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Marie Louise Spilde, MA

University of Nebraska, 2005

Advisor: Dr. Steven From

The gradient search fails in an optimization problem where the objective
function is not differentiable--such as nonlinear multiregressions based on generalized
Choquet integrals. In cases such as this, we may replace the gradient search with a
pseudo gradient search to determine the optimal search direction. The pseudo gradient
can be obtained algorithmically from a data set containing the objective attribute and
relevant arguments of the objective function. The algorithm for the pseudo gradient
search is based on a neural network model which uses statistical techniques such as root
mean square error to determine the optimal search direction and the optimal step length.
Similar to the gradient search, the pseudo gradient search has a fast convergence rate,
but a disadvantage is how easily it falls in a local extrema. Hence, choosing a suitable
initial point for the pseudo gradient search is rather important. A genetic algorithm is
used as an initialization method because it has the advantage of being a global search,

but it is only allowed to run for a limited number of iterations due to its slow



convergence rate. The pseudo gradient search may be widely applied in nonlinear

multiregression, classification, and decision making.
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INTRODUCTION

At this point in time, no algorithm exists that will solve every nonlinear
optimization problem. One approach to solving a nonlinear optimization problem is to
apply a gradient search procedure. As an example of how the gradient search
procedure works, consider the simplest case which is when the nonlinear function is
concave, differentiable, and the solution space is two dimensional (see figure 1).
Concave functions have the property that given any two points on the function, the line
segment connecting the two points will lie entirely below (or on) the function. The

gradient search applied to this simple case amounts to taking the derivative of the

I _,

1) _— dx

7

Figure 1. Example of a concave function that has an optimal solution at X

function and then evaluating the derivative at a particular value of x. If the derivative at

x is positive, then the solution, x", must lie to the right of x. If the derivative at x is
negative, then the solution lies to the left of x. Once a left and right bound are
identified, the value of the derivative at the midpoint between the two bounds can be
used in further tests. The search ends when the value of the derivative at x equals zero
or when the distance between the left and right bounds is smaller than a given

tolerance. When multiple variables are involved, there are countless possible directions



in which to move and partial derivatives are used for choosing the best search direction

(see figure 2) [7].

Figure 2. Example of a function that has multiple search directions at any point.

In the event that the objective function is not differentiable, such as nonlinear
multiregressions based on Choquet integrals, the traditional gradient search procedure
cannot be applied. A new optimization technique must be determined [14].

A reasonable replacement for the gradient search is a pseudo gradient search.
The parameters in the pseudo gradient search are expressed as elements of a change

vector (Ax,,Ax,,...,Ax,), where n represents the number of dimensions in the search

space. Differences instead of differentials are applied at each dimension, which avoids
the problem of nondifferentiability altogether.

[teration is necessary to progress through a series of trial solutions to reach the
optimal solution. The quick convergence rate that accompanies a machine learning
method such as a neural network makes it well suited to carry out the pseudo gradient
search; however a neural network suffers from the problem of potentially converging to
a local solution, rather than a global solution [12]. A genetic algorithm is another

viable approach to the problem. It would provide a global solution, but at a cost of an



undesirably slow convergence rate. This work will exploit the advantages of both the
genetic algorithm and the neural network approaches. A genetic algorithm will be used
to converge towards the global solution, but for a limited number of generations. Then
a pseudo gradient search algorithm based on a neural network model will be initialized
with the results from the genetic algorithm in order to quickly fine-tune the results and

converge to the presumed global solution.
SIGNED FUZZY MEASURES AND CHOQUET INTEGRALS
Let X be the factor space which is composed of » predictive attributes

X ={x,,x,,....,x,} . A signed fuzzy measure is a set function u defined on (X, PX))
satisfying () =0, where &(X) represents the power set of X. Usually, we can

assume that x(X) =1 and the measure is referred to as a regular signed fuzzy measure.
The data set for the problem takes the following form:

x] x2 o X y

n

VTRV TR I ¢
o Su o S ¥

Jo foo o S W
where row f,, f, -+ f, y, isthe 7™ observation of predictive attributes
X;,X,5.-,%, and y, is the corresponding value of the objective attribute. Each

observation can be regarded as a function f,, thus f: X — (—o0,00) where

S = f,(x;). The number of observations in the data set, /, is reccommended to be



greater than or equal to 5x2” to safeguard against having too few observations to
cover all of the i values and to obtain suitable regression effects [13].
Non-linear multiregression is expressed as y =c + J‘(a +bf)du+N(0,0%),

where c is a constant, a and b are real-valued functions defined on X, fis an observation

of x,,x,,...,x,, and N(0,5°) is a normally distributed random perturbation with

expectation 0 and variance o [14, 15]. The integral is taken to be the generalized

0 ®
Choquet integral which is defined as | fdu = [Lu(F,) = p(x))da + [u(F,)da where
Y 0

not both terms on the right side are infinite and the set 7, ={x| f(x)>a,x € X} for
any « € (—,0) [13]. Functions a and b are both expressed as vectors with the

constraints that g, >0 for i=1,2,...,n with mina, =0, and -1<p, <1 fori=12,...,n

1<i<n

with max|b,|=1. For convenience, we take u(X)>0.

I<i<n

GENETIC ALGORITHM

Overview

Genetic algorithms are designed to search for, call attention to, and propagate
good solutions to a problem. A genetic algorithm flows in the manner presented in
figure 3. Each individual in the population is a solution to the problem and is
represented by one chromosome. Each chromosome is composed of genes which are
represented as binary numbers. For the case of nonlinear multiregression, the

dimensions of the a and b functions form the genes (see figure 4).



Initialize .| Randomly Vary Evaluate
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Figure 3. Flow of a genetic algorithm [4].

010101100101100000110010100011111000101001101001010100111101
[ J X \ A Y J\ J
Y Y \ g Y Y Y

Gene 1 =a, Gene2=a, Gene 3 =a, Gene4 =5 Gene5=b, Gene6=b,

Figure 4. Example of what one chromosome looks like when there are three
attributes in the data set and each gene is composed of 10 bits. One chromosome
represents one individual in the population.

A hallmark of genetic algorithms is the mating step where two individuals in the
current population are used to produce new offspring. During processing, the bits in
the chromosomes are swapped, reversed, and changed to form new individuals in hopes
of creating an offspring that is more valuable than its parents.

Consider a herd of antelope and suppose one of them has long feet, allowing it

to escape a predator easier than could the other members of the herd, while

another has exceptionally good sight, allowing it to find food easier than the
others. Now when the two antelope mate, a crossover takes place and the
chromosomes of their progeny will consist of pieces of the chromosomes of each
parent. This in turn will lead to inheritance of parental traits by their progeny,
and chances are that at least one of them will inherit both the long feet from one
of the parents and the good sight from the other. Clearly, that young antelope

will be superior to either of its parents. [3]

The genetic operators that cause the genetic variation are three-bit mutation,
two-point crossover, and two-point realignment. The genetic operator of three-bit

mutation accepts one chromosome as input and returns one chromosome as outpult.

Three random, unique integers between one and the total number of bits in the



chromosome are generated. The values of the bits at the three positions indicated by
the random numbers are then flipped causing the mutation (see figure 5). Two-point
crossover accepts two chromosomes as input and returns two chromosomes as output.
Two unique random numbers between one and the total number of bits in the
chromosome are generated. These random numbers are used to split the chromosomes
into three sections. The middle portions of the chromosomes are then swapped causing
the crossover (see figure 6). Two-point realignment accepts one chromosome as input

and returns one

Original: 010101 10010110000011001010001 1111000101001 1010010101001 11101

New: 010101100100100000010010100011111000101001101001000100111101

Figure 5. Example of three-bit mutation. The bits are flipped in positions 12, 19, and S0.

CHI1: 010101100101100000110010;00011111000_101001101001010100111101
2

CH2: 101100101101010{110001000011010101000101010010[101011111101101

CH1: 010101100101100[110001000011010101000101010010001010100111101

CH2: 101100101101010000110010100011111000101001101/101011111101101

Figure 6. Example of two-point crossover. The original two chromosomes are
split at positions 15 and 45. The middle positions are then swapped to produce
two new chromosomes.

chromosome as output. The chromosome is split in the same way as the two-point
crossover. Next, the three portions of the chromosome are rearranged and possibly
reversed (see figure 7). The three portions of the chromosome can be rearranged in six

ways and the decision about whether or not to reverse each of the three portions results



in 2° more variations. Together, a total of 6x8 = 48 different placements occur for

each three portion split of the chromosome.

Original:010101100101100000110010100011{111000101001101001 1_0100111101:

M —————

111000101001101001010100111 1—01010101 10010110000011001010001 1

New: [111000101001101001{101111001010010101100101100000110010100011

» < »
» < »

Figure 7. Example of two-point realignment. The chromosome is split at positions 30 and 48.
The three pieces are then randomly swapped. Finally, the three pieces are randomly reversed.

With respect to multiregressions, an algebraic approach to finding
Cy My My 5+ My has been recently introduced [15]. The algebraic approach provides a
huge savings in the running time of the algorithm because the size of the chromosome
in the genetic algorithm is greatly reduced. The smaller the chromosome, the quicker
the genetic algorithm will converge. This genetic algorithm is based on that work. A

flowchart of the algorithm is presented in appendix A.

The algorithm
(1) For n, an integer equal to the number of attributes, express £ in binary digits as

k=kk, -k forevery k=0,1,2,..,2" —1. Example: k= 6 as a binary number is

n

110,s0if n=4,then k, =0, k, =1, k,=1,and k£, =0.

(2) Use g, todenote p(A) where 4=|J{x,}, £=0,1,2,..,2"—1. Example: k=6

k=1

means y, = u({x,,x,}). Note: k=0 means y, = u(J).



3)

C))

Input integer / which equals the number of observations in the data set, and input
the data set itself.

Seed the random number generator using a large prime number such as 103,723.
Set the value for the following parameters:

A : The bit length of each gene which is dependent on the required precision of

the results. For example, 4 =10 means that 2'° =1024 binary numbers in [0, 1)

which is near 107. The

can be represented. That means the precision is

default for 4 is 10.

p: The population size. It should be a large, positive, even integer. The default is
200.

a and S : The probabilities used in a random switch to control the choice of
genetic operators for producing offspring from selected parents. The probability
of using a three-bit mutation operator is represented by « , the probability of using
a two-point crossover operator is represented by #,and 1-a — 8 is the
probability of using a two-point realignment operator [15]. They should satisfy
the conditions that « >0, >0, and a+f <1. The default values for « and g
are 0.2 and 0.5 respectively. A random switch uses the values for ¢ and S to
split the interval [0, 1) into three pieces (see figure 8). Depending on a random
number generated on [0, 1), an appropriate genetic operator is selected. For
example, if the random number generator produces a value of 0.66, then the

random switch in figure 8 will select the two-point crossover as the genetic



)

(6)

|
0 0. 0.7 1
L.T..JL ~ QH_/
o B l-a-p

Figure 8. Example of a random switch.

operator since 0.66 falls in £ ’s range.
£ and 6 : Small positive numbers used in stopping conditions. Their defaults are
107" and 10 °respectively.

w: An integer to limit the number of successive generations that have not made

significant progress. The default is 5.

R 1 ! _ _ /
Calculate &, = ;2 (y,-¥)*, where y = %Z}y} . Construct vector q
J= J=

=(41,9,5---q,) as follows: g, =y, where j=1,2,..,]. Note: Index j will always

be associated with the objective attribute and will span from 1 to /.
Randomly create the initial population of p chromosomes. Each chromosome has

2n genes, denoted by g,,8,,--,8,,Zu1>&nins--s o, 5 the first n genes represent
vector a, the second »n genes represent vector b. Each gene, g,, represents a
rational number in [0,1). In binary, the numerator of g, has the form

t,t, ,---t,t, where r,€{0,1},and d = 4,4 ~1,...,1. The denominator is a one

_ 0101011110

followed by A zeros. For example: if A =10, g/ =————.
10000000000

Converting g,

350
1024

to base 10 results in g, =
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(7) Variable GC is initialized to p and is used to count how many chromosomes have
been generated. Variable W7 is a counter that is initialized to zero; it increases
when no significant progress has been made from one generation to the next
generation. (Once progress is made, WT is reset back to zero.) SE is a variable

that represents the saved error and it is initialized to &i .

(8) Decode each chromosome to produce the elements of vectors a and b using the

following formulae:

a=—"5 —me) , where m(g) =min g,
(l_gl)(l—m(g)) 1<ksn
b= 2821 where M(g)=max|2g,,, -1

T M(g)
where i =1,2,...,n. Note: Index i will always be associated with the predictive

attributes and will span from 1 to n.

(9) For each chromosome in the population, construct a matrix Z with dimensions

[ x2" as follows:

z,=1
min(a, + b, f,)—max(a, ~b,f,), ifitis>0orif k =2" -1
= :
0, otherwise
where j=1,2,....,/ and £=0,1,...,2" —1. If the columns of Z are not linearly
independent, this chromosome should be rejected. A new chromosome should be

randomly generated to replace the rejected chromosome. The new chromosome

should be decoded using step 8 and it should havce the property that the newly
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generated Z matrix has linearly independent columns. GC should be updated to
include the number of rejected chromosomes.
(10) For each matrix Z, apply the QR decomposition theorem to find the least squares

solution of the system of linear equations Zv = q, where the elements of v

represent the unknown variables ¢, 4, i, ,..., 4,,_[2]. There may be instances

where a and b cause matrix Z to contain one or more columns which are all zero
(i.e. matrix R in the QR decomposition is singular). When this happens, any

columns which contain all zeros should be removed from matrix Z and u's values

that correspond to the removed columns can be arbitrarily set. The remaining

values of u are still determined from the least squares solution of the Z matrix
with the columns of zeros removed.

(11) For each chromosome in the population, calculate the regression residual error &

which is defined as follows:
A2 l L 2
o= EZ[yj —-c— _[(a+bfj)dy]
J=1
1< 2"-1 )
:—Z(y.] —C— Z ij:uk) .

Ry =1

The residual error of the 7" chromosome in the population is denoted by &7 .
(12) Let m(&*) = min 67 and set R={r |6’ =m(S”)}. Erase the last history record
<r<p

associated with R, if any, and save m(&%), a, b, c,and u ofall r € R in the

current population. Display GC, WT, and m(&*).
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(13) If m(6?) < &6, , then go to step 22. The desired precision has been reached.

Otherwise, take the next step.

14) If SE—m(6%) <862, then WT +1=>WT and take the next step (i.e. no significant
y

progress was made); otherwise, 0 = W7 and go to step 16.
(15) If WT > w, then go to step 22, (i.e. no significant progress has been made in the
past w generations); otherwise, take the next step.

(16) The relative goodness of the 7" chromosome in the current population is defined

m(6?)

A

by G, = ,r=.2,..,p. G, e(0,1] forall r=1,2,..., p. Note: The smaller

the error in the ™ chromosome, the larger G, will be.

(17) The probability distribution of the ™ chromosome in the current population is

defined by p, = G, , r=12,..., p. Note: This definition allows chromosomes

with smaller error to have a larger probability of being chosen as a parent.

(18) Use the probability distribution {p, |r=1,2,..., p} and a random switch to select
two different chromosomes from the population to use as parents. Use «, £ and

a random switch to select a genetic operator to produce two new chromosomes as

offspring.
(19) Repeat step 18 for g total times to get a new generation of p chromosomes.

GC + p = GC . Save m(6*) in SE.
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(20) For each new chromosome, repeat steps 8-11 to determine a, b, ¢, £ and 6',2 .

(21) Use the magnitude of &7 (the smaller the better) to select the p best chromosomes

from both generations to form the new population. Then go to step 12.

(22) Forall r € R, check the sign of g, . Incases where 1, <0, perform the

following sub steps: replace ¢ by ¢+ ., -maxa,, replace g, by maxa, —a,,
1<ign 1<i<n

switch the sign of vector b, and switch the sign of all 's values. (These sub steps

are performed to ensure uniqueness in the solution.) If WT > w, proceed to the
pseudo gradient search algorithm. Otherwise, display s, p, A, a, 3, €, 9, and w.
After deleting any duplicates from the history record, display a, b, ¢, and y of the

™ chromosome forall » € R . Stop.

Singular value decomposition versus QR decomposition

In step ten, there are three approaches to performing the matrix least squares
computation: normal equations, singular value decomposition, and QR decomposition.
The normal equations approach is the fastest but it also has the highest error and was
dismissed to keep the results as accurate as possible [2]. The singular value
decomposition is attractive because it is more stable than the QR decomposition on
matrices that are not of full rank.

Theorem (Singular Value Decomposition) — Let A be an arbitrary m-by-» matrix
with m > n. Then we can write A =UDV", where U is m-by-# and satisfies

U'U=I, V is n-by-# and satisfies V'V =I, and D is a nx n diagonal matrix.
Theorem (QR Decomposition) - Let A be m-by-n with m > n. Suppose that A has
full column rank. Then there exists a unique m-by-» orthogonal matrix Q and a
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unique n-by-» upper triangular matrix R with positive diagonals 7, >0 such that
A=QR.
Definition — A matrix B is orthogonal if it has the property that B'B =I, where I

represents the identity matrix. [2]
Examining the performance of the singular value decomposition and the QR
decomposition reveals that the singular value decomposition uses one additional
expensive matrix multiplication in the final result (see figure 9). The QR

decomposition was ultimately chosen because it involves fewer matrix multiplication

operations.
Singular Value Decomposition QR Decomposition
Ax=5 Ax=b
UDV'x =5 QRx =5

UTUDV"x=U"p Q'QRx=Q">»
IDV'x=U"5 IRx=Q"b

D'DV'x=D'U"» R'Rx=R'Q"»
IVix=D'U"p x=R'Q"p

VV'x=VD'U"b
x=VD'U"p

Figure 9. Comparing the performance of the singular value decomposition
and QR decompesition on an arbitrary matrix equation.

Efficient implementation of the genetic operations
The genetic operations performed in step eighteen can be implemented in more
than one way. A genetic operation can be performed once, twice, or 2» times per
chromosome (see figure 10). The goal is to find an implementation that gives a suitable
amount of genetic variation yet it must not give so much variation that it mimics a pure
random search. To test which implementation provides the most efficient results, three

simulations were conducted. The even natural number » was used to represent how
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010101100101100000110010100011111000101001101001010100

OlOlOll001{1100000llOOlOlOOOl11110001*10011%1001010100

010101100101100000110010100011111000101001101001010100

000101101101100010110010100011011000111001101001110100
f
1

Figure 10. 1. Performing a three-bit mutation once on the chromosome as a whole. 2.
Performing a three-bit mutation twice. The first mutation is performed on the genes that
make up the a vector. The second mutation is performed on the genes that make up the b
vector. 3. Performing the three-bit mutation once on each gene.

01010110010110000011001010

o

01111100010100110J001010100

‘v

011010010001100101000110100

99)
O 4t

40

11000010000110110010011110

(@)

many random numbers on the interval [0, 1023] were generated in a simulation; it also
represents the number of genes in one chromosome. The goal of the program was to
use a genetic algorithm to reclaim the original » random numbers by having each gene
represent one of the numbers. Two hundred chromosomes, each containing 10# bits,
were randomly generated as an initial population for the genetic algorithm. Three tests
per simulation were conducted to examine the average sum of squares error and the
average number of generated chromosomes. The first test performed genetic operations
on the chromosome as a whole. The second test performed genetic operations twice on
the chromosome (once on the first half representing the a vector, once on the second
half representing the b vector), and the final test performed # genetic operations (once
per gene). In all simulations, implementation of the genetic operators at the
chromosome level provided the smallest amount of error (see table 1). Too much
genetic variation is caused by performing a genetic operation multiple times in one

mating instance. As an added bonus, coding the genetic operations at the chromosome
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level is much more straightforward, which makes the code easier to follow. A
drawback of chromosome-level implementation is that the number of generated
chromosomes was also higher than in the gene level and vector level cases, but the
decreased error was worth the extra effort. A flowchart depicting one iteration of the

simulation is provided in appendix B.

Simulation Test 1 T T-ec st 2er Test 3
Details Chromosome level wice p Gene level
chromosome

n # trials Avg. Avg. GC* Avg. Avg. GC Ave. Ave.
error error error GC

6 | 1000 153.082 | 15870.8 166.909 | 13445.0 557.419 | 13418.6

6 | 500 102.702 | 15743.6 190.334 | 13671.6 499.534 | 13365.2

8 | 500 267.16 21013.2 361.392 | 17016.8 141726 | 17391.2

Table 1. Simulation results. Testing which implementation of the genetic operators is
most efficient. *GC represents the number of generated chromosomes.

PSEUDO GRADIENT SEARCH

Neural network motivation

Neural networks are powerful modeling tools capable of learning complex
nonlinear functions that were previously unknown in data sets [1]. In this work, neural
networks will be used as a basis for the design of a pseudo gradient search algorithm.

Neural networks are based on a rudimentary biological model of the human
brain. Millions of interconnected units, called neurons, send and receive signals
between one another in an attempt to process sensory input (see figure 11). The input
mechanism of a neuron is a web of arms collectively referred to as dendrites. The

output mechanism of a neuron is a single long branch referred to as the axon. The end
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Figure 11. Ilustration of a neuron [5].

of each axon splits into many branches, and each branch contains a synapse at its end.
A neuron connects to dendrites of other neurons through the synapse. The role of the
synapse is to convert the axon’s signal into an electrochemical signal that travels
through the dendrites and reaches the cell body where it is processed. If the sum total
of the input signals exceeds a threshold value of the cell body, the cell will “fire” a
signal through its axon. The signal will reach all the neurons attached to this neuron
(hence the name “network™) and the process begins again. Learning occurs by either
exciting or inhibiting the flow of the signal through the synapse [8].

Scientists have not yet uncovered all the secrets of how biological neurons
work, so artificial neurons are produced using the most essential features of biological
neurons. An artificial neural network unit is comprised of an input layer, an output

layer, and zero or more hidden layers. The links between the layers are memory units
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called connection weights. A signal traveling along a link can either be strengthened or
weakened by the value of the weight on a link. A hidden unit will sum together the

values of the weighted input into the unit and then pass the sum through an activation

depicted in

—-X

function, which is commonly the S-shaped sigmoid function y = ]
+e

figure 12. If the weights and the input values are closely matched, the output from the
activation function will be close to 1. If the weights and input values oppose one
another, the activation function will be close to 0. Intermediate agreements will take on

appropriate values [1].

———————————— Hemw e m = = o o
0.8
0.6
0
0.2
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Figure 12. Illustration of the sigmoid function [6].

Adjust weights
using error
(Desired — Actual)

desired output

Figure 13. Supervised learning paradigm [1].
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When a neural network is trained to model a data set, a learning technique
called supervision can be applied (see figure 13). The input is sent through the network
and the output is examined. If the actual output does not match the desired output from
the data set, the weights in the neural network are updated and the input is sent through
again. The algorithm used to implement supervised learning in this manner is called
back propagation. This process is illustrated through an example in figure 14. In the
first iteration, the neural network outputs a value that is greater than the desired value.
The weights are adjusted and in the second iteration, the actual neural network
approximation is closer to the desired result from the data set. Once again the weights
are adjusted and the third iteration has a value even closer to the desired result.
Because the input values are being pushed forward through the network, the connection
type is referred to as feed-forward. Diagrams depicting feed-forward connections use

arrows pointing from the left to the right.
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Input layer Hidden layer Output layer

n predictive
attributes

objective
> attribute

Figure 15. A neural network design to model multiregression.

predictive attributes are used as the input to the network, and the actual output to be
modeled by the network is the objective attribute. Since the a and b vectors are what
must be changed, the weights connecting the input layer to the hidden layer are taken to
be the elements of the a and b vectors. The hidden layer is composed of two nodes
using the sigmoid function as an activation function. The first problem is that this set-
up does not use the formula for multiregression, so the resulting weights will have
nothing to do with the a and b vectors used in the multiregression formula. It would be
as if the weights were randomly initialized at the start of the neural network. The
second problem arises if the formula for multiregression is used in place of the sigmoid
function. The multiregression formula based on generalized Choquet integrals is not
differentiable and the gradient descent formula used to adjust the weights in the back

propagation algorithm cannot be used [9].
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A different approach: the pseudo gradient search

Neural network ideas are still useful in designing an alternative algorithm. The
predictive attributes still represent the input, the objective attribute is still the output,
the connections are still feed-forward, and the a and b vectors are updated in each
iteration so the overall error is reduced. The new concept is to apply differences
instead of differentials to compose a change vector that will be used to update the a and
b vectors.

To begin, the root mean square error, e, is calculated using a, b, and the
observations from the data set. The @ and b vectors are examined separately starting
with the a vector. Beginning with the first dimension of vector a, a step of length & is
taken in the positive direction (see figure 16). Next, the multiregression formula is

calculated for each observation of the data set using this new value of a,. The root
mean square error formula is then used to calculate the error, e o Next, a step of

length & is taken in the negative direction from the original g,. Once again, the
multiregression formula is calculated for each observation of the data set and the root
mean square error formula is used to find e . Next, the change vector (CV) will be
updated to indicate which step (if any) reduced the error the most. The change vector
has length 2x. The first » elements of CV represent the error change of vector a. The
second n eleménts represent the error change of vector 4. In the event that both steps

increased the error or the error did not change at all (i.e. e, 2e and e, 2 e)a step

length of 0 is adopted as the first component of change vector, CV. Otherwise, one of



/_\ Initial point

>0 2. OC4+9
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1) —0
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Point of smallest
error (unknown)

cv: (e ~e.,?, ?,?)

to ‘ 1o

® [
cv: (e—e,.,—1-(e—e, ),2.?)

(e—e.) (6),(-1)-(e—e.)(5),0,(e—e;.)-(9)

Cr:
\/(e—ey)z +(e—e, ) +0" +(e—e,.)’

Figure 16. Sequence of steps used in the pseudo gradient search to compose a change
vector when two attributes are present. 1. A step of length & in the positive direction is
taken for the first dimension of vector a. 2. A step of length & in the negative direction is
taken for the first dimension. The positive step resulted in a larger error reduction, so
the first component of the change vector will be e — € 3. A step in the positive
direction is taken for the second dimension. 4. A step in the negative direction is taken
for the second dimension. The negative direction resulted in a smaller error, so the
second component of the change vector will be —1-(e — e, ). 5. Next vector b is

processed and the composed change vector is normalized. The normalized vector is
multiplied by & .

23
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the steps decreased the error. If the step in the positive direction decreased the error

more than the step in the negative direction, then e —e,. will be adopted as the first

component of the change vector. If the step in the negative direction decreased the

error more than the step in the positive direction, then —1(e —e,_) will be adopted as the
first component of the change vector. The factor e—e,, (e—e, . respectively) is used

to scale future steps in this dimension. If the error is greatly reduced in this dimension,

then e—e,. (e—e  respectively) will be large and it will encourage even larger future
steps in this dimension. Next, the variable g, is reset to its original value and then the

next dimension, a,, is examined. Once all dimensions of vector a have been

considered, then vector b takes its turn. When vector b is done processing, the change

vector is normalized by dividing each element of CV by \/E'Vlz +CV}+-+CV,,7 .

Finally, each element of CV is multiplied by & .

Once the final change vector has been determined, phase two begins. In this
stage, the elongation of the change vector is addressed. To begin, the magnitude of the
change vector is doubled and the respective portions of the change vector are added to
the a and b vectors (see figure 17). The multiregression formula is calculated for each
observation of the data set and the root mean square error is determined. If the error
decreases compared to the previous error (the original error in this case), then once
again the magnitude of the change vector is doubled, the multiregression formula is
calculated, and the root mean square error (RMSE) is calculated. This process

continues until the RMSE grows from one iteration to the next iteration. Then the
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Figure 17. Illustration of how the change vector is elongated. Note: The elongation
happens in parallel for both vectors @ and b but only one vector is shown here. 1. The
magnitude of the change vector is doubled. 2. The magnitude of the change vector is
doubled again. 3. The magnitude of the change vector is doubled, but this time the
RMSE grows instead of decreases. 4. The direction of the change vector is reversed and
the magnitude is halved. The change vector will continue to be halved in this direction
until the RMSE grows between iterations or until the absolute value of each dimension in
the change vector is less than 6.

direction of the change vector is reversed and the magnitude of the change vector is cut
in half. The change vector is iteratively halved in this reversed direction until the root
mean square error grows between iterations, or the absolute value of each dimension of
the change vector is less than delta on each of its components. A flowchart of the

algorithm is presented in appendix C.
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The algorithm

(M

)

3)

4)

)

(6)

(7

Retrieve the a, b, ¢, and u values of one chromosome from set R in the genetic

algorithm. Also retrieve /, 6, n, f, and y, for j—1,2,...,/. Construct vector
q=(4,-9,,-.9,) as follows: g, =y, where j=12,...,1I.
a, = a, and b, = 5,. foralli=1,2,....n. The & and b vectors represent copies of a

and b. The copies are manipulated in the algorithm rather than vectors a and b.

At the end of a complete iteration, the a and b vectors are set to a and b which

have been determined to have the least error thus far.

Calculate y, =c+ j (a+ l;fj )Ydu forall j =1,2,...,/. The current estimate of the

objective attribute for the /™ observation in the data set is represented by e

!
Calculate the initial error ¢, = %Z( v, =),
J=1

e, = e. The root mean square error calculated using the current values of & and
b in the multiregression formula is represented by e.
0= CV, for h=1,2,...,2n. The first n elements of vector CV store the change in

each dimension of vector a. The second » elements of vector CV store the change
in each dimension of vector b.
Forall i=1,2,....n,

a. a,= &p for p=1,2,...n. In this for loop, each dimension of the a

vector should be considered independent of changes made in previous



c.

f. Calculate the error, e
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dimensions. This step resets the a vector back to a before determining
the change direction for dimension i.

Take a step in the positive direction by adding & to &, .

Construct matrix Z with dimensions /x2" as follows:

Z,0=1
min(d, +b,f,) ~ max(d, —b,f,), ifitis> 0 orifk =2" -1
zZ, =
s 0, otherwise
where j=1,2,...,/ and k=0,1,...,2" —1.
Apply the QR decomposition theorem to find the matrix least squares

solution of the system of linear equations Zv = q, where the elements of

v represent the unknown variables c, g4, 44,,..., 44,  [2]. There may be

instances where 4 and 5 cause matrix Z to contain one or more columns
which are all zero (i.e. matrix R in the QR decomposition is singular).
When this happens, any columns which contain all zeros should be
removed from matrix Z and u's values that correspond to the removed
columns can be arbitrarily set. The remaining g values are still
determined from the matrix least squares solution of the Z matrix with
the columns of zeros removed.

Calculate y, forall j=1,2,...,/ using the formula in step 3.

.+ » using the formula in step 4.



28

g. Take a step in the negative direction by subtracting 26 from a,. Note:
Ultimately, ¢ will be subtracted from g, .
h. Repeat steps 7c — 7e. Then calculate the error, e, using the formula in

step 4.

1. Ife o 2e and e - 2€ then 0 = CV,. In this case, the step in the positive

direction and the step in the negative direction caused the error to

increase rather than decrease. No step should be taken so this dimension

of the change vector is set to zero. Otherwise, if e <€ then
e—e, = CV,else (—1)(e—e5_ )2 CcV,.

8 a =>a, fori=1,2,..,n. Vector a is reset back to a so when the b vector is

processed next it will not be influenced by any a adjustments that were made
when trying to determine the optimal step direction from step 7.
(9) Forall i=1,2,...,n,
a. b,= I;p for p=1,2,...,n. Each dimension should be considered
independent of changes made in previous dimensions. Vector b is reset
back to b before determining the change direction for dimension i.
b. Take a step in the positive direction by adding & to 5, .
c. Determine the new ¢ and u values by performing steps 7c and 7d.

d. Calculate y, forall j=1,2,...,/ using the formula in step 3.

e. Calculate the error, e S using the formula in step 4.
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f. Take a step in the negative direction by subtracting 26 from 5, . Note:
Ultimately, this will subtracté from b, .

g. Repeat steps 10c and 10d. Then calculate the error, e,_, using the
formula in step 4.

h. If e, >eand e, e then 0 = CV.

"..- The step in the positive direction
and the step in the negative direction increased the error. The step

length should be set to zero. Otherwise, if e o <€, then

e—eg, =CrV

s else (=) -(e—e; )= CV,,,.
(10) 5, 3[5,. for i=1,2,...,n. Vector b is reset to b.

) sCV,
\/CVf +CV} +-+CV},

(11 = CV, for h=1,2,....2n. The change vector must be

normalized.
(12) Now the process of doubling the change vectors begins. The variable PE
represents the previous error and variable LE represents the latest error. Initialize
PE and LE as follows: e = PEande = LE.
(13) Update PE. LE = PE .
(14) Forall h=1,2,...,2n,
a. Double the magnitude of the change vector in this dimension.

2-CV, = CV,.
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b. Incorporate the doubling from the previous step. If 4 < n, then
a,+CV, =4, else b, +CV,=b, .
c. If h<n,thenif g, <0, 0= ag,. A multiregression constraint is that the

values of the a vector must be nonnegative.

d Ifh>n

i. Ifb,_, >1,then b,  =1.

ii. Ifb,  <-1,then B, , =—1.
(15) Determine the new c and u values by performing steps 7c¢ and 7d.
(16) Calculate y, forall j=1,2,...,/ using the formula in step 3.
(17) Calculate LE using the formula in step 4.
(18) If LE < PE, go back to step 13. Doubling the magnitude of vector CV again may
lessen the error even further.) Otherwise go to the next step.

(19) The doubling performed in steps 13-17 went too far. We need to reverse the

direction of the change vector and return half as far in each step. Reverse the
direction of the change vector by setting —CV, = CV, forall h=1,2,...,2n.
(20) LE= PE.
(21) Forall A=1,2,...,2n,

a. %-CVh = CV,

b. Incorporate the halving from the previous step. If 4 <#, then

a,+CV,=a, else b, ,+CV,=b, .
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c. If h<n,thenif a, <0, 0= qg,. A multiregression constraint for a is

that its values must be nonnegative.
d. A multiregression constraint for b is that its values fall in the range [-1,

1.If h>n,
i. Ifb_,>1,then b,  =1.
ii. If 5, <—1,then b, =-1.
(22) Determine the new ¢ and u values by performing steps 7c¢ and 7d.
(23) Calculate y, forall j=1,2,...,/ using the formula in step 3.

(24) Calculate LE using the formula in step 4.

(25) LetH = max {[CV;]}. If LE < PE and H> & then go back to step 20, otherwise go

to the next step.

(26) Reverse the direction of the change vector again because the halving went too far.
—-CV,=CV, forallh=1,2,....2n.

(27) If H> & then go back to step 20, otherwise go to the next step.

(28) Determine the new c and u values by performing steps 7c¢ and 7d.

(29) Calculate y , forall j=1,2,...,/ using the formula in step 3.
(30) Calculate e using the formula in step 4.

(31) Display the initial error, e, .

(32) Let M(Aab) = max{la, -4,

b - b:.’}. Ultimately, M (Aab) will be checked to see

>

if the largest change in any dimension of the change vectors was greater than & .
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(33) If ¢, >0, e>0 and M (Aab) =S then continue to the next step. Otherwise,

proceed to step 39.

(34) If e > ¢,, continue with the next step. Otherwise, proceed to step 36.

(35) The change from a to a and b to b needs to be iteratively reduced until the error

is smaller than the initial error.

a. a,—a,=>a,, b—b =b, forall i=1,2,...,n.

) o~ a, - A N
b. Forall i=1,2,....,n, 1f|a,.|>5 then ?’:>a, and g, +a, = a,.

c. Foralli=12,...,n,if ‘I;,‘ > 6 then b—z'zl;, and I;,. +Z;,. :>l;,.
d. Determine the new c and u values by performing steps 7c and 7d.
e. Calculate p, forall j=1,2,...,/ using the formula in step 3.

f. Calculate e by using the formula in step 4.

b,

g Let M= max{]c’i,. }. If e>e, and M >, go to step 35b, otherwise

I<i<n

>

continue with the next step.

(36) New values for vectors a and b have been found which reduce the error from the
previous iteration. Update a and b to retain the new values. a4, = q,, bA,, = b, for
all i=1,2,...,n.

(B7) e=e,.

(38) Go to step 6.

(39) Outputa, b, cand . Stop.
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Implementation considerations

When the vectors are examined to determine the optimal step direction, a
positive step and a negative step are taken for each of the 2n elements resulting in a
complexity of O(n). Suppose n=3. These twelve vectors are examined:
(a,+6,a,,a,), (a,—0,a,,a;,), (a,a,+0,a,), (a,,a,-d,a;), (a,,a,,a, +95),
(a,a,,a,-06), (b +8,b,,b,), (b—05,b,,b,), (b,b,+6,b,), (b,b,—6,b,),

(b,b,,b, +8), and (b,,b,,b, —5). Next, a 2n-dimensional change vector is composed
based on which of the previous twelve vectors decreased the error the most. Suppose
the positive step in the first, fourth, and sixth dimensions and the negative step in the

second and fifth dimensions decreased the error while neither of the steps in the third

dimension decreased the error. The composed change vector is

(e—ey )-(+5),(e—e5_ )-(—5),0,(e—e5+).(+5),(e—e§, )'(—5),(e—e5+ ).(_,_5)
Je=e,.V +(e=e, Y +0+(e=c,.) +(e=c, | +(e=e,. )

brevity the notation (CV,,CV,,CV,,CV,,CV,,CV,) will be used. An assumption is then

For

made that (a, + CV,,a, + CV,,a, + CV,,b, +CV,,b, + CV,,b, + CV,) will lower the error
even further. Once the change vector is composed, it may be the case that the error
actually grows rather than decreases. A way to avoid this problem is to examine every
possible change vector that could be composed. This raises the complexity to O(3*")

because steps of length 0, &, and —6 must be taken in each of the 2» dimensions.



Does the extra processing time required by examining all change vectors result in

improved results?

The answer is no. Two programs were created with the primary difference

being how the change vectors were determined. One program took positive and

negative steps in each dimension while the second program examined all possible

combinations of steps. In all cases, the accuracy of the results was comparable (see

table 2). There was little difference in processing speed with three attributes, but for

files with more than three attributes the program that examined all possible change

vectors was noticeably slower.

Tvoe of Number Final Final P.rocessing P-rocessi-ng
d:tl; set of RMSE RMSE time (min) | time (min)
attributes O(n) o3*) O(n) 03"
Artificial 3 1.28x%1077 1.10x1077 0.1403 0.2678
Artificial 4 3.6x1077 39%x1077 1.45 5.623
Artificial 4 1.00x1077 1.047 %1077 1.4357 4.906
Real 3 1.4237 1.4299 0.0625 0.06125
Real 3 45.8887 49.32 0.0606 0.0619
Real 8 1.95122 * 1870 *

Table 2. Comparing the accuracy and running times of two programs. There is no
benefit to examining all possible change vectors. * Following 3660 minutes of processing,
the program was terminated.

An improvement over the iterative search

The pseudo gradient search represents an improvement over the iterative search

presented in a previous paper by myself. In the iterative search, the doubling and

halving steps are performed one dimension at a time and then a final change vector is

composed once the halving steps have completed (see figure 18). The pseudo gradient
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EXAMPLES

The program has been coded in Java and it runs on a laptop computer. Four
examples are presented. The first example involves artificial data while the next three

examples involve real data.

Example 1

An artificial data set with three attributes was created using the multiregression

formula. The following parameters were used in the computer program and the results

are listed in table 3: =14, p=200, £=10"", §=10",and w=5. All of the

Variable Actual Following Genetic Following Pseudo
Values Algorithm gradient search

a 0 0 0.03198

a, 0.8 0.85032 0.83196

a, 0.4 0.44368 0.43197

b, 0.5 0.51983 0.49999

b, 0.8 0.79546 0.79997

b, 1.0 1.0 0.99997

c 4.0 3.96362 3.96801
1Y) 0 0 0

u({x}) 0.1 0.28884 0.10000

m({x,}) 0.2 0.50037 0.20000

L({x,x,}) 0.4 0.69185 0.40001

u({x}) 0.3 0.59706 0.30000

p({x,,x;}) 0.5 0.79014 0.50001

L({x,,x,}) 0.7 0.89590 0.70002

H({x,%,,%,}) 1.0 0.99173 1.00003

Table 3. Results from using the algorithm on an artificial data set. 'I'he actual
parameters used to create the data are listed in the second column. The fourth column
is the final results from the computer program.
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variables were reasonably reproduced using the algorithm. Vector a and variable ¢ had
values that were furthest from the actual values used to create the data set. The total
running time of the program is 19.8 seconds. The complete data set is listed in

appendix D.

Example 2

An appropriate multiregression problem is to estimate the gross domestic
product of a country by using the worth of a country’s fixed assets, the total number of
people in the labor force, and the number of people who pursued higher education.
Nineteen observations during the last century were taken as the input. The attribute of
fixed assets was represented in billion dollars, and the labor force and higher education
attributes were each represented as millions of people. The complete data set is given
in appendix E.

The following parameters were used in the computer program: A =14,
p=200, 6=10"", §=10"°, and w=35. Seven thousand two hundred chromosomes
were generated in the genetic algorithm portion of the program. Comparing the error at
the end of the first generation and the error in the final generation or the genetic
algorithm resulted in an error reduction of 72%. The pseudo gradient search portion of
the program resulted in an additional 7% improvement. The genetic algorithm took
10.6 seconds to process. The pseudo gradient search took an additional 3 minutes and

21 seconds.
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Next, the objective attributes in the data set were compared against the
estimated objective attributes which were calculated using the values in table four (see
table 5). Though the data size is not sufficiently large, we can see that the method
provided in this paper is efficient for solving nonlinear multiregression problems based
on the generalized Choquet integral. A valid criticism of this example is that the

algorithm may have over fitted the data set because of its small size. A way to ensure

Table 5. Comparing the true
objective attributes from the
data set against the objective
attributes produced from the

computer program.

Table 4. Results from using the algorithm on the real ()bjective .
data set given in appendix E. Attribute EStl.ma?ed
Following Following from gbje.;tlve
Variable Genetic Pseudo gradient Data Set tl:rlll ute

Algorithm search (billion ((10'“;::)
aq, 1.22892 1.22956 dollars)

P 0 0.00007 322.07 332.34
2 _ 427.50 424.20
b, 0.61832 0.62105 603.71 600.33
b, 0.38195 0.38250 ;Sg;g gég';i
b, 1.0 1.00000 89799 918 81
c -111809.741 -114342.666 1081.75 1074.39
u({}) 0 0 1365.06 1357.39
pu{x}) 1.46917 1.59508 1909.49 2006.52
w({,}) -18.21820 -17.49393 §§§S‘§S ggggfg
p({x,,%,}) 3.22435 1.59780 4146.06 | 42211
H({x;}) 124.92529 127.77463 4638.24 4544.64
o) | 0 im0 —ous o
u({x,,x,}) 117.25948 120.10339 5036 34 €033 08
H{x,%,5%3) | 119.12952 121.87264 6748.15 |  6765.85
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the multiregression formula produced by the algorithm is correct is to use a portion of
the data set as a training set and keep a portion of the data set as a validation set. This

technique was done in the next example.

Example 3

The statistics division of the United Nations keeps track of several databases of
information. The UN allows unrestricted access to certain databases which it has
compiled into readable formats referred to as yearbooks. One of the yearbooks is the
Demographic Yearbook 2001 which contains demographic statistics such as population
trends, birth rates, mortality rates, marriage rates, and divorce rates for over 230
countries in the world.

One of the tables in the yearbook is titled “Vital statistics summary and
expectation of life at birth: 1997-2001”. The table presents the following vital statistics
for the many countries listed: number of live births, crude birth rate, number of deaths,
crude death rate, rate of natural increase, number of infant deaths, infant mortality rate,
life expectancy by gender, and fertility rate. (The definition of some of these terms is
given in appendix F along with the data set that was used.) The table has missing data;
for example, Saudi Arabia has data for the years 1999 and 2000, but not for 1997, 1998,
or 2001. As another example, Argentina has data for 1997-2001, but it is missing the
values for life expectancy. Due to the number of missing entries, the table needed to be
preprocessed. To avoid the problem of confounding variables, only one year from the
range 1997-2001 was processed. The most data was available for the year 1997, so all

other years were removed from the table. The attributes of crude birth rate, infant death
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rate, and the rate of natural increase were chosen as the predictive attributes and the life
expectancy of males at birth was chosen as the objective attribute. Any country that did
not have complete data for each of those attributes was removed. Forty-two countries
remained. Eighty percent of the countries (34) were used as a training set and twenty
percent of the countries (8) were used as a validation set. Each country was numbered
from one to forty-two and a computer program randomly generated eight distinct
numbers in that range. The eight countries were then used as the validation set. The
results of running the training set through the process are present in tables 6 and 7 of
appendix F.

The results are extremely encouraging. The farthest that any of the estimated
objective attributes is off from any of the true objective attributes is 3.21 years. The
average difference is 1.17 years. Next, the validation set was used to see how well the
results generalize. As table eight demonstrates, the validation set also had excellent
results. The maximum change from the estimated objective attribute is 4.22 years and

the average change was 1.42 years.

Objective Estimated
Attribute from Objective
Data Set (years) | Attribute (years)
62.74 62.70
75.45 76.39
74.86 74.09
75.31 71.36
74.29 73.95
77.19 76.27 Table 8. Comparing the estimated
736 73.35 objective altribute of the validation
. = set against the true objective
58.0 62.22 attribute from the data set.
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Example 4

All three of the previous examples were run on small data sets with three
attributes. This example involves a large data set with eight attributes.

The abalone is a single shelled, ocean-dwelling creature. Scientists who wish to
know the age of an abalone, must cut through its shell, stain the shell, view the stained
shell under a microscope, and count the number of visible rings [10]. This task is time
consuming. Having a mathematical way to accurately estimate the age of an abalone
would be useful.

Scientists in the Marine Resources Division of Tasmania Australia shared a
4,177 instance database with the University of California-Irvine. The database has
unrestricted access and can be viewed at the website listed in the references section of
this document. The database contains the following attributes: sex (male, female,
infant), length (mm), diameter (mm), height (mm), whole weight (grams), shucked
weight (grams), viscera weight (grams), shell weight (grams), and rings (integer).
Missing entries have been removed from the data set already. The only preprocessing
that was done to the data set was the nominal attribute of sex was given numerical
values by representing infant as 1, female as 2 and male as 3.

The entire data set was initially given as input to the program. When the first
iteration of the genetic algorithm took over a half hour to complete, the computer
program was terminated and the size of the data set given to the program was shortened
by separating the data into a training set that contained 3,342 observations (80%), and a

validation set which had 835 observations (20%). The following parameters were used
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in the computer program: A =14, p =200, £=10", §=10°,and w=6. The
program took an undesirable 36 hours and 47 minutes to process the training set on a
computer with a 1.70 GHz processor and 760 MB of RAM. Of the total processing
time, 36 hours and 24 minutes was devoted to the genetic algorithm and 23 minutes
was used by the pseudo gradient search. The final calculation of the root mean square
error on the training set was 1.968941.

Next, the results of the program were used to test the validation set. The 168"
validation set observation resulted in a ring estimate of —31.15527245. Careful
examination of the parameters involved in the calculation for this observation revealed

that g, =-3234.905507. Presumably, the training set did not contain enough
observations for 4 to achieve a more accurate result because x4, was only used once

during the entire time the validation set was processed. Removing this observation
from the validation set yields a root mean square error of 2.31693. The results are
reasonable because the root mean square error of the training set is close to the value of
the root mean square error from the validation set, however a final determination of the

usefulness of the results would need to be made by an expert in the field.
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CONCLUSION

Though the complete algorithm shows great promise, much work still must be
done to reduce the complexity. As was demonstrated by the fourth example, using this
algorithm to generate the multiregression parameters from a data set with more than
five attributes will require some waiting given the computing power available at the
time of this writing. It also must be stressed that this algorithm cannot be guaranteed to
locate the optimal solution to a problem. This algorithm can only provide a useful
prediction of what an optimal solution may be and often this estimate is sufficient.
How can the algorithm be improved? My first suggestion would be to make the genetic
portion of the algorithm adaptive. The most significant bits in the genes would be
altered in the initial stages to cause wider genetic variation. In subsequent generations,
bits of less significance would be altered. My second suggestion is to consider small
implementation changes in the pseudo gradient search. For example, once the root
mean square error grows between iterations in the doubling stage of the change vector,
it may be more beneficial to perform another pseudo gradient search from the current
position rather than perform all of the halving steps. My final suggestion is to have the
algorithm automatically determine which attributes are necessary for processing a large
data set. When I preprocessed the United Nations data set in example 3, it was pure
luck that I chose three attributes that produced such excellent results. In fact, choosing
a different set of three attributes may produce a result that is even better than what I

found, but since there are 35 ways to choose a set of 3 attributes from a full sct of 7



attributes, the amount of time it would take to prepare 35 different input files would

take days due to the incompleteness of the data.
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Decode the chromosomes
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w: generation limiter
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« and £ :probabilities used in
determining genetic operator
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6‘§ : residual of objective attributes

q: vector of objective attributes
GC: number of generated
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WT:. tracks variable w
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a and b: functions used in
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APPENDIX E

The data set used in example 2.

Fixed assets Total Labor Force | Higher Education GDP (Billion
(Billion dollars) | (Million people) (Million people) dollars)

57.96 2248.91 40.76 322.07
105.45 2318.56 42.67 427.5
134.13 2386.42 44.45 500.06
191.02 244473 46.21 603.71
240.71 2502.73 48.21 765.76
262.99 2522.86 50.04 843.72
264.66 2554.46 51.92 897.99
324.97 2579.36 53.78 1081.75

443.8 2600.38 55.91 1365.06
782.14 2615.89 58.68 1909.49

1054.42 2640.51 61.73 2666.86
1482.62 2621.47 64.54 3624.79
1608.56 2625.06 65.20727 4146.06
1611.44 2619.66 67.30455 4638.24
1801.74 2612.54 69.40182 4987.5
1958.05 2625.17 71.49909 5364.89
2349.95 2726.09 73.59636 6036.34
2834.94 2796.65 75.69364 6748.15
3477.47 2835 77.79091 7670
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APPENDIX F

The training data set from example 3.

Rate of Life
Country Crude Infant natural | expectancy
birth rate|death rate| .
increase {males)

Maurice 17.4 20.3 10.5 66.86
Puerto Rico 17.3 11.3 9.4 71.41
Saint Lucia 221 17.6 15.5 70.76
Chile 17.8 10.5 12.4 72.13
Armenia 11.6 15.4 5.3 70.3
Azerbaijan 16.8 19.6 10.9 67.4
China: Hong Kong SAR 9.1 3.9 4.2 76.77
Israel 21.4 6.4 15.2 76.05
Kazakhstan 14.8 25.3 4.6 59.04
Korea 14.7 2.5 9.4 70.56
Kyrgyzstan 21.8 28.6 14.4 62.55
Malaysia 24.9 9.4 20.4 69.58
Maldives 23.9 26.7 19.4 69.2
Singapore 12.5 3.8 8.4 75
Belarus 8.8 12.6 -4.6 62.88
Czech Republic 8.8 5.9 -2.1 70.5
Denmark 12.8 52 1.5 73.68
Estonia 8.7 10.1 -4.1 64.78
Finland 11.5 3.9 2 73.43
France 12.4 4.7 3.4 74.77
Germany 9.9 4.9 -0.6 74.44
{Hungary 9.9 9.9 -3.8 66.35
Latvia 7.7 15.3 -6 64.21
Lithuania 10.6 10.3 -0.9 65.9
Netherlands 12.3 5 3.6 75.39
Poland 10.7 10.2 0.8 68.45
Serbia and Montenegro 12.4 14.3 1.8 69.79
Slovenia 9.1 52 -0.4 71.05
Sweden 10.2 3.6 -0.3 76.7
Switzerland 11.4 4.8 2.5 76.5
Macedonia 14.8 15.7 6.5 70.3
United Kingdom 12.3 59 1.6 74.66
Australia 13.6 53 6.6 76.22
New Zealand 15.4 6.5 8 75.24
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The validation set from example 3.

Crude | Infant Rate of Life
Country birth death natural | expectancy
rate rate increase (males)

Ukraine 8.7 14.2 -6.1 62.74
Norway 13.6 4.1 3.5 75.45
Malta 12.6 6.4 5.1 74.86
Greece 9.7 6.4 0.2 75.31
Austria 10.4 4.7 0.6 74.29
Japan 9.5 3.7 2.2 77.19
United States 14.5 7.2 5.8 73.6
Swaziland 33.4 37.7 24.3 58

The following explanation is provided with the data:

Crude birth rates and crude death rates presented in this table are calculated
using the number of live births and the number of deaths obtained from civil
registers. These civil registration data are used only if they are considered
reliable (estimated completeness of 90 percent or more).

Rate computation: The crude birth and death rates are the annual number of
each of these vital events per 1000 mid-year population.

Similarly, infant mortality rates presented in this table are calculated using the
number of live births and the number of infant deaths obtained from civil
registers. If, however, the registration of infant births or deaths for any given
country or area is estimated to be less than 90 percent complete, the rates are
not calculated.

Infant mortality rate is the annual number of deaths of infants under one year of
age per 1000 live births in the same year.

Rates of natural increase are the difference between the crude birth rate and the
crude death rate.

The expectation-of-life values are those provided by national statistical offices.

[11]



The results of running the United Nations data through the program.

Variable Results Objective Estimated
a, 0.00000 Attribute from Objective
Data Set (years) | Attribute (years)
i 5-58085 66.86 67.22
as 4.31221 71.41 71.94
b, -0.16366 70.76 70.97
b2 _1.00000 72.13 74.04
70.3 68.02
b, -0.41077 67.4 67.95
¢ 78.45665 76.77 77.12
H({3) 0 76.05 74.97
nx}) 0 59.04 61.30
70.56 70.78
-2.85010
#(ix}) 62.55 63.88
p({x,,x,}) -14350934.55 69.58 68.23
n({x}) -1.37695 69.2 67.52
H({x, %)) -0.49111 75 75.69
— 62.88 64.49
ul{x,x,,x;3) | 0.10117 73.68 73.73
64.78 66.26
Table 6. Values of the 7343 75.85
multiregression parameters that
resulted from running the program 74.77 75.51
using the United Nations data. 74.44 73.00
66.35 66.38
64.21 62.25
65.9 67.68
75.39 75.21
68.45 68.69
69.79 66.58
71.05 72.71
76.7 74.98
76.5 74.87
70.3 68.06
Table 7. Comparing the true 74.66 72.82
objective attribute against the 76.22 76.47
estimate objective attribute. 7524 7556
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