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CHAPTER ONE: INTRODUCTION

In their paper [l], Schmaedeke and Sell have established a
Gronwall inequality which holds for the Sfieltjes mean sigma and
Dushnik integrals. 1In Chapter 2, we shall investigate an
eigenvalue problem related yu the Gronwall inequality for the
Stieltjes mean sigma integral. In Chapter 3, we shall extend the
results in [lj to the weighted refinement Stieltjes integral
introduced by F. M. Wright and J. DO. Baker [2].

We list for reference the main theorem of [1] and a 1lemma

used to establish it.

Theorem 1.1: Let f and g be functions aof bounded variation

on [0,T], and let €3»0. Further let f and g be right continuous,

'f 0, and g nondecreasing. If

t
f(t) & +ff‘(s) dg(s), 0LtLT
then there exist cbnstantsc;' and K, depending on g only, such
that D<T"u4'T, 0K and f(t)¢(Ke for ogt<T". Further', T! is
maximal in the sense that either T'=T or Ag(T'))2.
Notation:_ In this paper we use the notation introduced
in [1], Ag(t_)-=g(t) -g(t-). Ir':‘ addition, we shall make use of I

"and R to denote the positive integers and the raals,‘ respectively.

‘' As a8 consequence of the bounded variation of f and g, we also

have that 1im g(t) end 1im f(t) both exist for be[0,T] .
t—-b- " t-»b- '



!

Lemma 1.,2: If f(t){KE for Dgtétl then there are a t2>tl

and a K' such that f(t)<K'Eé for 0Lt <tye
We shall introduce some not;tion at this point which will
facilitate our future discourse. Assume f and g are functions

from an interval [D.T] into R

Definition 1.,3: fe QCTR means that f is quasicantinuous'non

[0,7], and continuous’ from the right. .-

Definition 1.4: geBV;, means that geQCq and that g is

of bounded variation on {0,T]."

Definition 1,5: That the function f is nondecreasing will

be denoted by ft,
t
It has been shown [3] that for jf‘(s) dg(s) to exist in the
(=]

mean s‘igma sensse, it is sufficient that f be quasicontinuous and
g be of bounded variation., UWe may further note that fe QCTR

implies that there exists B > 0 such that lf‘(t)lé B for te[0,7].
Thus both Theorem l.l1 and Lemma 1.2 hold if fe QCTR.and ge BUT.R"
(See details of proofs in [i].) o

In Chapter 2, we shall explore the eigenvalues of the

following operator::

Definition 1,6: Let geBU_, with gt on [0,7]. Then the -

TR
operatar U is defined at each fechRwith f»0 on [0,7] by
Uf(t)‘=f f(s) dg(s),. 0<£tLT,

(-3

where the integral is the Stieltjes mean sigma integral.



CHAPTER TwO: EIGENVALUES OF THE DPERATCOR U

Our major investigation in this chapter is motivated by a
statement in [1] that the integréal equation
F(t)= | (o) da(s)
may have nontrivial gositiva,sglutions. Schmaedeke and Sell have -
indicated that a proof of thé following theorem will appear in a

future paper. Let U denote the operator of Definition 1.6.

Theorem 2.1: X >0 is an eigenvaluas of U iff. there is a T.,

0<T'<T,such that Ag(T')=2\.

We shall be concerned with proving this theorem with some
added cvon‘di.tiqns to insura that the eigenfunction f 0.

The .failure of’.Gronuali's inequality when Ag(T'))Z is
related to Theorem 2.1 in the following manner:

We note that for A>0, if there exists fe QL‘.TR
t .

(1) AF(t)= [ f(s) dg(s), D€L <T,
©
one may state the equivalent .eqfuality

€ ' .
(1) f(e) = J f(s) d bha(s), 0<LLT.

° .
Theorem 2.1 says that there exists T' > 0 such that A[f’;\gj (T') =2,

»f # 0 such that

Since A [’/;\g_.) (T') =2, Theorem 1.1 gives us theresult that the
Gronwall inequality fails \fqr:;/A g at T'.

Since (i) and(ii)are eguivalent, for the remainder of this
chapter we shail be concerned with the eigenvalue problem for y

with A = 1,



TR and g éBU.m with

gT be such that’ f(t) ff‘(s) dg(s), i. e.‘ f is ‘an e:.genfuncticm for

PROPERTIES DF' f: In this section let fe€ QC

"U corresponding to A -5;,,1.' Suppose also that f20.:
Lemma 2.2: Let € = 0., -Then there is a T* with 0<T*\<_T”‘suchu
-"that ft 0 .for 0K t(T .

Proaf: 8y Theorem 1.1, since
T

f(t)=f f(s) da(s) for telo,T],
o
there exist a T” and K »0 such that T*> 0 and f(t) {Ke = K+0 for

for 0<t<T"., Thus f(t)=0 for 0Kt <T™,

Lemma 2.3: If F(t) =0 for 0<€ tLt, then there exists a t2
with T>/t AN such that f(t)—D for: D(t <ty

Proof: ;.et K=1. For &= 0, f(t)<Ke for o<ttty
By Lemma 1.2, there exists t,>t, and a K'>0 such that

f(t)<K'e for 0Kt <ty. Thus f(t)=0 for 0<t <ty
This lemma has an immediata consequence.,

Corollary 2.,4: If f is an eigenfunction of U such that

f(t)>0 for T2t >T >0 then f(T%) > 0 alsa.

Proof: Suppose not, i.e. suppose f(T*) =0 and f(t)>0 for
t)T*. By Lemma 2.3, there exists t2>T* such that f(t) =0 for
04t <t,. This contradicts f(t)>0 for t> T,

We now are in a position to prove the necessity of fhenram'Z.l.
|

PROOF OF NECESSITY OF THEOREM 2.l: Suppose A= 1 is an

‘eigenvalue of U and fea QC\‘R' such that f is not identically 0 and :

f=Uf,i 8.



t
f(t) = ff‘(s) dg(s), for 0K t<£ T,

Since f(0) =0, by :emma 2.3, thers exists t*> 0 such that
F(t)=0 for 0<t<t*. Let Z={ te[n,7] such that f(s)=0 far
0<s ét} . 2 is not empty since_tz-%t* is in Z. Since Z is a
bounded set, Zc[0,T] , there exists T'e [D,lTJ such thatT* Jffhfn'tl-.il.
We m>us't' have that fT'#4 0 since fT'= 0 implies that there exists
t">T' such that ft=0 for 0<t <t" by Lemma 2.3 and T would not
be al.uwb.for z. We then have f(t)=0 for t<T' and fT'# 0.

Thus f(T') = .[Tf'(s) dg(s) =% L'fT'-a- f(}'-ﬂ Ag(T') or
F(T') =4F(T')Ag(T'). Since f(T')£0, 4a(T') =2.

STEP FUNCTIONS: Before we try to prove the sufficiency
part of Tt'faorern 2.1, let us look at a simple example which will
illustrate that th‘e. condition:. in Theorem 2.1 is not enough to
guarantee that the a;genf‘unctiuh‘ f_nf )};;b_a:'nonnegative,

Let the st‘ep function g be defined‘ on [0,3] as follouws:

gt =0, 0£t<1 |
gt=2, 1&£t<2
gt=5, 2£t<£3
Since Ag(l) =2, by Theorem 2.1, A= 1 is an eigenval(.x[a of U.

We note that the f‘ollowing,functiqn f is an eigenfunction of u

7

far A= 1:
ft =0, 0t <1
ft=1, 1£t<2
ft==5, 2&t{3.

As shown here, we. have no immediate guarantee that f»0. To

\

remain in the context of [1], we require that f»0 on [0,T]. Uue



shall see later that a sufficient condition for this is that
Ag(t)< Ag(T') for all T2t>T'. uwe therefore restate the suf-

ficiency part of Theorem 2.1 as a separate theorem:

Theorem 2.5: Let geBY ang gt, A= 1. If we let the

TR
operator U be defined by U: F——-ff'(s) dg(s), them A =1 is an

eigenvalue of U having a nonnegative eigenfunction f if there
exists a T', T)> T 0 such that Ag(T')=2 and
(1ii) Ag(t)<2 for T'<t4T.

In order to prove this theorem, we first investigate the
nature of operators and aigenfunctiohs with g restricted to be a
stép function.

Let g be a step function on [U,TJ such that ge:BU_l_R and
-gf. Note that since g is a step function, g is of bouhded
variaticq. ge?BUTR‘and gf implies that if {io'tl""’tm} is the
set of points at which g is discontinucus, then g.1:==g't'.'j fof

tj\<t <t and that gtj< gtj

J+1 +1

assume that Ag(t0)=2 a‘nd.Ag(tj)ﬁz for tj> tge

for j=0,1,ee.,m=1. Further.

Lemma 2.6: Let g be a step function on [t TJ such tﬂhat
g € BV, and gf on [0, T] and Ag(t ) =2, Then there exists an
feacy, f # 0, such that F(t) = ff(s) dg(s).

Progf: UWe shall construct f. Let f‘t-_D far 0<t<t0.where
t is such that Agt # 2 for t

a 0
define ft we note that we must have

ffs dgs =% [f‘t0+q7 Ag(to) =-‘f(t0).

<t<£T. 1In considering how to



Since we wish to have 20, we let FtU=KD> 0. Since gt=gt0 ’

QAg(t)=0 far t0\<t <tl. Thus .we rhus»tf also definav'f,t”;l(o for -

tD\<t (t since f‘cn: such t's

Flt) = f f(s) dals) = ] £(s) dg(s)+ff(s) da(s)
to
or f(t)vm‘/. f(e) ag(s) +0.

[=]

At tl we have

: =3 1
ftlzlf‘s dgs =% ftOAg(tD) +—2-[f‘t0 + ftljﬁg(tl.)
Solving for f’tl we get
Ft =Ky » L+zlaty

which we will call K By the same reasoning as above, we must

.L.

have ft =K, for tl<t<t2. Continuing in this manner we have for

1

t

z(:i\l) K 7’-"

Ky +2(Kg+K;) Dot +.oo+'2'(Kj -2 *5- l)Ag*gJ 1*'ij 120t
J.

1l- rﬂg(t )

Thus our construction yields a step function f such that

ft=0 for Dét(tg and ft=K_ 1f t {t{t for n=0,...,m=1 and

n+l
ft=K_ , t tLT. To see that f is in fact'an ‘éigehf‘unction, let

te [0, T] Then there;gxists an ne{U l,...,m} such ‘that t {t(t
By (iv

n+1°

jfs dgs—KD+*§'(K + K )Agt +...+-§-(K 14* Kn")Agtn
= Kn(l--g-Agtn)-H;Kn Agtn

n which is ft. Thus ft =[fs dgs for

Therefura,ffs dgs =K
i o

tel0,7].

Corollary 2.7: Using the notation of Lemma 2.6.

(a8) If‘Ag(tn)<2 for t0<tn4T, then K_>0, i.s.



(b) Ing(tn)<2 for t0<tnéT, f is nondecreasing, i.e.
K \<Kn+1,‘n=0, l,eeey M=1,
Proof: (a). We have chosen Ky >0 and if Ag(tl)<2, it

follows that K, =K; 2*248%1 5 0 also. By (iv), if
l-%Agtl

(b) -Agasin by (iv)

Kn=
1-%Ag(t,)
| ~ I++A4gt
or (v) - - K_.=K —_— 0
‘ ~ n n-=1 1 ,
r-a,

!
If‘Agtn<2, we have by (v), Ko>K,_ e We also get from (v),

n k)
(vii) Ko=Kg T1 14'-Q‘Agti , for n=1,2,...,m,
i=1 ].-;Agti ‘

We may now state

Lemma 2.8: with the notation of Lemma 2.6, Kn> Kn-l>0 for
n=1,2,..-,m iff. Ag(tn)<2.

Proof: By Corollary 2.7, Ag(t )< 2 implies that K. >0 and
Kn>,Kn_l' for n=1,2,...,m. Nauvsupposa Kn_léKn for
N=1,2,4..,m and'KU>El. ‘Then solving (v) for Ag(tn) we obtain

‘Ag(tn)=2 Kn = Knoa
| Kn * Kn-l
Since K »K, _,>0, we have Ag(_tn)<2-r.

Thus Ag(tn)<2 if and only if K, 7K, - and Kn>U for

1

n=l,2,.-..,m,



A CONVERGENCE LEMMA: We shall now investigate the conver-

gence of a sequence of eigenfunctions,
To begin, we cite two useful theorems which are used in qur-

proof. From reference (2] we have

Theorem 2,9: 1If g is of—-,‘bo‘und.ed wvariation on [a,b]-then

there exists a’sequence Of'step_:’ funciions g, on [a,b] such ‘that

Igt—gntl< 1/, if adt (b, i.e. {gn}:o=l converges to g uniformly
on [a,0). N
We alsa have from [2] :

Theorem 2,.10: Suppaose f e QC and there is a"sequenc‘_.e

TR
m 3 . - '
‘) {gn}n =1 ©f functions sgchﬂ that

(1) There exists a V>0 such that V' (g ) V if neI”

(2) 'There exists a g such that 8,9 uniformly on [G,TJ .

t oo
Then the function sequence [ffs dgnsjn=l converges uniformly
o

t
to ffs dgs on fU,T] .
o . Ve
With these two theorems, we may state and prove the following

Lemma:

Lemma 2.11: . Suppose g'e BUTR and there exists a sequence

{gh} :2'1 spch that g€ BV_TR' g9,—a uniformly on [D,T], and
Ug(gn) £ Ug(g), ~Let A= 1 be an eigenvalue for each operator Uy
uhgra £ |
(U F)(t) = f(s) dg_(s) if 0<£Lt<£T

n n x

A :
00

If {fn} n=1l is the corresponding sequence of eigenfunctions such
that U‘;‘f‘h = )\'fn and fn‘e QCrq for each ne If, and if there



10

exists fEUC‘TR such that f‘n—vf‘, then

t
re=f f(s) ag(s),
i.e. f is the eigenfunction corresponding to the operator U
defined by g.

Proof: Let £>0. Then for tel0,T] ,

. t
!f‘t- ffsdgs lft f‘t\ lf’t ffsdgsl
o
lffs dgs-ff‘sdgs +
ff‘sdgs-ffsdgs

Let U--UT(g) By Theorem 2,10 there exists N € I' such that

ff‘s dg s-ff‘s dgs[< 8/3 if nyNand te[0,T]
Since f t—>ft for t € [o,T], there exists N'e I¥ such that
[f.t - fe[L &/3; if nyn'.
Then [f t-ft/< &/3 and

t t
/ff‘ s dg s - ffs dg ssé(E/W) VT‘T(g )< 5/3 for n)N-a'.

Since f (t)-ff‘ s dg s, the second term is zero.
Thus for té[D 71, ’ft ffs dgs}( £ for each £>0.

Thus ft = ff‘s dgs.

Corollary 2,12: With the conditions of Lemma 2.11; if each

L0
'fne{fj} j=1 18 such that f_ 30, then f>0 also.

P_I‘_t:_c_l_f_: Suppose Fn>/0 for all nelI¥ and ft<0 at somé
telo,T7]. f,t—>ft implies, for € = +|rtl, there exists an NeI*
such that ]fnt - ftl(ﬁ for n>N. Then

ft=€<F t < ft'+e' = ft+4 |ftl= 3/, ft <O

Thus f t<0 for n>N. This is a contradiction,



CONSTRUCTION OF THE FUNCTION SEQUENCES: Suppose we have a

function g €BU__ such that gt on {0,7]. Further, let us assume

TR
that there is a tje [G,TJ such that D(tUéT, Ag(tu) =2 and

Ag(t)<2 if t;< t£T. UWe shall construct a sequence of step

functions {gn}:= 1 which converges to g and whose seguence of
oo ' -
elgenfunctmns{fn}nzl converges to some feQCTR'nm. 'TU';

this end, we state the following two lemmas.

Lemma 2.13: With geBv and gt on [a,b], let £>0. If

TR
gb-ga ) €, there exists a t'e a,bj, such that gt*-ga 7 €
/4 .

and gt =ga<&for agt <t*.
| Proof: Suppose &€ >0 and.gtg-ga>,£. Let tl=-§-(a;+ b).
We consider these two cases:
(1) .If b is such that gt -ga<&for all t<b then t¥ = b.
(2) The alternative to Case 1 is that there exists a t'< b
such that gt' -ga}e.
Let .4 = [te [a,b:} such that gt -ga> 5} . Let t =infd .
Sincve g is right continuous, t*ed . Thus gt -ga <& for

aét(t* and gt*-ga > E.

Lemma 2.14: Let ge€BU ., gt . Let[a,b]c[0,7] .

Suppose Ag(b)<¥ for ¥>0. Then there exists a t*e[a,b) 'such
that gb-gt*<¥.

proof: Ag(b)<Y¥ means that g(b)-gv(b-)<¥, or lim gt >gb=-Y¥
" t-bp-

Thus there exists a &> 0 such that gt>gb=-Yif b=-§<t<b. Let

t*=min {b— 5/2,3_} . Then gb—gt*<xg

1l
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Corollary 2.15: With the notation of Lemma 2.14,

gb-gt< ¥ for t*¢t <b.
Proof: Since gf, gt),gt*> gb-¥%¥. Thus gb-gt<¥ for
t*< t <b.

Since geBV there are only a finite number of téfﬂ,TJ such

TR
that Ag(t) =2. Since we may pick tD tc be the largest of these,

conditicn 2 below may be satisfied. If ty ='T, Theorem 2.5 is
satisfied with ft=0 for 0Lt <LT and fT=1. In the remainder of
this chapter we shall assume tD(T.

We shall now construct the step function 9y assuming that

(1) gesv._ and gf,

TR
(2) there exists a tge [O,T] such that Ag(to) =2 and

Ag(t)<2 for t;<tLT.
| Let g,t=gt for 0Kt ty. Using Lemma 2.13 with €= 1, we

can find a ti such that gt -gt;<1 for tuét<t1'. and

l- . . _ v : ] []
gt, =gty >1. UWe then let g;t =gtg for t, £t <tl and gltl =

gti‘;_ If it happens that gt]"-gto 72, by Lemma 2.14 there

A

. * ' » (] % .
exists a t € (tD,tl) such that gt; -gt <2, 1In this case we let

t. =t and t,=t' and define

1 2771
glt=gtD far t04t<tl and
glt=gtl for t14t<t2. and .
gltzugtz o

We then have |gt -Aglt! {1 for 04t £t, and B g,(t) £ 2 for

t0<tét2 .
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We repeat the above construction on ['tz,TJ to get t3, or both

t, and t,, which satisfy the conditions that Igt-glt] {1 for

3

D\<t\<t3 (ar tq) and Agl(tn)1<2 far t0<t\<t3 (or t“). We may
1

i=1
The set of ti's is finite since géB\lTR and g? .

continue constructing {ti} 'in this manner, letting tm =T,

1
Thus we have constructed a function, 30 such .that 9, is a
step function an [tD, T] and g,t =gt for D\<t§t0. g, has the

1
properties that for n=1

(ix) | gt = gltl < 1 for n<t<r,

(x) Ag (tg) =2

(xi) Agn(t)<2 if tg (téT, and
(xii) gn1:=g1:‘j if tjét (t b1

Thus g) € BUrp and o, ! .

Now suppose that for n e I+, 8, is a step function satisfying
properties (x), (xi), and (xii) above and that Igt-gnt! < l/k
on [_U,TJ for some _k:eI"‘ but igt-gntbﬁ—%—i— somewhere on [D,TJ °

We apply Lemma 2.13 to 9, with € = — on each interval in

m -1 k+1
. . 13 * (3
{Bl'tl+ﬂ } stopping when we first find a t in some
. % 1 .
interval [ti'ti-»- J‘]such that ti<t _< ti,q fgt-gnt]<k+l if
* % * 1
to\<tA(t'_, and [gt -gnt_] Z —7 -
. »*
We define g_, ,t=g t for 0K £t <%, g, lt—-gt for
* ” .
t 41:(1'.. .1 and g, ,t=g.t for ti+l\t<T' Thus 9441 differs
- 1
from 9, only on [t TN l) We then havelgt-gn*lth

on (o,t* J and[gt-gn_* lt[ < l/k on [t*,7] .

We continue in this manner with & = 1—%—1- until we have g

n+p
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at same point in aur construction such that lgt g, : t] £ t<il i
for all t € [0 T] . We then let,& = l/k’ uhere K’ ;}-k-rZ is such
. 1
_— 1
.that [gt Qn*pt[< k'-.'l on [0,T] but gt - qn+p t] > /¢
t for some te[O, TJ x If‘ f'or some n eI"' }gt"-gntli< /p- for all -

P> R‘, gt= g, t f‘or all té[Cl TJ
Using the results of Lemma 2.6 and Corollary 2.7, for each
g, we can find a function fntimc such that f on LO, T]

TR

f t==D on [U,t ), and ft Note that even thaugh 8, may ngt

no = Kge

be a step function on [o, tD), since f t=0 there, f (t)-

th (s) dg (s) for te [o,t ) We also have fn1 by Corollary 2.7.
We shall now explore certain relationships amaong the fh's.

Let us adopt thé folloming notation which will be used in the

remainder of this chapter:

1) 'For g_ we have $t.t:0 _ such that 0<t {t, {vee &t =T
n )i=0 ‘ >0 1l

M
andgt gtisgt f‘ort(t(ti+l i=D‘,l,...,mn-.} and -
gntm = gT.

N
2) For fn corresponding to g, we have
fnthi if ti<t<ti+l' i=0,;,-..,mn
3) If t* is the point added to the set of points
1R . . . : _¥* s
{t¥}i==l qf discontinuity of g, to form 9, .10 let Fn-rlt K*™ if
»* ’ *
ety g, where KLt
¥* N
4) Le;fn+lt=KJfortj<t<tj+lhifi+l<3<mn
. . *
R 5) 1:.ru»J.T.-KITi
- v, n\
' Lemma 2.16: Usip th
sing the above natation, K, (K *¢ K1+l< K 41

and K- DK f
J> _1 j l+l,...,mn.‘ Thus fn+lt=f‘nt_1f ot t”,
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»*
f +lt>f‘nt if t 4t<ti+

n 1

Proof: Using equation (v)on page 8, we have
*
K = Ky l+zbaqn, 3t

and fn+lt<f‘nt if tifl(t<T.

o
1-1bg, 1t
.‘ ] * '
Since 0<A-gn+ lt < Agnti+ , we have
* 1 '
K K" ak, Lt T8t ¢ K, 21EAGnbiaa .
i ll__%_A £* - i 1-+Ag t i+1
gn+l z n i+l
. *
ar K; <K <Ki+l .

% *
To show K; < Ki 41 m.:xte Agn+lt +Ag

i+1 ne1¥i+17800% 00

Thus consider 9,,85,0 >0 such that g, + q2’=q<.'[.. Then

1

S

l+ql l~4-q2

= 1+a/(1+aq,q,)
1-9/(1+0q,q,)

l"ql l-QZ

'Since q/(1 + q,8,) <9, we get

l+ql.l+q2 < iig
1-(::l l-q2

Substituting %Agn . lt*, -Q-A_gn +rlti , 12 A gnti .1 for 990518
respectively; we have

#*

. 9
ek l1+%449,, ,t l+zAg, 1t
i+1 71 3 ¥ ° : :
1-74Ag, ¢ 1-748n, 1% 4
\
t
<k, PrEASt L,
l'.'-’12-Agrlti+l i
* *
Thus Ki<K <Ki+l<Ki+l .

For j=1i+2, i+3,...,m , we have
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K*_K* j l+—%Agn+ltk = K* —]——ii l+'§'Agntk
J i+1 kl=]i+2 l-%Agn«bltk i+1 K=i+2 l-.-%Agntk
J 1+ t
_ = Qg
<Ki+l ‘ l n K = Kj .
k=142 1-%Agntk

Thus K§<KJ. for j=i+l,i..,m and f__ =f on[g,t"),

+1
*
fn+l>fn on [t , ti+l) , and fh+l<fn on [ti+l'Tj'

n

Lemma 2.17: Let £>0. If |f t
==Tme L2l nCj+l

- fntj)< € , then

!f. -fn+ltjl<£ °

n+ltj+l

Proof: Case 1 - t*>t.~

j+1c Then fn . lgifn on

[:0',_1:J +;C[D,t*) and the result is obvious. .

Case 2 - t,<t <t By Lemma 2.16

3 J«+1°

“t.=f_t. thus

f n +~il J nj

L. o
n+e1¥340 Tt 00 @09 f
Lt 1ty 1= Tty LA AN LR

%*
Case 3 - t < tj. Then we have

2 . 1 :
KE 1=K§ 1+7A00 41541 - 1+;Agntj+l
+ O 3 _ 1 .
» =288, , 1%, 1=zdgnty
A
and Kj+l=Kj l+2Agntj+l = ¥«
A — j
1 TAgntj+l
Therefore
K., —K.=(8=1)K.>(¥-1)K* = K* . -k*
541Ky ( )KJ>( )KJ KJ+1 KJ
or £> lfntj+l-fntj\> anutj*l-fmltjl;

16



Lemma 2.18: There exists a B >0 such that fntéB for all

+

nel” and for all te(0,T].

proof: By Corollary 2.7, part b, we have that

1
* i
7 <T, fn+1T< f.T. Then faor each n=2,3,...fntéfn‘r;<fl'r.

fltml= flT >f.t for all te [O_,T]. By Lemma 2,16, since

Let B=f“lT. Then f‘nt$8 for.all ne I* and for all té[U,T].

Lemma 2.19: Let £>0. Using the notation preceeding

. ¥
Lemma 2.16, there exists an N e I¥ such that [ K -Ki\<€ for each

g, , 1 such that n2>N.

Proof: Let §>0. Then there exists an N € I such that

£ = %—(gt*-gn#*)<5 .

- " 1
| gt gnt]<25 for nZN. Then -Q-Agn+l

Tharefore‘

1+ t¥
[ "=kl =/ 24801 -1/ K,
1 * 1

' 1-74gn, 3t

< /i_*__;:_ -1/ K,

l—
2§
=L K.
Since K;< B, by Lemma 2.18,
* 2 &
K =K < B e
| < 2L
If we let § = £ , then there exists an N eI¥ such that

2B+ &
[K*-k;I<&  for nyu.

‘With Lemmas 2,16, 2.17, 2.18, and 2.19, we can now state and

prove

17
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Do

Lemma 2.20: Given the sequence {fn}n:-l described on

page l4 preceeding Lemma 2.16, there exists f such that

ft = lim f‘nt_ for each te [D,T] .

Proof: Case 1 = Suppaose té[U,T] such that for some

n, t=%t,, i.e. t is a point of discontinulty for some On° Then
t is also a discantinuity point for all S, such that m»n. Then

for each m>,n, f t‘.>f'i,n t by Lemma, 2.16. Thus {F t} = is a

+1
nonincreasing sequence, Let ft=1im fmt the limit exists since
m—»°

fty0and ftl for myn, '

Case 2 - Suppose tE[tU,TJ such that for each g_ there

exist. tin ' tin_ , 1 sueh that'tin< 1< tin L 1° We must have

Ag(t)=0. Otherwise gntié g(t-)< gt implies that
: n

Jot=gqef = lat-g.t; | > [ge-s(e-)] -¥>0

‘far all neI”., ‘But there exists an N &I such that ‘lgt-ght/< ¥
for all n»N, so we have a contradiction. This then gives us the

fact that Agh(tin +l) — 0 as n —°,

By the construction of the a9, 's, we have

til\< ti2\< uo-(t(oooo(tl +l <til+l .

By Corollary 2.7,. for eaech n, we get

fntil\< Fnt‘iz< "'<fnt < f t:. +l<°“ 1’ntiz+l\<f’ntil+l

,SinceAgn(ti +l) — 0, given 0<$ < %, the'ré exists an Ne I’

such thatdg ('h1 +l)<J 1f‘ n>N.

. 1+%4g t
Thus [f_t rt.]= nfin+l 9l et
ni l ni
i'Agni-}"»'l n
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If 8>0 is as stated in Lemma 2,18,
| S
- fntin{ { —T—75 °

(fnt l -3

i+ 1
n
Thus for £>'D, there exists an NeI” such that

[fntin+ l-fntin\<e if n ¥ N.

Using Lemma 2.17, we have that | FNtiN*‘ 1 - thiN] < & implies

- ft,|<& . Noting that
n lN

that {f‘ntiN+ 1

f t. > ft, Z2f_t, ’
n1N+l nln» n1N

we have ’fntin - fntiN)<£.

Since Fti exists and equals lim f_t., , given € >0 there
N nosoo 1 1y

exists an N'e€ I¥ such that [ft, -ft, |[<& if n3N'.
: n lN il\l

Let N*=max § N,N'} . Then

| £ t- f‘n?[ = | f‘mtim - fntin]

(-

¢ Ity =ty b+ lF e - ft )

< m i m i i

|+ lfti -f t,
m N N N ]

n i

. ¥*
+ fntim-":ntin’ £ 4LE , if m,nyN¥,

o® .
Thus {f‘ t} _, 41is Cauchy and hence lim f_t exists., Dafine
n n=1 n
n—o2
ft=1im f_t,
n—soo 1
_ oo
Having showri that f is the pointwise limit of {fn} hn=1'
it remains io be shown that f‘é—GCTR.

We shall now show that the limit functiaon fe QCTR and then

applying Lemma 2,11, we have that
t
f(t) = j f(s) dg(s) if 0Kt KT,
[«
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We then get that A =1 is an eigenvalue of U.
First let us note the following facts about f:
vRemarké:
(1) ft.
(2) f>0.
Proof: (1) 1f Fty) L F(t)) for t Lty lot
€ = f(t;)=-f(ty). Then there exists an N, such that

| ft -f‘nt-l|< a/u for all n},Nl and there exists an N, such that

1
- £ . =
[ft,=f t,/ <&/, for all nyNy. Let W=max {N ,N,} . Then

thz = fmtz - ft2 + f'tz - ftl + ftl

- thl * f‘Ntl

e,
f o £ fyty /2 < fyty .

(2) "f>/0 by Corollary.2.12.

Lemma 2.21;: If ae(tD,T) is such that a8 is not a point of
discontinuity for any 8 then f is continuous at a.
Proof: 1In the proof of Lemma 2.20, Case 2, we had the

. . +
existence of an Ne] such that’fntimél"'ﬁntil\‘f&for all n>N,

where t, { alt, . If te(t, t,
lN 1N+l IN lN

lf’nt—fna[<£ using Lemma 2.17 and the fact that fnT o

+-l)’ for each n» N, we have

Since fnt — ft and f‘na-ﬂ fa, there exists an N'such .that

[f t-ft[<€and [f a~-rfal<E for a1l nyn'.
Let N = max {N,N'} . Then
[t‘t-f‘a[(lf‘t-fmitl +\fN*t-fN*al + ifN*a-fal<38

for all te(ti by, l) .

N N
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Thus if.‘. § = min {a - tim'ti[\j"' l-'a} , given &>0, there

axists f)D such that

Ift - fa]< 3e if [t-al<é .

Lemma 2,22: Suppose a € [tD,T) is such that for some Q.

a=t; (t; as in the discussion on page 14). Then f is right
continuous at a.

Proof: If {tg,tl,tz,...,ti,ti+l,...,tmn} is the set of

points at which 9, is discontinuous, let a=ti. We may assume
gt >ga for t »a, otherwise gt =ga for agt(t* implies that
ft = fa for aét(t* by the way our f:’ri's are constructed.

. Lo
Then at some point in our construction of {gn} noy ! there

1

exists a 9 such. that a = t‘i and ti L] are the same successive
. . . . |}
poinpts of dlsqontlnmty for both 9, and S but t° for gm+l is
]
such that t,<t'<t; ;.
" Then by Lemma 2.19, for £>0, there exists an N such that
. ) - ' ! 3 4 - -
t -f'm+lti/<€ if m>»N. Thus, given € >0, picking g, such

' g
t - f‘m-t-l.a\<6

Ifm-c- 1
. [ ]
that n »N, there exists t > a such that lfm-rl
for some m »n.
By Lemma 2.17,

l‘fjt' -fal<e for jpme 1.

1f agt<t' |ft - fal €lrt' - ral .

Since ft' =1lim Fnt' and fa=1im Fna, given £> 0 there exists an
n—=e n—see

N such that lFa-Fnal<£ and ]Ft',-f'n‘t‘:l<6. f‘cr all n2N.

Let n=max {N,m+l} . Then
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ft - fa] < "ft'-rn,t'| + lfnt‘-fna[ + lfna-fal'

£ 3&.
Therefore, letting §=1t' -a, given  &€>0 there exists J)O such

that |ft -fal<€if a&t<{a+§.

Lemma 2.23: If ae[tU,T] , Fla-) exists.

Proof: Since ff, ugriéfa if 0t Ca. Let
L = {ft such that 0< t<a} . -is bounded above by fa thus, there
exists a b=1.u.b. .4 .

Let € >0, there exists f‘_t*e,d. such that b-& <ft*é b.

f! implies that b-€ <ft<b for each t such that a>t> t¥.
Let § = a-t . Thus, given &>, there exists J>D such thatf.

| b-ft|<€ forallte (a-§ ,a) .
Thus b= lim ft=f(a-) .
t—»a-

We have shown that for A = 1, and for geBUTR, the condition
that A g(t)<2 for all t such that T2t> tg where Ag(ty) =2 is
sufficient to guarantee that there exists an eigenfunction f of U
such that £>0 on [0,T].

As noted on page 12, there are only a finite number af
te[0,T] such that Ag(t)=2. Since we have picked ty to be the
largest of these we need only consider what happens to f if
Ag(ﬁ))Z for t0<téT. ‘

Let us assume there exists t, tg <t<£T, such that Ag(t)>2,

t 4= t
ft-:ff’s dgs='ffs dgs + ff‘s dgs
(3 ° %~

or Ft=f(t=)+5 [ Ft+f(t=)] Ag(t).

We hqve
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Solving for ft we obtain
Ft=f(t-) 1+Z4gt

l1-+Agt
o . . l+ktagt
Ag(t)>2 implies that ___ 277" ¢ 0. .
1-3Agt

Thus either ft <0 aor f(t=) ¢ 0. In either case this in;plies
that there exists % e (tD,T] such that ft <0. This contradicts
the fact that f >0 on [0,T]. Thus our condition that
Ag(t)<2 for t>ty is both necessary and sufficient for f to be

a nonnegative eigenfunction of U on L 0,T].
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CHAPTER THREE: A GRONWALL INEQUALITY FOR THE
WEIGHTED REFINEMENT INTEGRAL

In addition ta the Gronwall ineguality derived by Schmaedeke
and Sell [l], Gronwall inequalities for ather'types of integrals
have been established, one of the more recent being for the linear
"Stieltjes integral by J. V. Herod (], In this chapter we shall
establish a Gronwall ineguality for the weighted refinement
integral introduced by Wright and Baker in [2].

e shall quote here for reference Definition 1.1 of [2].

Definition 3.1: Let pel” such that p2>2 and let

(wl,wz,...,up) be an ordered p-tuple in RP such that
mlq-w2-+...-*up==1. Let f and g be real valued functians on the

closed interval [a,b] C R . For a partition

p={a=x ¢x,< ...<xn=b}

of [a,b], choose for each i=1,2,...,n a partition

Basling Lymt,1 ¢ty <0 <5 5o ]

of [xi-l'xi] consisting of p points., Form the sum

n

p
~_S(P}‘ Al""/’An)= Z {Z wj o F(tj’i)} [gxi-gxi_l]
j=1 '

i=1
If the refinement limit 1lim S(P;Al,..;,ZBn) exists and is finite,

this 1limit will be denoted by

el
J o0 sati

(- §
which is called the weighted refinement integral of f with respect

to g on (a,b]."
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In order to produce a result which is analogous to that in
reference [1], we must impose the condition that
(i) g is right continuous on [0,T].
We shall require that the functions f be bounded on [0,T].
From [2] we have that if‘ ‘_[;tdg‘texists then
(ii) f(c-) must exist for each ce (0,T] such that g(c-) #g(c).
We shall state without proof the next two observations:

b
(iii) 1lim ff(s) dg(s) =0 and
b—a +

b
(1v) in [ £(s) da(s) = [ o+ (1-u )F(b-]] A a(v).

a—~ h-"a
. Since it is possible to have both g! and £) 0 and have
ff(s), 'dg(s) €0, we shall impose the added restriction on
qwl.wz,.;..mp that

(v) wi>0 for i=1,2,...,p.

To summarize, we consider bounded functions f 0 satisfying
condition (ii); a function g of bounded variation and right.
cantinuous on [U;TJ such that g! on tD,T:); and that'wi‘)ﬂ far
1=1,2,000,p0

Finally uwe supposetthat if £€3»0 we have

Flt) € £ + _[f’(s) da(s) far 0<tLT .

With these restrictions holding on [0,T] , both Lemma 1 and

Lemma 2 of [1] hold and will be stated as 3.1 and 3.2 with proofs

essentially those given in [1].

Ltemma 3.1: If ft{Kg& for D{tétl, then there are a

t,>t; and a k' such that Ft<Ke for D&t <ty



Lemma 3.2: If ft{KE& for D£t<t, and u (g) £ €< 1
for t, <t <t,, then there exists a k' such that Ft LK'e for

0t <t2.

While Lemmas 3.1 and 3.2 remain as stated in [1], Lemma 3

of [1] must be altered slightly.

Lemma 3.3: If ft{Ke for 0Kt <t and either Lup 0 aor
Ag(tl)<l/wp, then there exists a K'> 0 such that ft{K'e for
oLttt .

Proof: We wish to find a bound for ft. . Consider

f’tlg £ + ff‘(s) dg(s)
{E+ [f(s dg(s) ff(s) dg(s)
{ €+ KEVUS(T) + f 't(s) da(s) .
Taking the limit as t—»tl, we have
t,

ft,< €+ Kevg(a) + [1-wp] KeAgtl+wpftl_Agtl

Note that if wp=0,

ftl\< {l-r K [US'(Q) +Agtl]:} E

and we have a bound for ftL‘“

If U #0,
1+k QUf(e) + (1-uy) Ast )]
1-ug Ag(t

ftl--

1)

'and'again we have a bound on ftl
The proof of the Gronwall inequzality then follows the proof

in El] and here we shall only state the theaorem,

Theorem 3.4: Let f be a bounded function an [0,T] and g be

26

of bounded variation an [D,TJ such that g is right continuous and
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f(t-) exists whenever 4 g(t)#0..  Let £»0. Alsoc let f2»0 and 'gT .
If
-
f(t) € +ff(s) dg(s) , O0Lt«T
o
then there exist a T' and a K, depending only on g, such that
0<T' T and 0K and f(t){Ke for 0Lt<T .
Further, T is maximal in the sense that, if W,=0, T'=T or

if Lup;fD Ag(T')}J‘/UJ . In the case where mp=0, by Lemma 3.3,
p

f(t){Ke for DKt T

‘The preceding discussion and the results of Chapter 2:
suggest that the following theorem is irue.

Let U be the operator on the set of all bounded, real valued
functions on [0,T] defined by

Uf‘(f):j;(s) dg(s), 0<t<T ,

o
with g as in Thegrem 3.4.

Theorem 3.5: Let ADD. A is an eigenvalue of U, having a

nonnegati've eigenfunction f, iff.
1
(1) W, #0
and (2) there exists a T'e(D,T] such that A=prg(T') and

A>ujAg(t) if T'C LT,



1.

b,
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