],’FontWeight’,’bold’,’FontSize’ fsize) axis([0 Maxk 0 1]);
hold off; numplot = numplot + 1;

end

D.2 Derivative Function Code for Lyapunov Ex-

ponents

This code is for the derivative function used to calculate the Lyapunov exponents.

function poftpluslderivative = pbnmodelderivative(N, p, xt, K, M, P, R)

r = length(R1,1); [J,col] = size(R); clear fk for i=1:length(p)

for j=1:J

97

clear binomiall binomial2

if K(j) ==

fk(5) = sum(sum(((— R4, 1(1) + Rj, 2(1)) * (1 — p(s)) ¥ —

((1 = p(®) * Rj,1(1) + p(3) * R5,2(1)) * K(5) * (1 — p()) O~V + .(—Rj,1(r) +
Rj,2(r)) * p()) *D) + (1 - p(4))

* Rj, 1(r) + p(3) * Rj, 2(r)) * K(j) * p(i) KOVY). x Pj, 1);

else

for s = 1:K(j)-1

binomiall(s) = nchoosek(K(j), s) * p(i)® * (1 — p(i))KG)—2);

binomial2(s) = nchoosek(K (5), s) * (s * p(4) ¢~V * (1 — p(3))KE@=2) — p(3)* * (K(j) —
5) * (1 — p(a))H@=*~D);

end

B1 = binomiall;

B2 = binomial2;

[linephicolphi] = size(Rj,1);

if linephi > 1

for count = 1:linephi-1

binomial2 = [binomial2; B2];

end

end

98

Fk(5) = sum(sum(((—Rj, 1(1) + Rj, 2(1)) x (1 — p(3)) D) —

((1 = p(2)) * Rj, 1(1) + p(3) * Rj,2(1)) * K () * (1 — p()) EO-1 + ..
binomiall. ¥ (—Rj,1(2: 7 — 1) + Rj,2(2: 7 — 1))

+ binomial2. * ((1 — p(3)) * Rj,1(2: 7 — 1) + p(i) * R7,2(2: 7 — 1)) + ...
(—Rj, 1(r) + Rj,2(r)) * p(s) @) +

((1 = p(2)) * Rj, 1(r) + p(3) * Rj, 2(r)) * K (5) * p(i) KO=1Y). x Pj, 1);
end

end

poftpluslderivative(i) = (1-xt/N)+xt/N?2 *suin(M. *fk); end

Appendix E

Fixed Points

The following code is used to generate fixed points plots for fixed connectivity.
clear;

kbound=12;

N = 128;

kparam = [234 56 7 8 9 10];

dl = [0.1 0.3 0.4 0.5 0.6 0.7 0.8 0.9];

d2 =[0.410.910.80.80.9 1J;

numcolumns = 2;

numlines = length(d1)/numcolumns;

P1,1 = [1];

M = N;

99

numpointsonxaxis=N;

initialproportions = linspace(0,1,numpointsonxaxis);

xt = N;

fsize=14; marker=5; linwidth=3; numplot=1;

clf;

for dindex = 1:length(d1)

dlparam = d1(dindex);

d2param = d2(dindex);

D1 = num2str(dlparam);

D2 = num?2str(d2param);

for k = kparam

KK = num2str(k);

flag = 0;

if dlparam ==

if d2param ~=1

R1,1=[0 ones(1,floor((k+1)*d2param)) zeros(1, k - floor((k+1)*d2param))];
R1,2=[ones(1,floor((k+1)*d2param)) zeros(1,k-floor((k+1)*d2param)) 0];
else

R1,1=[0 ones(1,k(i))];

R1,2=[ones(1,k(i)) 0);

100

101

end

flag = 1;

end

if d2param == 1

R1,1=[zeros(1,loor((k+1)*d1param)+1) ones(1, k - floor((k+1)*dlparam))];
R1,2=[zeros(1,floor((k+1)*d1param)) ones(1,k - floor((k+1)*dlparam)) 0];
flag = 1;

end

if ﬂag‘== ;

R1,1=[0 zeros(1,floor((k+1)*d1param)) ones(1,loor((k+1)*d2param)-
floor((k+1)*d1param)) zeros(1, k-floor((k+1)*d2param))];
R1,2=[zeros(1,loor((k+1)*d1param)) ones(1,floor((k+1)*d2param) -
floor((k+1)*d1param)) zeros(1,k-floor((k+1)*d2param)) 0];

end

clear fx p

syms f x

f = pbnmodel(N,x,xt,k,M,P,R)-x;

x=solve(f);

subplot(numlines,numcolumns,numplot);

for i=1:length(x)

102

p=subs(x(i));

if imag(p) == 0 && real(p) >= 0 && real(p) <=1
plot(k,p,’*’, "MarkerSize’,marker);

hold on,;

end

end

end

axis([0 max(k) 0 1))

xlabel(’k’’FontSize’ fsize, "FontWeight’,’bold’);
ylabel(’p’,’FontSize’,fsize, 'FontWeight’,’bold’);
title([’d1 =, D1, ’ d2 =, D2],’FontSize’,fsize, 'FontWeight’,’bold’);
numplot = numplot+1;

end

Appendix F

Delay Plots

The following code is used to generate delay plots for fixed connectivity.

clear;clf;

N = 128;

kvector =[234 56789 10];

d1l = [0.3];

d2 = [1;

numberlinesgraph = length(kvector)/3;
numbercolumnsgraph = length(d1)*3;
p0 = 0.1;

iterations1=1000;

iterations2=100;

103

104

P1,1 = [1];

M =N;

numpointsonxaxis=N;

initialproportions = linspace(0,1,numpointsonxaxis);
xt = N;

marker = 14;

fsize=12;

numberplot = 1; for kindex = 1:length(kvector)
k = kvector(kindex);
KK = num2str(k);
for dindex = 1:length(d1)
dlparam = d1(dindex);
d2param = d2(dindex);
D1 = num2str(d1lparam);
D2 = num2str(d2param);
flag = 0;
if dlparam == 0
if d2param ~=1

R1,1=[0 ones(1,Aoor((k+1)*d2param)) zeros(1, k - floor((k+1)*d2param))};

R1,2=[ones(1,floor((k+1)*d2param)) zeros(l,k-ﬂoc;r((k+1)*d2param)) 0];
else

R1,1=[0 ones(1,k(i))];

R1,2=[ones(1,k(i)) 0];

end

flag = 1;

end

if d2param == 1

R1,1=[zeros(1,loor((k+1)*d1lparam)+1) ones(1, k - floor((k+1)*d1lparam))];
R1,2=[zeros(1,floor((k+1)*d1param)) ones(1,k - floor((k+1)*d1param)) 0];
flag = 1;

end

if flag == 0;

R1,1=[0 zeros(1,floor((k+1)*d1param)) ones(1,floor((k+1)*d2param)-
floor((k+1)*d1param)) zeros(1, k-floor((k+1)*d2param))];
R1,2=[zeros(1,floor((k+1)*d1param)) ones(1,floor((k+1)*d2param) -
floor((k+1)*d1param)) zeros(1,k-floor((k+1)*d2param)) 0];

end

clear p

pl = p0;

105

for i = l:iterationsl

pl = pbnmodel(N,p1,xt,k,M,P,R);
end

for i = l:iterations2

pl = pbnmodel(N,pl,xt,k,M,P,R);

LastPoint=iterations2;

colormap('hsv’)

PrettyColors= colormap;
subplot(numberlinesgraph,numbercolumnsgraph,numberplot);
for j=1:length(P1)-2

ColorPoint=floor(63*j/LastPoint)+1;
Delta=(63*j/LastPoint)-ColorPoint+1;

RGB=PrettyColors(ColorPoint,:)+...

Delta*(PrettyColors(ColorPoint+1,:)-PrettyColors(ColorPoint,:));

106

plot3(P1(j),P1(j+1), P1(j+2), ’.’,’MarkerEdgeColor’,[RGB],’MarkerSize’,marker);

hold on;
end

axis([0 1 0 1 0 1));

107

title([’kz’,KK,’, di:’,Dl,’, d2=",D2], ’FontSize’ fsize,’Font Weight’,’bold’);
numberplot = numberplot+1;
end

end

	Dynamics of Random Boolean Networks Governed by a Generalization of Rule 22 Of Elementary Cellular Automata.
	Recommended Citation

	tmp.1608220803.pdf.vAso5

