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CHAPTER I
INTRODUCTION

This study will deal with the zeros of solutions of
self-ad joint linear differential equatlons of second order.
In the following we consider some definitions and theorems
that relate to ordinary differential equations.

Definition 1.1. A homogeneous linear differential equation

of order n has the form aoy(n) + aly(n“l) + o0 tay =0
where a # 0 and each al'= al(x) i1s continuous on an
interval (a,b), 1 = 1,2,...,0N

Definition 1.2. If L(y) is a linear operator and

L(y) = ap(x)y''(x) + a,(x)y'(x) + a,(x)y(x), then its
~adjoint, L(z), is denoted by [éo(x)z(x)]" - [al(x)z(x)]' +
az(x)z(x). If L(y) = L(y), then the differential equation,
L(y) = 0, 18 self-adjoint of second order.

A number of theorems, some of them included wiﬁhout
proof, were used as a basis for the study in this thesis.
Theorem 1.1. L(y) = 0 is self-adjolnt if and only if
ai(x) = ag5'(x). (5, p. 98)

Every equation of the form a(x)y''(x) + b(x)y'(x) +
e(x)y(x) = 0, where a(x), b(x), and c(x) are continuous
on (a,b) and a(x)>0, can be written in the form

[r(x)y']' + p(x)y = O by considering the integrating factor

——%—7— exp[‘f'g%z% dXJ. Therefore, the self-adjoint
a(x a(x
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equation L(y) = 0 can be expressed in the form )

!

[r(x)x3]' + p(x)y = 0 where r(x) "‘expff’[al(x)/ao(x)]dx

and p(x) = 2%%;% exp j/[gtéz%ldx.

Conversely, every differential equation of the form
[r(x)y']' + p(x)y = 0, where r(x)>0 and r(x), p(x) are
continuous{ is self-adj&int since [r(x)yq ' + p(x)y =
r(x)y'' + r'(x)y' + p(x)y, and the result follows from
Theorem 1.1.

‘Let,ui(x) and uz(x) be two solutions of the differen-
tial equation ao(x)u"(x) + ai(x)u'(x) + az(x)u(x) = 0,

Definition 1.3. Two.solutions, uj(x) and uy(x), of a

‘linear differential equation are sald to be linearly
dependent if there exist constants, c4 and Cos not both
zero, such that cyuy(x) + czuz(x) =0 for x€(a,b). If
ul(x) and uz(x) are not linearly dependent, they are.sa}d
}to be linearly independent.

Definition 1.4. The wronskian of two solutions of a linear

differential equation of order two 1s the determinant:

ug(x) u,(x)

w(x) = = uy(x)u,y’ (x) - uy(x)u,y'(x).

u, ' (x)  uy'(x)
Theorem 1.2, Two solutions, u,(x) and u,(x), of a linear
differential equation are linearly dependent 1f and only
if their wronskian is zero. (5, p. 90)
Theorem 1.3. A formula credited to Abel states that if

uy (x) and uy(x) are solutions of a self-adjoint differential



equation of the form
(1.1) [r(x)u']* + p(x)u = o,
where r(x) and p(x) are continuous and r(x)>0 on [a,b],
then r(x) [ul(x)uz'(x) - ul'(x)uz(x)] = K, a constant.
Proof:

Since uy and u, are solutions of (1.1), then we have
[r(x)ul'(x)]' + p(x)uy(x) = 0 and [r(x)ug'(x)]' + p(x)uz(x)

0. Multiplying the first equation by -u, and the second

]

by ul_and adding, we obtain
uyq [r(x)uz']' - u, {r(x)ul'}' = 0.

Integrating '‘by parts from a to x, the equation becomes

fx [ 'E' [ | A
a ultr(x)u2 } dx - a uzlr(x)ul ] dx = 0 =
usu,'r(x) x Ji u,'u,'r(x)dx - u,u 'r(x)lx +
142 a “Ja Y1 U2 291 a
j;x u, 'y, 'r(x)dx.
Thus r(x) [ul(x)uz'(x) - ul'(x)uz(x)] =
r(a) [ul(a)uz'(a) - ul'(a)uz(a)], a constant.
Using this formula, we can show that two solutions,
u,(x) and uz(x), of (1.1) having a common zero are linearly
dependent. To show this, we can employ Abel's formula
r(x)[ul(x)uz'(X) - ul'(x)uz(x)] = K. Let the common zero
be x = xg. Then K = 0. But uy(xgluy’'(xg) - uy'(xgluy(xg)
is the wronskian of the solutions uy; and uz. By Thecorem 1.2,
the solutions are linearly dependent.

The following theorem due to Sturm compares the zeros

of solutlions of a self-adjoint differential equation.
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Theorem 1.4. If ul(x) and u,(x) are linearly independent
solutions of (1.1), then between two consecutive zeros of
u;(x) there will be one zero of u,(x).
Proof:

Let x4 and X, be the two consecutlive zeros of ul(x).
For Case 1, let uy(x) be greater than zero for x€ (xy,X,).
Then uy'(xy)>0 and ul’(xz)?<0. Suppose uz(xy) >0. We
kno&-ﬁz(xl) # 0 because u; and u, are linearly independent.
Settlhg X = X4 in Abel's formula we find
r(x1)[“1(x1)“2'("1) - “1'("1)“2("1)] = —[r(xl)ul'(xl)uz(xl)] ’
so that K<0. From this we see that

r(xz)[ul(xz)uz'(xz) - ul'(xg)uz(xz)] < 0.

But this 1s true only when u,(x,)<<0. Since up(x) 1is
continuous, 1t must have a zero between x4 and x,. The
same proof with the roles of uy and up exchanged shows that
there 18 only one zerc of u, between the consecutlve~zeros
of u, . For Case 2 where ul(x)<20,'the proof parallels that
above since -u,(x) has the same zeros as uy(x).

Next we consider the zeros of solutions of pairs of

self-ad joint differential equations. Consider a pair of

equations
(1.2) [r(x)u']‘ + p(x)u =0
(1.3) [r(x)u']' + py(x)u =0

on an interval [a,b] where r(x)>0, r(x), p(x), py(x) are

continuous on [a,b} and pl(x)gzp(x), the strict inequality
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holding on at least one point of [a,b]. The well-known

Sturm Comparison Theorem is stated next.

Theorem 1.5. Given the above squations and conditions,

let ul(x) be a solution of (1.2) and let uz(x) be a solution
of (1.3). Then, between each palr of zeros of u,, there
is at least one zero of Us.
Proof:

Because u; and u, are solutions of (1.2) and (1.3),
respectively, we have [rul']' + pPu, = 0 and
[ruz']' + pjuy = 0. If we multiply the first equation by
u, and the second by -uy and add, we obtain
uz[rulf]' + u,puy - ul{ruzq ' - uypyu, = 0, and hence
(1.4) uz[rul'}' -'ul[ruz'l' = uquz(py - pl.
Consider two points, a and b, that are consecutive zeros
of uy,. Suppose u, has no zeros in (a,b). Let uy and up
both be positive in (a,b). Thils implies that uy'(a)>0 and

ui‘(b)<:0. Integrating both members of (1.4) over [a,ﬁ]
we obtain ]E uz[rul'J'dx __éb uilruz']'dx -
: +.£b ruz'ul'dx =

b b
r(uzul' - uluz'ﬂa =’£ (p1 - p)u1u2 dx.

hzrui't 1lb rul'uz'dx - ulruz'

The right hand slde of this equation is positive. Therefore,
r(uu;* - u,u ')E = ru,u o >0, since u,(a) = u,(b) = 0

271 1¥2 271 ’ 1 1 ¢
S8ince we assumed u,; >0 on the interval (a,b), then

ruzul't = r(bluy,(dluy'(v) - r(a)uz(a)ul'(a)#;o, and
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we have a contradiction. From this contradiction, we can
infer the truth of the theorem.

An immediate consequence 18 seen in the following.

If we consider soclutions of the equation

(1.5) u'* + q(x)u = 0,

it can be seen that oscillations of these solutions depend
on q(x). If q(x)<0, then no non-trivial solution of
(1.5)‘can have more than one zero since, by the Comparison
Theorem, a solution v, # 0, of the differential equation
v'' = 0 would have to vanish at least once between any

two zeros of a solution of (1.5). However, v = ax + b has
only one zero. Thus, the equation (1.5) 1s disconjugate
since every solution that is not identically zero has dt
most one zero on the defined interval.

Ir q(x);:k2>>0, then a comparison of (1.5) with the
trigonometric differential equation, u'' + k2u = 0, ylelds
that any solution of (1.5) must vanish between two
consecutive zeros of any solution u(x) = A cos k(x - xl),
of u'' + k%u = 0; hence the solution vanishes in any
interval of length k.

We can state, then, that if we have given the differ-
ential system u'' + q(x)u = 0, u(a) = 0, q(x) continuous
on [a,b} and 0<m<q(x), and if b - a >T{/w/i-f, where
m = k2 above, then u(b) = 0, or u(x) = 0 for x € (a,b).

We can prove, however, a theorem that 1s even more
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general. Consider the self-adjoint differential equation
(1.6) [r(x)u'J' + p(x)u = 0,
where r(x) and p(x) are continuous and r(x)>0 on (a,b).
Consider also the functional‘gb (ru*? - puz)dx on the
interval fa,b] with r>0. If u(x), # 0, and ru'(x) are
functions of class cl on [a,ﬁ} and if u(a) = u(b) = 0, then
u(x) 1s saild to be an admissible function.

We wi1ll show that if :} an admissible function
u = u(x) along whichlg- (ru'2 - pu?)dx < 0, then a solution
y(x) of the system [ru']'.+ pu =0, y(a) = 0, will have
a zero on (a,é].

The following definltions are used for the proof of the

theorem.

Definition 1.5. A functional F = J[y] has an extremal for
y = yq AT J[y] - J[ylj does not change sign in some
neighborhood of the curve y = yi.

Definition 1.6. The functional F =l?) (ru'? - pu?)ax

18 sald to be positive definite if it is greater than zero
for all admissible u(x) # 0.
The proof we will show is the contrapositive of the

theorem just stated and i1s from the Calculus of Variations.

Theorem 1.6. If a solution y = y(x) of [ruf}' + pu =0

on [a,bJ, y(a) = 0, has no points conjugate to a on [a;b],
b 02 2

then the functionaljg' (ru'< - puc)dx is positive definite

for all admissible functions u(x).



Proof:

Thefunctional_j;b(ru'2 - puz)dx will be positive
definite if 1t can be reduced to the form [abr(x)wzdx
where QQZ 1s some expression which cannot be ildentically
zero unless u(x) = 0. We will add a quantity of the form

d

iz (wuz) to the integrand of the functional, where w(x)

-

is a differentiable function. Since u(a) = u(b) = 0, then
1?3%; (wu2) dx = 0 and the value of the functional is not

- changed. Then we have ru'? - puz + (wuz)' =

2

ru'? - pu2 + w'u® + 2wuu' = ru'? + 2wuu' + (w' - p)uZ.

If w(x) 18 selected to be a solution of the equation
(1.7) r(w' - p) = w?

then we can express the preceding as
ru'? + 2wuu' + [Ez]uz = r(u' + ¥u)2,
r T
Thus if (1.7) has a solution defined on the whole interval
[a,b], then the functlonalJL:)(ru'z - puz)dx can be

b
expresseduf; r(u®' + gu)zdx and 18 non-negative.

We must also consider the case where the new non-negative

functiona{ép r(u* +'¥u)2dx vanishes for some y = y(x).

If this is the case, y(x) is an extremal. A fundamental
theorem of the Calculus of Variations says that if a
functional J[y] has an extremal for y = y(x), then y = y(x)

satisfies its corresponding Buler equation. Thus y(x) is



a solution of
(1.9) [ru']' + pu = 0,
By hypothesis, y(a) = 0. Then, since r>0,

b
/g r[y'(x) + % y(X)]de 0 implies y'(x) + X y(x) = 0.

r

At x = a, y'(a) + £ y(a)

0 and then y'(a) = 0,

But if y(a) = y'(a) = Q, then y(x) must be identically
zero. Therefore, y = y(x) is not an admissible function.
Thus the functional is positive definite.

We must show, then, that if there are no points in
[a,b] conjugate to a, then (1.7) has a solution dafined on

the whole interval [a,b]. If we let w = - %' r, where u 1is

a new function, from (1.7) we obtain

r[(-g.' r)' - p] = (- ¥ r)?
i 2
- ¥ o - =8
u u
. u _1 ye _ =202
u'r o2 5 (ru') p o2 r,

which 18 equivalent to (1.9).
Thus if there are no points conjugate to a in [a,b],

then (1.9) does not vanish anywhere in (a,b} and

w = -%’ r 18 a solution of (1.7) defined on the whole

interval. Thus the theorem is proved.
If we consider the equation 3y'' + 3y = 0, then

r= 3 and p = 3. A solution of this equation is8 y = sin x

on the interval [a,b] = [0, 2TTJ where y(0) = 0. If we



10

let u(x) = sin #x, then we hHave an admissible function for

which the funotional‘[: (ru'? - puz)dx is negative. Hence,

by the contrapositive of Theorem 1.6, the solution y = sin x
of 3y'' + 3y = 0 will have a zero on (O, ZTT].
Conversely, on the interval (o,'sz], ¥y = 8in x has
no zero. From Theorem 1,6, for an admissible function such
as u = siln 2x, the runcéion‘gq% (3u‘2 - 3u2)dx is positive.
Theorem 1.6 will prove important in the theory

developed in Chapter II.
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CHAPTER 1II

MORE ON SELF-ADJOINT
ORDINARY DIFFERENTIAL EQUATIONS

We saw in Theorem 1.6 that if the ordinary self-adjoint
differential equation (ry')' + py = 0 on [a,b] has a
solution y = y(x) with y(a) = 0 and if its corresponding
functional_j;b(ru'z - pu?)dx is less than or equal to 0 for
an admissible function u(x), then y(x) will have a zero on
(a.b].

But with the conditions and functional above, we can-
associate the functional ~jgb'u[(ru')' + pu]dx since the
following is true. Integrating the first term of
lijkru'z - pu2)dx by parts, we obtain

ruuwz ‘iLb u(ru')*dx ifz puzdx.
For an admissible function u(x), the first term 1s zero and

we have -j;b u[(ru')' + pu]dx. Thus it follows that if

u(x) is an admissible function and if

b
[a o[ (etx)ut (x))* + plx)ulx)]ax >o,

then a solution y(x) of [r(x)y']' + p(x)y =0 BiY(a) =0
vanishes on the interval (a,b}.
If we apply this idea ﬁo the previous example

2y = 0, we see r = 1 and p = a2, Por an admissible

u'' + a
function u = s8in kx over [O,~Tpk] where a >k >0, we can

apply the preceding,
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f: u[(ru')' + pqux =jg‘;i‘I (a2 - kz) 8in? kx dx > 0.
Hence, any solution u(x) of u'' + a2u = 0 S u(0) = 0 must
vanish at least once on 0<x< ! Vk.

From the preceding results, we can continue with the

following theorem which is a result of Leighton. (5, p. 604)

Theorem 2.1. Given r(x) and ry(x) >0 and r(x), ry(x), p(x),

and pl(x) continuous functions on (a,b), consider the

equations
(2.1) [r(x)u']' + p(x)u = 0
(2.2) [ry(x)5* ]+ py(x)y = o.

If there exists an admissible function u(x) such that

b
(2.3)J[: (r - rl)u'2 + (py - p)u? dx::/; (ru'2 - pu)dx
then, a solution y(x) of (2.2), y(a) = 0, vanisheés on the
interval (a.b].
Proof:

Inequality (2.3) can be expressed

b b b
fa ru'dx '[a rlu'zdx *[a pluzdx —f pu?‘dx >
fz ru’ 2dx -J;bpuzdx.

b 2 b 2
This i1s true only if -j/ rlu' dx +j; Pyu dx > 0.
‘ a

b
That 18’,(; (rlu'2 - pluz)dx < 0. Hence, an admissibdble
function u(x) for which (2.3) is true will also meet the
requirements for Theorem 1.6. Thus the theorem 18 proved.

If u(x) 18 a solution of (2.1), u(a) = u(bv) = 0,

then the right side of the insquality (2.3) can be evaluated
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in the following way. Integrating by parts, we obtain

b b _
j; (ru'? - puz)dx = ruu'L —J(b ul(ru')' + pu]dX.
a
But both terms of the right side of the equality are zero.
Hence, if u(x) is a solution of (2.1) } u(a) = u(b) = 0,

b
and if J; (r - rl)u’2 + (p1 - p)u2 dx > 0, then a solution

¥ = y(x) of (2.2), with y(a) = 0, will vanish on (a,b].

The preceding can be seen to be a generalization of the
Sturm-Picone conditions. These conditions state that if the
equations (2.1) and (2.2) are considered, with r(x), r;(x),
p(x), py(x) continuous functions on (a,B); r(x) énd ri(x)
gfeater than zero; and rl(x)fé r(x) and py(x) > p(x) on
[a;b], with strict inequality holding in at least one point
of the interval [a,b], then between two consecutive zeros
of a solution of (2.1) there will be a zero of a solution
of (2.2).

As an example (for which the Sturm-Picone conditions
do not hold), we consider the equation y'' + (2x + 1)y = 0
y(x) such that y(0) = 0. We

]

on [O;TT] with a solution y
compare this equation with u'' + u = 0 which has a solution

u = sin x on [O,TTJ. Using the previous data, we obtain

™
Jg [kl - 1)coszx + (2x + 1 - l)sinzx]dx =

1D
x°_ x 8in 2x  cos 2x _I1¢ > o.
12 2 2 o

-+

Therefore, there exists a c({(O;TT] for which y(e¢) = 0.

Next we willl consider a result due to P. A. Haeder.
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(4, p. 17) For the equation
(2.4) u'' + p(t)u = 0,
where p(t) is continuous on (a,b), let x £ (a,b) and let
€ >0 tmply a<x-f<x+€<b,
Theorem 2.2. If p(t) >0 on [x- €, x+ G] and

x+ €
-1 3
(2.5) fx_é p(t)70 av < &7

then every solution of u'' + p(t)u = 0 vanishes at least

once in [1-6 ’ x+€.].
Proof:

Let h(t) = (t-x+ € )(t-x-€ ). Then h'(t) = 2(t-x),.

x+€e -
Let J[h] ’J;-e [p'z(t) - p(t)hz(t)}dt be the functional

that corresponds with h(t).. If we can show J[hJ <0, we
ocan apply Theorem 1.6.

The functions h(t) and h*(t) are uniformly continuous
on [x-é ' x+£.] and h(x-€) = h(x+ €) = 0,

'Considerlng the first part of the integral, we have

X+ € € 3|€ 3
'2 = 1] 2 = t §_;€_
X- € h'<dt 3[6 t< 4t L 3 1-€ = 3 -
In order to place bounds on the second part, we consider
+¢€ x+ €/ X+ £ x+€ _ &
_¢ Inlat =L_é 2~ lnlar< 4[£ . oh? dt]ﬁ[x_é p~! at]

by the Schwarz Inequality. Therefore,

(2.6) (fxxjihldt)z(jx ¢ plat)lg fﬁeé ph? at,

In the following evaluation, we see
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(f_‘:e ]h]dt)z =<Lf:_€l(t-x)2 - ¢ ?lae)z,
If we let T = {t-x), we have
(Lo 122~ efan)® - 265
Substituting this value in (2.6), we obtain
LTS ot an)ig L6 o2 e
But if we choose p(t) such that
287 < BEYTS vt ar),

6

. 3
then
re MZars [ on?at ;
; c+ € ) €
and hence, J[h|< 0. Thus, 1r [[*17 plat g 27,

then J[b}fg 0 and the conditions of Theorem 1.6 are met.
Along the same lines, Galbraith (2, p. 333) showed for
the differential equation y''(t) + p(t)y(t) = 0 with

p(t) > 0, monotone and concave on [a,b}, that if
b 9 2772
(2.7) £ pte) ax > 2T

where n 1s an integer, then every solution of y'' + p(t)y= 0
has at least n zeros in {a,b].
We use the foregoing results in the following problem.

Consider the equation y''(x) + 12(x+1)y(x) = 0 on [0. 1}.

i .
If 1t is true that)g 12(x+1) dx > 9 ? nngz for an

integer n, then Galbraith's conditions are met.

1 2 1
f; 12(x+1) dx = 12(3 + x)‘o = 12(4 + 1) = 18 which 1s
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2
greater than 24%11 ~ 11, when n = 1. Thus every solution

of the differential equation y'' + 12(x+1)y = 0 has at
least one zero on [0, 1].
If we use Theorem 2.2 on the same problem, we obtain

the following. Let x{(0,1) = 8. Then the interval we are

considering 1is {é-- €, §-¥€J.

h-e TE(xFIT dx = ﬁ[ln (x*l)]é-e = -f% ln(3/2 — ).

We would like this to be less than or equal to g§;3 « If we

o 1 1. 2 . 46 3=
let € = #, we have 3 in = &Tg < 31%1 T%-.

Hence, a solution y(x) of y'* + 12(x+1)y = 0 has a zero for
some value of X ([é -€, 3 +€J where € 18 slightly less

than #.
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CHAPTER III
ZEROS OF SOLUTIONS OPF ELLIPTIC
PARTIAL DIFFERENTIAL EQUATIONS
We now consider the linear self-adjoint elliptioc

partial dlfferential equation., This 1s defined by Lu = O,
where n
(3.1) Lu = ‘.7—:|D‘J(9‘13Di“) +bu, ayy = ayy,
on R, a bounded ope:-set in n-dimensional Euclidean space,
En, with boundary B having a piecewlse continuous unit
normal. For xCER, x = (Xys X35 oo » Xp) and Dy denotes
differentiation with respect to x3, 1 = 1,2,...yn. We
assume the following: (1.) a;4y and b are reel and contin-
uous on R; (2.) the symmetric matrix (ay4) 18 positive
definite; (3.) a solution u of Lu = 0 18 continuous on R
and has uniformly continuous first partial derivatives in
R; (4.) all derivatives in (3.1) exist, are continuous
and satisfy Lu = 0, Yx¢ R. Henceforth, we shall use the
symbol Z: inm place of the summation defined in (3.1), ‘Ef .

» BRI EL
The quadratic functional associated with (3.1) 1is

(3.2) J{u] = ‘f; ( Zjalj Dyu Dju - bu?) ax.

The domain D of the functional J is defined to be the set

of all real valued continuous functions on R which vanish
on'B and have uniformly continuous first partial derivatives
on R.

The theorem following which is credited to Clark and
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Swanson (1, p. 887) parallels Theorem 1.6 for the ordinary
sélf-adjoint differential equation.
Theorem 3.1. Let L be the operator (3.1) and let J{u] be

the functional defined by (3.2). If 3 uf D not identically
0 ) J[u]éo, then every soiution v of Lv = 0 vanlshes at
some point of R.
Proof: :

Suppose 3 a solution, v, of Lv = 0 9 v # 0 at any

point of R. For u.ED, define
Xi =V Di[%], Yl = v-l Zj_ai"DJV, i = 1, seey N
and E[u,v] = Z alj_xi xJ + Zl Dj_(u2 Yl).

Then E[u,v] = z aijvnl[% }VDJ[% ]'4- g Dl(uzv"1 ZJ: a“DJv) =

2 /vDyu - uD,v\/vDsu - uD,v -1
Zaijv ( b | . 4)( J 5 'l )+ Zv aUZuDiuDJv*
v v
Z-v'zuzaljDivDJv + Zuzv"lDi(aUDJv) =
‘z:aijv'z(vznlunju + ulevDJv - 2uvD1vDJu) +
Z:v‘laijzuDlDJv + 5; -v'zuzaljDivDJv +

Z: uzv'lDl(aljnJv) =

E:[éileuDJu + uzv’lDJ(aiJDlv{l+ bu’ - bu?

v

2 bu
Z: alleuDJu - bu® +
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ZaileuDJu - bu2 + uZV—’{EDJ(31301V) + bVl =

2

z:aileuDJu - bu® + uév-ipy.

But Lv = 0. Thus J[u] )/ [u,v] dx, and we have

(3.3) 3[u | = f [ZauxixJ + E Dy (w?rh) | ax,

uérD, u =0 onB. By Green's formula Jéhz:ni(uzll) dx of
b
(3.3) 1s equal to zero.  Hence
= 1 4)
J[u] = “fg S ayy Xt x7 ax.
The matrix ajy 1s positive definite and we have J[ﬁ] =0,

with equality holding iff x} =0, 1 = 1,2, ..., n. However,

1f 0 = x' = vD,[¥] and v # 0 in R, then Dy[¥ ]= 0 for

every point in R and u is a constant multiple of v. But
with u = 0 on B and v # 0 on B, u cannot be a constant
multiple. Therefore, J[u] >0 which is a contradiction.
Thus the theorem 1s proved.

An extension of Theorem 2.1 can be seen in the
following theorem credited to Clark and Swanson. (1, p. 888)

Consider the differential operators (3.1) and

(3.3) ¥y = E__ DJ(a*ileu)*- b*u,
where 8*13 and b* satisfy the same conditions as a4 4 and b,

The assocliated quadratic functional 1is

(3.“‘) J*[u] =IH ( Z a‘“iJDiuDJu - b*ujz) dx.
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Theorem 3,2. If f] a solution u # 0 of L"u=01nR Ju =
"on B and 1if ‘J; [Zka*lj - 313) Djyu DJu + (b - ") uZ:}dx
1s greater than or equal to zero, then every solution v of
Lv = 0 vanishes at some point of R.

Proof:

fR -[Z(a’lj - aij‘) Dyu Dju + (b - b')uz]dx =20
implies J[uJEQ.J'[uJ. But since u = 0 on B, by Green's
formula, J*[u] = 5}% u L"u dx = 0. Thus the conditions of
Theorem 3.1 are met and v vanishes at some point of R.

If we consider the self-adjoint elliptic partial
differential equations defined b} the differential
operators (3.1) and (3.3) and the corresponding conditions
previously stated, we have
(3.4) Y p,(ayy Dyu) + bu = 0
(3.5) r Dy(a%*yy Dyju) + b*u = 0
Definition 3.1. Equation (3.4) 15 sald to be a strict

Sturmian majorant for (3.5) if
1.) b >v"
alj) is

2,) (a%y 4) ;a(alj) l.e., the matrix (a%*,,

non negative.

b*, then some

i

3.) either b >b" for some x5 on R or if b
xg at which a%, 4 >'aij and the common value of b and b" at
Xp does not vanish.,

If these conditions hold, then Theorem 3.2 follows.

0



21
That is, 1f‘3 a solution u £ 0 of (3.5) and if (3.4) 1s =a
strict Sturmian majorant of (3.5), then every solution v
of (3.4) vanishes at some point of R.

Next we wlll conslder another proof credited to P. A.
Haeder. We will let fe be the interior and boundary of an
n-dimensional cube formed in the following way. If c =
(645 €53 +2ey c,) s & Point in E" and I, is an interval
along the x, axils such that Iy = (cy- €, cy+€) where € >0,
then I¢ = I4 X I X ... X I,. We willl define the operator
Lu as in 3.1 and let ajjy and b be real and continuous on TE-
Also the symmetric matrix (alj) will be positive definite
on fg. The followling functions are necessary &also.

f(xl) =(x1"c1+€)(xl"cl"(), 1=1,2,...,n.
h(x) = £(xy) f(x3) ... f(x,) on I,
The functional corresponding to (3.1) in this case 1s
= 2
(3.6) J[u} = J;é [ZaijDiuDju - bu :]dx
which meets the same conditions as (3.2).

Theorem 3.3. Let Lu be defined by (3.1) and let the above

conditions hold. Let P be defined to be the following.
P = sup{( Zaijz)% : x(fe}.

If b>2P0  on I, then every solution v of Lv = O vanishes
2¢ ¢

at some point of fg.

Proof:

The function h(x) 1s real valued and continuous on I,
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and it vanishes on B(I¢). It is true that é%%.
o 1

fxq) £(xy) ... £xy_9) 2(xg - ¢3) flxy4q9) .0 £lx,),

i

h1=

where h; denotes hy(x), and that hy is uniformly continuous

on I¢ for i =1,2, ..., n. ‘We evaiuate the following.

cqt€ cy+€
2 - 1 o 2 _ 2|2
J;Qh dx Jﬁ oee 'y Bxl - cy)° - € ] dx,

01-€ . ci-é

If we let ty = (x1 - °1)' we have

I;T;f(tlz -e)? ayy = Uz (t2 - ¢2)2 a¢|™

[ ff (t% - 2t2e2 + ¥y ag]? = (L%éf)n ]

S Cq+€ cy_q+€ c.+ €
f hf'd:;:bfl ...]11 TTIJ
Ié 01-€ 01_1-6 J#l Oj—
‘, 2 c + €
[(xJ - cj) - dxj‘f’ (xl - °1) ax,.
Letting ty = (x1 - c3), we obtain
€ €
'r_r 2 2 ‘_

J#1

‘*[f-i (% - 2t2¢2 + Y dt]““l f: t% at =

4 (1665)” (263

Let Q(x) = Z:aijvlhDjh. From Schwarz' Inequality we have
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A0S JLay? [Tgng? = [T a2 (L.

We know that P, = supg[aijz)% : iE‘I£§, exists because

each aij is a continucus function on a closed and bounded

set. Then

Jr, a0 ax ? [, Ehi ix = (spe3n)(16e5 n-1

The proof of the theorem follows.

Since h(fD, the domain of J[u], we can apply Theorem 3Q1

if J[d]sgo. Now J[h = j; (Q(x) - bh?) dx which is less

than or equal to (8P€3n><1665)n' - 5%1_) (16(5 n

b }2§§§ « But the difference above 1s equal to zero.

Hence, by Theorem 3.1, every solution v of Lv = 0 vanishes
at some point on ig.

We now consider some examples. For the operator
Lv = v o + Vyy + bv, the partial differential equation
Lv = 0 1s elliptic. Let R be the interior of the square
[(0,0), (0,7T), (TT,TT), (TT,O)]. and let R be R and its

boundary. The corresponding functional is

éf [ Cayy Dyu Dyu - vu? |ax ay =

(3.7) )(/, [(ux)2 + (uy)z - hua] dx dy.
R

The function u = 8in x cos y 18 in D and since

cos?x coazy + slnzx sinzy =1 - Zsinzx coszysg bsinzx cos8”y
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for x,y 6 R, then the functional (3.7) 1s less than or equal
to 0. By Theorem 3.1, any solution v of Lv = 0 vanishes at
some point of R.
We can arrive at the same conclusion by using Theorem
3.2. If we compare Lv = 0 defined above with L'y = o,
where L"v = Vxx * Vyy * 27, then there is & solution v of

»
_L’v = 0, v = 8in x cos y, that vanishes on the boundary of

R. By Theorem 3.2, ff (4 - 2)(sin x cos y)zdx dy > 0

R
and hence, every solution of Lv = 0 vanishes on R.
Using Theorem 3.3 where R = I¢ when ¢ = ( EET%) and

o< € =§;; we see that b =4 = g%% = g%%%% = %%% .

%

In this case P = 1. Thus by Theorem 3.3, we obtain the

same result.
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