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CHAPTER ONE: INTRODUCTION

In his paper [}],_Ewing has established sufficient
conditionsg for a non-regular problem in the calculus of
variationa. In chapter 2, we shall discuss his method. In
chapfer 3, we will provide an example in which the main
result of[E:lwill apply. In this chapter, we shall state
for your convenience some definitions, theorems and condi-
tions from [?].

We will suppose that there is a region R of xyz space
in which the integrand function f(x,y,z) has continuous
partial derivatives up to and including those of the fourth
crder, The
is finding in a class of arcs E:y(x), Xy £ X <X, joining two
fixed points 1 and 2 in xy space, one which minimizes an
integral of the form

X2
1.1 I(E)f[q f(x,y(x),y'(x))dx.

Xy
Definition 1.2: A point (x,y(x),y*(x)) interior to

the region R is called an admissible point.

Definition 1.3: An arc E given by (x,y(x)) where

Xy £X<%, is said to be regular if and only if y and y' are

continuous,
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Definition 1.4: Let h: [é,ﬁ]-—na El' then h is said to

be piecewise continuous if and only if:

a) h is bounded on [é,é]

b) there exists points py=a < P<Pp<.ee < p,=b such
that h is continuous on (pk'pk+1)' k=0,1,...,n=1

c) the left hand limit exists on (a,é]

d) +the right hand limit exists on [%,b) .

Definition 1.5: An arc E, given by (x,y(x)) where

xag,x;gxz, is said to be admissible if and only if:

izx,y(x),y'(x)):xlg xg‘xé}.is an admissible set

b) y is continuous on [%l.xé}

~
1]
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(Euler): . An admissible arc E is said to
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Condition

satisfy condition I if there exists a constant ¢ such that

AI

fy,i[\ fy+c holds along E.
X;

Definition 1.6: ILet E be an admissible arc, then E is

said to be:

a) non=-singular if f (x,y(x),y'(x))#0 for

y'y
Xy & X< Ky
b) an extremal if E has continuous first and second

derivatives and the equation f y'+f .y"-fy=0 holds

vy y X y Y
for all points (x vix),y'(x)), x 1 <X <%,



TheOremll;7 (The Imbedding Theorem):

Every non-singular extremal arc is imbedded in a two-para-
meter family of extremals y(x,a,b), where E is given by
y(xgao,bo) for x; { x { X5, whose functions y, Yy have con-
tinuous partial derivatives of at least the second order

in a neighborhood of the sets (x,a,b) belonging to E. Fur-

Y. YV

thermore the determinant a b is different from
yax ybx )

zeroc along L.

Note “that y, ———»@—1— ——a—i y..= Jdy and

Qa’ o Jp - Tax da dx
-v - 63 N .
PR 9 dx

We use the notation

1.8 E(x,y,y" X0 )= (%, v, Y1) -5(%,y, 7 )= (X =y * )T, (X0 y,¥7)

in the Weierstrass® necessary condition.

Condition II(Weierstrass): An admissible arc E is

sald to satisfy condition II if at every element (X,y,y"')
of £ the condition E(x,y,y',Y"') >0 is satisfied for every
admissible element (x,y,Y') with Y'#y*.

Condition III(Legendre): An admisgible arc E is said

to satisfy condition III if at each element (x,y,y') of E
fyi‘y'z O'
Let E12 denote an arc E from point 1 to point 2,

Bliss* Corollary 12.1 we shall call Corollary 1.9.

Corollary 1.9: On a member E of a two-parameter

family of extremals y(x,a,b) the points conjugate to a



point 1 are determined by the zeros of the determinant

ya(x) yb(x)
Yu(x) yplxy)

D(X’lea!b)::

provided that this determinant is not identically zero
along E.

Condition IV (Jacobi): A non-singular extremal arc

E12 is said to satisfy condition IV if it has on it between
1 and 2 nc point 6 conjugate to 1. Every non-singular
minimizing arc E12 without corners is an extremal arc
satisfying +this condition.

Consider an admissible arc E, joinging the points 1 and
2 and defined by the function y(x) ,where Xy & X X,y whose
minimizing properties are to be tested. Let a be an
arbitrary constant and if Gz(x) is a function vanishing at
%q and X5 and having continuity properties similar to those
of y(x), then every arc of the one~-parameter family

1.10 y(x)+a?&(x) (xlgxgxz)

passes through the end-points 1 and 2 of E and the family
contains E for a=0. The arcs of the family, for suffi-
ciently small values of a, are all admissible, since the
elements (x,y,y') of E are all interior to the region R and
the corresponding elements of Fhe arc 1.1L0 will also be
interior to R when a is small,

When the function 1.10 is substituted in the integrand

of the integral I, a function of the parameter a of the
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form-I(a)=£:éf(x,y(x)+a‘qﬂx),y'(x)+a vt(x))dx is obtained.

If the arc E furnishes a minimum value for the integral I,
then I(a) must have a minimum at a=0, and 1'(0)=0,
I*(0)2> 0 must be satisfied. The values of these deriva-

tives are:

X .
I'(O)=‘(x‘}'(fy 7+, 7 )ax
' (]

X
I"(O)=fx°12w(x, 7l , 7[‘ )dx where
'

. 2 2
1 ¢ )= ¢ !
1,11 2w(x,q . 7[ ) i‘yy?l +2fyy, 7Z?t_+fy,y, /M
I'(0) and I"(0) are called the first and second variations

of the integral I along the arc E. When the two variations
of I are dependent upon the function 7, they will be de-~
noted by Il(ﬁz) and 12(71} respectively.

Definition 1.12: The accessory minimum problem is that

of finding in a class of admissible variations 7z(x) van-
ishing at x; and x, one which minimizes 12(71). The Euler
equation of this problen, ~%§~ w,ﬁv=w@ is called the
“accessory differential equation”, Since it was first used

by Jacobi, it is often called the “"Jacobi equation".

Definition 1.13: A point Xg is said to be conjugate to
the point 1 on an extremal arc E12 if there exists a
solution ?L=u of the accessory equation with the element u,
~vanishing at Xy and X4y where Xy < x4 < X5, but not identically

zero between X4 and xé.



The Roman numerals I, I1I, III, and IV denote neces-
sary conditions for a minimum arc. The symbols II' and
III' are used to denote the necessary conditions of
Weilerstrass and Legendre with the equality signs excluded
in IT and I1II. Similarly IV' is Jacobi's condition IV
strengthened to exclude points 6 conjugate to 1 from the
end-point 2 of an extremal arc E12 as well as from the
interior of the arc. It is understood that C,, is an arc
with the points 1 and 2 as end-points &nd that I(Clz) is
the value of the integral I taken along thié arc.,

Definition 1.14: If an arc E o gives I a minimum

velue relative to the class of admissible arcs 012 in a suf-
ficiently small neighborhood of elements (x,y,y') on E12
then I(Elz) is said to be a weak relative minimum.

Definition 1.15: A minimum provided by ElZ relative

to the class of admissible arcs CLZ' restricted only to
have their points (x,y) in a sufficiently small neighbor-
hoed F of E12 in xy space, 1s called a strong relative mine-
imum.

An arc E12 is said to satisfy condition IIN if there
is a neighborhood N of the elements (X,y,y') on E;5 such
that the condition E(x,y,y',Y?) O holds for all sets
(x,¥,¥y',Y") with (x,y,y') admissible and in N and with
(x,y,Y°) admissible and having Y'#y'. The condition IIy is

this condition with the equality excluded. .



Bliss' theorem 16.2 we shall call theorem 1.16.

Theorem 1.16 (Sufficient Conditions for a Sirong

Reiative Minimum): If an admissible arc E12 without

corners is non-singular and satisfies the conditions I,
II&, IV', then there is a neighborhood F of E12 in xy space
such that the relation I(Clz);>1(E12) holds for every ad-
missible arc 012 in F not identical with E12'
Evidently the conditions I, II}, III*, IV' also insure
a strong relative minimum since III* implies the non-sing-
ularity of E12 and since the remaining hypothesis of
theorem 1.16 are immediate consequences of I, II& and IV°*,
In special cases the region R may have the property
that when two elements (x,y,yi), (x,y,yé) belong to it so do
all the elements (x,y,y') with yifgy'é yé. In this case the
region is sald to be convex in the variable y'. The nota-
tion III, designates the property that the inequality
fygy,zfo holds for all admissible elements (x,y,y') with
projections (x,y) in a neighborhood F of the arc E,,.
Bliss' corollary 16.1 we shall call corollary 1.17.

Corollary L.17: If the region R has the convexity

property just described, then an admissible arc Eis without
corners and satisfying the conditions I, III%, Ive, will

make I(Elz) a strong relative minimum.



CHAPTER TWO: INVESTIGATION OF SUFFICIENT CONDITIONS

Our major investigation in this chapter, as in Ewing‘s
paper [é] , 1s that of obtaining a set of sufficient cond-
itions for a minimizing arc without corners along which

y’y' may have zeros. 'In order to be consistant with [é] ’
we shall change our notation of the integral I from I(E)

to J(E).
%
Definition 2.1: Jz)( f(x,y,y")dx. Let E,, be an arc
1
from point 1 to point 2 which minimizes J and let C be any

other arc from point 1 to point 2. .E12 is proper if

J(C)Z>J(E12) for all C#E E,, is improper if

12
J(G)E:J(Elz) for all C#Elz and there exists a C#E12 for
which equality holds.

In order to obtain a Jacobi condition since f may

y'y!
have zeros, Ewing introduced the integral:

- X _ ,
L:fxa P(x,y,y*')dx where p(x,y,yw—:f(x,y,yo).,_kz(y.__e.(X))Z'
i .

)< x<%x,, kK20, and e(x) is the minimizing arc for J.

We shall now prove Ewing's statement that if E:y=e(x)
furnishes at least an improper strong relative minimum for
J, it furnishes a proper strong relative minimum for L.

Proof: E:y=e(x) furnishes at least an improper strong
relati&e minimum for J. Therefore J(C)2 J(E) for all CfE.

Let us look at an.arc C#E such that J(C)=J(E).

X
wm)=f * [etxetx)er ()b ler (x)er ()2 ax=u(e)



A
L(t‘)=J(t:‘>+fx°‘k2<y' (x)-e*(x))?

i
Since kz(y'(x)—e'(x))2>'0 on some neighborhood,
L{T) > J(C)=Jd(E)=L(E). Therefore L(C)> L(E) for C#E.
Therefore for all arcs, say C, from point 1 to point 2
where C#E, L(C)> L(E) and therefore E furnishes a proper
gstrong relative minimum for L.

Definition 2.2: If E satisfies condition IV (or IV')

for every k#0, we shall say that it satisfies condition v,
(or vy respectively) for J.

The "Jacobl differential equation” is

4. 2 2
2.3 =gxW, i =w,=0 where w~éfyj +%fysy,u' +fyy.uu'
uzu(x) and where fyy' , fyy . and fy'y' are evaluated at

(x,e(x),e"(x)).

We will now discuss a Jacobi nesessary condition of [E].
In [}] the parameter in L is written in the form
k%=(5%+ o) /2, B#0, o >-Z% and the Jacobi differential
equations

2.4 qu"+ruf+su=0

2.5 (q+g2+ of Ju'trut+su=0

for J and L, where ¢=f yry (x,e(x),e’(x))20 in the closed
interval [xlyxz from condition III,
ra-%;-fy,y,(x,e(x),e'(x)) and

s=L_ ¢ (x e(x),e'(x))- fy (x,e(x),e'(x)).

dx “yy!
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Since q‘may vanish in [%1,x£] » the usual existence
theorems can not be applied for 2.4. They do apply to 2.5
however, and the general solution with ol =0 is
u=clu1(x)+c2u2(x), where the u's constitute a fundamental
system and are of class C" in [%1;xé] where the class C" is
the class of functions having continuous second derivatives.
By hypothesis, E:y=e(x) is a minimizing curve satisfying
IV; so that, by proper choice of ¢; and c,, u(x)=[l(x,xl)
is positive in the interval X< X< X,

We shall prove that for every admissible o (that is
°<,>.é?) there exists a solution ZX(x,xl,cl) of 2.5 van-.
ishing at x=x;, and such that A\'(xy,x;,0)= A (xy,x;),

ar 7/

-~ o~ -
4 ANA /A da

Proof: We have to show for o(ﬁ)-ge there exists

e
~

*

4]

AT~
LS A

[}(x,xl,oé) whiich is a solution of 2.5 with boundary condi-
tions A(xy,xy,0¢)=0 and A'(xysxy, )= A" (Xy,% ).
Let c(’)-ﬁ@.a From 2.5 u"=(l/(q+§2+9()) (-su-ru')
=f(x,u,u',oL).
This can te written as a system of equations by set-

ting y;=u and y,=u' then yi=u'=g(x,yl,y2,°() and

y
1, n= (8] .
Y2 T ‘

y'=h(x,y, of) since-*é%h—— is continuous for 7432,

Yé=u"=f(xr ylvygoo() or y=

y and y' have continuous partials with respect to &£ .
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i.e. 39., (3;) have continuous partials with respect
to oL .
. A(xv-}{lid) A'(valtd) .
Therefore Z§°(X:X1’°Z) y .ZX"(X'xl'OJ) | have contin-

uous partials with respect to o« .
Ewing next studies the related equation
2.6 (q+§e)u"+ru'+su=-0115f(X,Xl,0<).
Suppose Uy and u, are linearly independent solutions
to the corresponding homogeneous equation of 2.6. Then the
complementary function of 2.6 is u c=Cqu 1(}e')+c 2(x) where

¢y and c, are arbitrary constants. We replace cy and Co

respectively by functions vl(x) and vz(x) which will be
Ti

o~

105 "p=vlul+v2u2 will
be a particular solution of 2.6 and that viu1+véu2=0.

~ e eem
i 1wl

Differentiating u, we have VRSV UtV UtV W FV U=V UtV us.

Differentiating ué we have ug“v "+v2u5+vlui+v be

171
Therefore (q+a )(v1u1+v2u +viu i+v2u2)+r(v uitvou 2)
+s(v1ul+v2u2)==ol[}P(x.xl.o()=o((~Z§"(XgXl.o())-

vl((q+a Jul +rui+su1)+v2((q+a )u"+rué+su2)+(q+a )(v1 j+viu 2)

ﬂO{("'A“(X klvd))
(q+8% Jviur +vius)=ol (- A"(x, xl.oé))

viuttviut=of (-A\" (%, Xl.ol))/(q+a )
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viul+véu2w0
vl i'l'vzuz °<( A" (X Xl,ol.))/(q+a

The determinant of the coefficients of 2,7 is
l“l U

ul 11
1 1.

2.7

D(x)= #0-

Therefore the system 2.7 has a unique solution

0 Uy
L (-A"(x, xl.o())/(q-i-a u
vi= D(x) |

= oL (A " (x,%;, o)) uy/((q+87)D(x))

u1 0
ug A=A " (xyxy .o())/(o'*a )
$
Vo= D(x)
el oA . 2V S aeB2AD ) )
L RN Fod \""“1’5& l'“l/ AN N N Y - g g

Thus we obtain the functions vl(x) and vz(x) given by

X
(Aav(t,x,,X))u(t)dt
X (g+a”™)D(t)

X | ,
A=A (t,%x,,0))u, (t)dt
e Ly

X, (a*+5%)D(t)
_fx' LA " (£,%, o ))uy ()b
X, (q+§2)D(t)

Therfore the solution of 2.6 is u=uc+up or

2.8 u(x2=clul(x)+czu2(x)+olA(x,o<), where
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X (4%, yel Jus(t)dt
A(x.oi)':ul(x)f Ml Lhabda -
X (q+2")D(t)

X o (t,%,, ol )uy (t)dt
“z(X)f A X12 Uy -
x,  (a+&%)D(%)

43(x,x1,o() is a particular solution of 2.6 and can be
represented in the form 2.8, Since it vanishes for X=Xy
we obtain
2.9 AX,xy,06L )= 2A,x Ml Alx, L),
where in general 7~ is a function of « .
We shall now show that 7 of 2.9 is a function of « ..
Proof: Let Hom(x) be the solution of the homogeneous
equation., From differential equations we have
A (x,x%y, 0 )=Hom(x)+ol A(x, o) '
A(xl,xl,o( )=Hom(x1 )+0(A(x1,o()
O=H0m(xl)+o‘
Hom(xl)=0
Set G(x)=Hom(x)-7-A(x,xl), G(x1)=0 .
G*(xq)=Hom' (x4 )= 2 A" (xy,%;)
Therefore G'(x1)=0 if7~=Hom’(x1)/43'(x1,xl) .
Therefore gﬁ(x,xl,o<)='7wﬁ(x,xl)+o<A(x,o<) and
70 (%% )= AT (X)X, L) LA (%), )
Therefore 7~( X )=(4 '(xl,xl,o( )-o(A'(xl,o( ))/A'(x_l,xl) .

Next Ewing tries to prove that there is at mest one L.
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and we may assume that for this,luo(=0, for which E fails

to satisfy Ivy. The method of proof is as follows.

By hypothesis E satisfies IVL. If it fails to satis-

fy IVi for L corresponding to o =0, then

A (x50x,0)= P(OIA(x5, % )=A\(x5,%,)=0 since 74(0)=1. If

o #0 has the same property, then

2.0 N (x5,%0 0 ol)= Pl JAN(X 0%y )+l Alxyy L )=l Ay, 5¢ )=0,
A"(x,xl,o()A(x,xz)

X
Therefore A(xz,o()zji —5 ‘ dx, where
(q+2”) D(x)

D (x,%,) is written for u,(x,)uy (x)-uy (% )uy(x).

Ewing apparently uses the generalized first mean value

AR, x,

(G+3°) D(R)

theorem and has A(Xz,ol)u f; Zk"(x Xl,ol)dx.
&

where xlg_ig;iz; g=q(X). However the generalized first
mean value theorem's hypofhesis states that [3"(x,xl,o<)
dces not change sign in [: 2y :] but in his paper Ewing
does not state or prove that /\'(x,x;,,) does not change
sign in [%1,xé] . Therefore for this proof we shall assume
that [&ﬁ(x,xl,g() does not change sign in [il,x.]
AR xy) [A(x .xlml) AN (%50 %5, %) |

(§+8%) D(X)
The fraction can not vanish since Z}(xgxz) is different
from zero by IVL and [}Qg(xl.xl.c{)-uﬁy(xz,xl,a({] being

the difference between two terms of opposite sign. There=

A(Xz, A)=

fore 2.10 is false and there exists at most one L, the one

for o =0, for whiech E fails to satisfy Ve
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We will now discuss the sufficient conditions of [?]
for an improper strong relative minimum for J.

At this point we shall assume that E:y=e(x) satisfies
condition III for J. We shall state a definition and two
theorems from [?:] that will be needed in the course of
obtaining our results.

Definition 2.11: A field is a region F of xy-space

with a slope function p(x,y) having the following proper-
ties:

a) p(x,y) is single valued and has continuous first
partial derivatives in F,

b) the elements (x,y,p(x,y)) defined by the points

Ao 2 2T
(x,v) in F are all adamissible,

g

. {
c) the Hilbert integral, J*=J-(fdx+(dy-y'dx)fy,) y is

independent of the path in F.

Theorem 2.12: If a one parameter family of extremals

y(x,a), where alé_agaz, xl(a)éx(a)f_xz(a), is cut by a
curve C defined on the family by a function x= g(a) where
algagaz, &€ (a) is single valued, continuous and has con-
tinuous partial derivatives of at least the first order and
v(x,a) is continuous and has continuous partial derivatives
of at least the second order, then every region F of the
xy-plane which is simply covered by the extremals is a field
with the slope function p(x,y) of the family,_provided that
the derivative ya(x,a) is different from zero at each set

of values (x,a) corresponding to a point (x,y) in F.
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Theorem 2,13 (The Fundamental Sufficiency Theorem):

if E12 is an extremal arc of a field F and if at each point
of the field the condition
2.4 E(x,y,p(x,¥y)yy')> 0

holds for every admissible set (X,y,y') with y'#p, then the
relation J(Clz)a J(Elz) is true for every admissible arc
012 in the field which Jjoins the end-points 1 and 2 of E12'
If condition 2.14 holds without the equality sign then
J(012)> J(E12) unless C,, is identical with Eqpe

To f;nd how to strengthen our conditions so as to
insure a field F which is independent of k, consider the
linedﬁ $X=X y=n7*+yl together with a slope function
p(7~)=m7N+e'(xi)‘ The extremals for L are y=y(x,a,b,of)
‘and the equations

2.15 n7*+yl-y(x1,a,b,oé)=0,

2.16 m7“+e'(x1)my'(xl;a,b,a!)=O,
define a=a(7-,« )=a(y, <) and b=b(7, L )=b(y,« ) for any
admissible o and for every y for which (xl,y) is in the
domain of f. -a, b, 5, and b also depend on m and n, which
are omitted in the notation. These implicit functions are
of at least class C' in their respective variables. We
have a family of extremals of parameter 77 for each admis-
sibleod , y=@(x, 7, K E.“—-:y(x,a(_?‘;p()‘.b(?’,@(_),o(), inter-~
secting_Jﬁ and including E for 77 =0. We shall denote
Ya(xsa(7,0d ), b(7, (), () as y, (x), .
ya(xl;a(7“,c£),b(1k,o().@() as ya(xl) and similarly for y,,
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yi and y{. Ewing attempts to show that this family fur-
nishes a field and the field is independent of k. We shall
state his proof until 2.18 and then we shall continue the
proof in an alternate manner,

Proof: Suppose there exists an' X, X;<X<X,, Such
that @(x, 77, L)~ P(x, y «)=0. By the Mean Value
Theorém, ﬁﬁ(x,'?“. oC)=(5 for some ’,7"1 <"}:<7\"2. Thus

or |7=7F
but from the differentiation with respect to 7~ of 2.15 and

SRR SR:

2.16 we have

da. b o b
Va g 'yb""§%$f =0 or Yal¥%y) é)jL +yp(xy) 5371 =n
m-yg ﬁ—-—a; -V —Q——a; =0 yalxy) % +yp(xg) a;’/ =m.

ya(x1> yb(xl)

et a + : D

Let Dy yé(xl) yﬁ(xl) ,ithvn by theorem 1,7 Ll%O and
_Qa  _ ., ' v __ .,

D179 =nyyp(xy )-my, (x,), Dy S =-nyj(xy )tmy, (x;).

Hence we have from 2.17

-%)-; (ny, ()3 (g )-my, (), (g 1y (g Dy (x)-my, () v (32 ) )=0
or

n | vax)  ypx) m | Yal®) o owm
D - - L]

1 yalxy) yp(xy) Dy | ya(xy)  yylxg)
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2.18 At this point in his proof (page 375-last para-
graph), Ewing states that E satisfies the condition IViN if
constants & o, ’)Z >0, and A exist such that |

F.(x)  Fypx)

§a(xl) yb(xl) is, in absolute value,

A (x5, )=

greater 'than § in the region Xy & X £ X, ,y~y1!5 7 s
A> oL >_a2, where §a(x) denotes ya(X,é(y,gl),B(y,¢(),o()
and similarly for ié(xl), §b(x), and ?%(xl)-. Since ié and
?b are continuous, [ﬁ(x,xl,y,ol) is continuous. Therefore
‘%imigﬁ’ék(x,xl,y,ol) exists and is greater than or equal to

— - =0
Ya(x1) F,(x4)

6‘)0; However %ég%E#’ZS(x,xi,y,og):

which is less than & and we have a contradiction. Tao
avold this difficulty we will introduce Property I.

Y (%) yy(x)

va(x ) yulxg)| and

Let Q=

Valx) vy (x)

. Note that if
Va(x) (%)

A(xyxy5y, oL )=

y=y(x,2(0, o), b(0, o ), L) then y=e and A(x,%y,¥, o )#0
because of IVL.

Now the solutions y(x,a,b,el ) contain e for a=ag, b=b,,
7 =0 and thus y(x.ao,bo,o()=e(x), for all o(:>«a2. By
continuity of partials, ya(x,a(7“,o(),b(?”,og),o() converges

to ya(x,ao,bo,oz) a solution of Jacobi‘s eguation.
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Similarly for y., ¥A, Vi Q(x)#0 for x=x; as y, and y, are
linearly independent solutions of the accessory equations.

Property I: There exist an A, ¥, n, m>0 such that

H(x)=nQ-mA(x,xl,y,eL)7¢’O for all x; £ X £ X,, '—'52< oL < A and
|71y .

Under these conditions »99,(x,5ﬁ,cz)%0. i.e. For a
fixed x and -F% o« <Ay @ is a monotone function in 7.

Now with values of m, n fixed a, b are strictly func-
tions of 7 and of . We can solve for a, b as functions of
7 and of if -'2{2< oA <A and|?771<¥ . Each choice of 7

and of gives an extremal satisfying:
2,19 y(xy,a(7,00 )y 0(7, L)y K )=y 7
2,20 y'(x;,a(P ol ), 0(7 L)y X )=e’ (x4 )¥m 7 .
Since e(x) is a solution of*%§~ f ,=f

y y
. a -
solution of a% (Py,»— @y for every k because

, e(x) is a

@(x, ¥,y )= (x,y,y* I+ (yr=e)?
2

y o= 4 LY~ = .

@y' fy' 2k“(y'-e') and Qf)y :t“Y

Furthermore differentiating we have

" 2 " 2 [} s
fy,x+fy,yy’+fy,y,y +2k~y"-2k"e —fy or
y"m —ge——— (£ +2k%e"-f_, ~f , y')=g(X,y,¥' k).
k%41 y yvE Yy

y'y'
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Set z,=y, z,=y' then zi=0(z1)+1(22)=f1x;z.k) and
zé=g(x,z,k) where z=(zl,22). Hence we are concerned with
the differential egquation

7

. 2.21 z'=qg(x,z,k) where gq= K

Property II1: There exists a neighborhood F of the arc

‘E12:yme(x) in the plane which is independent of ol , for

m§2< ol <A, such that through every point (x,y) of F there
passes at least one member of the family of extremals given
by 2.19.

We can now prove the following theorem.

Theorem 2.22: If conditions I, III, and IIN hold for

J and properties I and II hold for L then y=e(x) furnishes
a strong improper relative minimum for J.

Proof: Since condition III holds for J we have the
family of extremals 2.19., Through each point of the set F
there passes a unique member of the family 2.19 since
property I guarantees that the family
y(x,a(? , L), b(7 L))=Q(x, 7, L) is monotone in 7+ .
gky#b at every point of F by property I, hence F is a
field by theorem 2.12., We are free to assume that IIN
holds on F, hence IIY holds on F for every -8< of <A. For
each &% of <A, theorem 2.13 gives L(C,,)> L(E,,) for
every arc Clz:y=y(x) lying in F and joining the points 1
and 2. Thus for all such arcs 012 we have

2

J(Ciz)"J(Elgbﬂ& K2 (y (x)-e'(x))? dx. Letting k%—3 0 we
]
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obtain J(Clz)z J(Elz)'

It was hoped that we would not need property I1II; how-
ever two difficulties srise. If we consider the arc
Elzzyze(x) in three dimensional space, then for each fixedol
there exists a neighborhood G, of E,, such that through
each point of G ~, there passes an extremal defined on

[ ,x2] III requires only that f (x,e(x),e'(x))>0,

y'y

for all x X< X5y thus on every neighborhood_ of

1%
(xl,e(xl),e'(xl)) it may be that fy,y,<0 at some pointé in
which case G_, will shpink, possibly to E,,, as of —> -
IIIF igs a stronger condition and would guarantee a neighbor-
hood G of E,,, independent of o , such that through each
point (x,Y,y) of G there passes a unique solution of 2,21,
Unfortunately, this solution may not be defined on all of
[Xl,xz_l . If G is made small enough this can be insured
but then G will again depend on of . This is so, as an exam-
ination of 2.21 shows that the Lipschitz constant gets
larger, and may tend to ==, as kz——> 0.

In the next chapter we shall look at an example in
which R 1s three dimensional space, condition IIN holds

everywhere, f ,EO everywhere, and property 1 holds inde-

y'y
pendent of ) . In this example, the set F of property II
may be taken ag F= {(x,y):xl«e-{ X <Xyt €, - 0R<y< m} for
any € > 0. In this case y=e(x) is a strong minimum i.e.

it is in fact the minimum in the class of arcs considered,



22

CHAPTER THREE: APPLICATION AND CONCLUDING REMARKS

In section 5, Ewing gives three applications to which

his resulis would apply. Ve shall apply our results to the

second problem in which f55x2+y2+yy" and (xy,¥4)=(x4,0)

and (xz,y2)=(x2,0). We shall show that:

1) +the line y=0 is an extremal,

2) the sufficient conditions for an improper minimum
are met by y=0, and ‘

3) III' is not met,

1) y=0 has continuous first and second derivatives.

< L IS o
J"u-lxx_'y i"f",v«f
Jg J J .

y"=f, =y +0+0=(2y+y " )=-2y
J

:(,r'y-l

Substituting y=0 we get T y'+fy,x+fy.y.y"-fy=0 and there-

y'y
fore by definition 1.6 y=0 is an extremzal for this applica-

tion.

¥y, and f 0

-3) fyﬂz yOyQ::

Therefore condition III' is not met.

2) e(x)=0 and hence the extremals are solutions of

o Py o=@y which is
y‘+2k2y"=2y+y' or
2k2y"-2y30 or
(824 oL )y"~2y=0.

2

=
a“+el

Let F§=



Therefore the family.df extremals are
y(x,a,b, K )=ae ﬂx—i-be"'gx,

¥ (x,2,b, o )= Bae PX- gre~FX

rame P, yymem PX, yipoPX, ypoop o P

- ePx -Px Blx-x,)= 5 P(x, -x)
o [ 1Ll [pepenspeptn

Q(x,)=-2#0 for all o »-3°.

A (X_,)Xl,y, of )= epx e-px | =e Q(X“X, )_e--ﬁ(x-x‘ )

ePX e-ﬁx,
nQ-mA=(-nﬁ -m)e P (x-x, )+(-nﬁ +m)e’p (x-x, )

We must show that y=0 satisfies property I, conditions I

and II

A
.

N
Property I Note that e']?o for all -o¢ j<o ., For

this application y 1s independent of 7~ therefore we can
select any ¥ > O.

Suppose for some x that nQ-mncd=0, Then
(-npg --m)eﬁ (x-x, )=(n,9 ~«m)e"'rg (x-x, ), and
ezlg(x'x')==~--%%—;-%~ . This is impossible if nﬁ -m >0 or

0£~_m<n53 . This condition can be forced by choosing m, n

such that 04 m<n —2—2- i
AE

23
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2r ot 5A+'é.'2, 1'_,2 £ ) t{ implies that

At+2a a +

J 2~2 < I~2 2, and property I holds for 0<m <n’ 2~2 .

Condition I qD(x,y.y',e')=x2+y2+yy'+k2(y'~0)2“Where

For 0< 3

g(x)=0.
Py =2yty!

gDy.=y+2k2y'

s -
0= ax C'Dy' ‘y=0 =Py

Condition IIY Let Y'#y', (x,y,y') and (x,y,Y') be ad-

y=0 =0

missible points and e(x)=0,

E(x, ¥,y Y )= @(x,y, Y )= @(x, ¥,y )-(Y'=y* )@ A%, ¥, ¥")
=x2+y2+yY!+k2Y'2~x2—y2-yy'-kzy'z-(Y'-y')(y+2k2y')
=k2(z°2~y'2)—2kéy'(Y'~y')
=k(Y 1oy ) (X0 -y)

.=k2(Y'-y')2>»O for all (x,y,v*), (x,y,Y*) which
are admissible and Y'#y'. Therefore there exists a neigh-
borhood N around y=0 such that II' holds for each admis-
sible point in the neighborhood. Therefore Ilﬁ holds.

Therefore by theorem 2.23 y=0 1is a strong imprdper
minimum for J.

The original purpose of this thesis was to expand
Ewing's paper'to n dimensional space. However due to a

lack of time we were unable to look at this problemn.
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