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A. Introduction and Background

For an arbitrary topological space algebraic topology
prescribes a construction for a fundamental group. There is
a natural way of imposing a topology on this set. We will
examine this construction and the topological space which
results.

We use the following notation and definitions:

1. If X and Y are topological spaces and ACX, BCY
and if f:X-»Y is a map, we write f: (X,A)>(Y,B) if f(A)CB.

2. (Y,B) (XA =(f: (X,A)>(Y,B)| £ is continuous}.

3. 1I=[0,1], the closed unit interval; iE{O,l}, the
points 0 and 1.

4., 1If X is a topological space and aeX, then R is an
equivalence relation on (X,a)(I’i) defined as follows:

If £,ge(X,a) 1°1) then fRg if and only if £ and g
are homotopic relative to i, written f=g rel I. That is,
there exists a continuous function F:IxI+X such that F(0,t)=
f(t), F(1,t)=g(t), F(x,0)=a, F(x,1)=a for all x,tel. R is
easily shown to be an equivalence relation, [2, p. 6]. We
write RfE{gs(X,a)(I’i)lbng}.

5. When we speak of a topology on (Y,B)(X’A) we use
the "compact-open' topology. The compact-open topology has
subbasic sets of the form (C,U) where C<X is compact, UCY is
open, and (C,U)={fe(Y,B)(XsA)| f(C)cu}.

6. Q(X,a)z(x,a)(l’i) with the compact-open topology

is called the loop space of X at a.



7. The fundamental group of a topological space X
based at a point aeX is'{Rfl fe(X,a)}. We write w(X,a) for
the fundamental group of X based at a. Multiplication and

inverse operations are defined as follows:

i. Ri! = Rg where g(t)=£f(1-t)
il. RgRg = Re,g where
| g(2t) 0<t<1/2
f-g(t)=
f(2t-1) 1/2<t<1

The proof that w(X,a) is a group can be found in any text on
algebraic topology, [2, pp. 6,7].

8. We say a space U is simply connected if it is path
connected and if every f:(I,i)+(U,a), where aeU, is homotopic
to the constant map from I to a, relative to 1.

The set Q(X,a)/R = m(X,a) may be given the identification
topology by the map p:2(X,a)>R(X.a)/R defined by p(f)=Rg¢.

In mény cases this topology is the trivial or discrete topology
in which every point is an open set. We wish to determine
necessary conditions and sufficient conditions that this
topology on the fundamental group be discrete. We make use of
the following relationship between homotopy equivalence classes
and the path components in Q(X,a).

RESULT 1: The equivalence classes under homotopy rel
I are the path components of Q(X,a).

PROOF: Assume £,geR,. Then f=g rel 1. Thus there
exists a continuous ¢:IxI-»X with ¢(0,t)=£f(t), ¢(1l,t)=g(t),

o(t,0)=0¢(t,1)=a. Define a:I+(X,a)(I’I)EQ(X,a) by



,5(t)(t’)=®(t,t’). Then 3(0)(t")=£(t"), 6(1)(t’)?g(t’) and

$ is continuous, [1, ch.XII,thm. 3.1(1)]. Thus & is a path
from £ to g in Q(X,a), and f and g are both in the same path
component.

Assume f and g are in the same path component. Then
there exists continuous §:1+(X,a)(1»i) with F(0)(t7)=£f(t")
and F(1) (t")=g(t”). Define F(t,t”)=F(t)(t?). F is continuous,
[1, ch.XII, thm. 3.1(1)]. F(0,t")=f(t”) and F(1l,t")=g(t”) by
construction. Since F maps into (X,a)(I’i) we have F(t,0)=
F(t,1)=a. Thus F:f=g rel'i, QED.

RESULT 2: The topology on Q(X,a)/R is discrete if and
only if the path components of Q(X,a) are open.

PROOF: Let the topology on 2(X,a) /R be the discrete
topology. Let p:Q(X,a)»2(X,a)/R be the identification map
described above. Let P(f) be the path component of f in
Q(X,a). By result 1 P(f) is also the homotopy eqﬁivalence
class of £f. Thus P(f) is mapped by p to a single point in
Q(X,a)/R, namely Rg. Since 2(X,a)/R has the discrete topology
Rg is open. Thus p~!(Rg) is open in 2(X,a). But p™'(Rg) is
exactly the homotopy equivalence class of f which is exactly
the path component P(f). Thus P(f) is open.

Assume the path components of Q(X,a) are open. Let
xeQ(X,a)/R. p !'(x) is a path component in Q(X,a) and thus
open. Therefore x is opcn in Q(X,a)/R so Q(X,a)/R must be

discrete, QED.



To simplify our work with open sets in the compact-open
topology on Q(X,a) we state without proof the following result.
Its proof follows easily from [1, ch. XII, thm. 5.1b].

RESULT 3: Let F={C| C is a closed interval in I}.

Then the family {(C,U)| CeF and U is open in X} is a subbasis

for the compact-open topology on ©(X,a).



B. Some Examples

The first example is the unit circle, S!, centered at
the origin in the complex plane, with the subspace topology.

It is'well known that the fundamental group of the unit circle
is isomorphic to the group of integers, [2, pp. 13-16]. The
element nen(S!,1) is the equi?alence class of paths whose net
winding number about the origin is '"n'" in a direction deter-
mined by the sign of n. The topology on £(S!,1)/R is discrete.
To show this, we use result 2 and the following theorem.

RESULT 4: The path components of the loop space of
the unit circle are open sets.

PROOF: Let Fe(S!,1) and P(F) be the path component
of F. F may be expressed by exp(if(x)) where f is a continuous
real valued function with exp(if(O))=exp(if(l))=l and £(0)=0.
Then f£(1)=2mn for some neZ ( the integers ).

Let h:I>S! be defined by h(t)=exp(2wit). 1In S' define
A=h((1/3 - .01,2/3 + .01)), B=h((2/3 - .01,1]U[0,.01)), and
C=h((.99,1]y[0,1/3+.01)). Then A,B, and C are open in S'.
Define:

S = (F~'+h([0,1/3]),C)N(F '+h([1/3,2/3]),A)N(F '*h([2/3,1]),B).
Clearly S is open in 2(S',1) and FeS. It remains to be shown
that SCP(F).

Let GeS. Then G muy be expressed by exp(ig(x)) with g
a continuous real valued function, and g(0)=0, g(l)=2mm for

some meZ. Define ¢:IxI+S by ¢(t,x)=exp(i(tg(x)+(1-t)f(x))).



Then ¢(t,0)=1, ¢(0,x)=F(x), ¢(1,x)=G(x), and ¢ is continuous.
Note that ¢(t,1)=exp(i(2wnt+2mm-2mmt)), so if m=n, then ¢ is
"a homotopy rel I from F to G and GeP(F).

~Assume m#n. Define W(x)=f(x)-g(#). Y is continuous.
¥Y(0)=£f(0)-g(0)=0 and ¥(1)=2m(m-n)#0. Assume m-n>0. By the
intermediate value theorem there exists a point x'el such
that ¥(x')=w. Then f(x')-g(x')=wm. But this is not possible
since F,GeS and |f(x)-g(x)|<(1/3 + .02)2n. Thus m=n and F
and G are in the same path component. Therefore FeSCP(F)
and P(F) is open, QED.

A second example is commonly referred to as the
"Hawaiian Eafring" space. For every n=1,2,... construct a
circle of radius 1/n tangent to the Y axis at the origin, O,
in the right half of the Euclidean plane. The Hawaiian
earring, H, takes the subspace topology from the Euclidean
plane. While the unit circle will allow a path to wind only
a finite number of times, H will.allow, for example, a path
which loops around each circle in succession. The topology
on 2(H,0)/R is not discrete, as the following result shows.

RESULT 5: The path components of Q(H,0) are not open.

PROOF: Assume the path components of Q(H,0) are open.
Let feQ(H,0). There exists a basic open set, S, about f in
P(f£f). That is, feSCP(f). S is a finite intersection of n
sets of the form (C;,U;j), where Cj is a closed interval in I
(by result 3) and U; is open in H, for all i=1,2,...,n. Note
that if the Ci's do not cover I, then S will not be a subset

of P(f). This assures us that 0 is in at least one Uj and



possibly several. The intersection of these open sets contains
0 and all but a finite number of loops in H. Let U=N{U;| 0eU;}.
Note that a set of the form [0,a] is in N{C;| 0eUj}. Let
g:(I,i)*(U,O) be a path which travels once about some loop in

U. Define f,, £, by f,(t)=g(2t/a), f,(t)=g(a/2 - 2t/a) on
[0,a/2] and f,(t)=£f,(t)=£f(2(t-a/2)) on [a/2,a], and f,(t)=
f,(t)=£f(t) on [a,1]. Since f,([0,a])<U and f,([0,a])U, f,

and £, are in S. But clearly they are not homotopic. This

is a contradiction since by assumption SCP(f). Thus the path
components of Q(H,0) are not open, QED.

There exist many other examples of spaces whose
fundamental group topologies are not discrete. Two simple
cases follow. Proofs that their fundamental group topologies
are not discrete would be similar to that of result 5.

a. The real plane less points with both coordinates
rational, with the subspace topology from the real plane.

b. The real plane less points with both coordinates

irrational, with the subspace topology from the real plane.



C. Sufficient Conditions that the Fundamental Group Topology

be Discrete

In searching for sufficient conditions for the funda-
mental group topology to be discrete, we must, for an arbitrary
function f, construct an open set SCQ(X,a) such that feSCP(f).
We will impose conditions on X, construct S, and then show
that any geS is homotopic to f relative to I. The construction
of this homotopy requires a lemma which depends on the next
result, stated here without proof, [2, p. 12].

RESULT 6: If X is a path connected topological space,
the following are equivalent:

a. X is simply connected;
b. Every f:S!+X extends to E2 (the closed unit
ball).

RESULT 7: (Lemma) Let f,g:I+U where U is simply
connected, py:I-U is a path from g(0) to f(0) and p,:I»U is a
path from g(1) to f(1). There exists a homotopy H:g=f such
that H(s,0)=p,(s), H(s,1)=p,(s).

PROOF: Define H:Fr(IxI)-»U (Fr indicates the boundary)
by:

H(s,0)=p, (s)
H(1,t)=£f(t)

H(s,1)=p, (s)
H(0,t)=g(t).

There exists a homeomorphism G:E2=IxI with G|S':S!=Fr(IxI).



The map H-G:S'+U extends to R:E?+U by result 6 since U is
simply connected. Thus R<G™!:IxI-U is continuous and
ReG™!|Fr(IxI)=H. Thus R*G ':g=f with R*G ! (s,0)=p,(s) and
RoG“l(s,1)=p1(s), QED.
We now establish the first sufficient condition.
RESULT 8: Let X be a path connected topological space
and aeX. Let X have a cover of open sets {Ua|aeA} such that:
a. Each Ua is simply connected;

b. For each (a,B)eAxA, UaﬁU is path connected.

8

Then the path components of Q(X,a) are open.
PROOF: Let feQ(X,a). For each xgf(I) there is an open

simply connected neighborhood U,. Then f'l(Ux) is open in I

and equal to a union of intervals open in I. That is, f_l(Ux)=n

{I,]|aeA } where A, is an indexing set and each I_ is an
x : o

interval open in I. The union over all xef(I) and all aeAx of
I, is an open cover for I. Since I is compact there is a
finite subcover. 1In fact, there exists a minimal subcover in

the sense that no interval is a subset of any other interval.
Rename these intervals so that I,=[0,b:), I =(ay,bp+q) for
0<m<n, and Ip=(a,,1l] where 0<a;<b <...<a;<b, <1, and £(I;)CU;.
For each i=1,...,n pick c; so that a;<c;<b; and let c,=0 and
Ch+1=1. Define V;=U; _1NU; for i=1,...,n and note that each V.
is open and path connected. Define an open set SCf(X,a) as
the intcrsection over i=0,...,n of the sets ([ci,ci+1],Ui).

By construction f¢S and S is open. It remains to be shown

that SCP(f).
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Let geS. For all i=1,...,n-1_g(ci),f(ci)er:Ui and

is path

g(cy4q)-£(cj,1) eV, CU . Since for all i, V;

connected, there exists a path p,:I»V;CU; such that p;(0)=
g(cij) and pi(1)=f(ci). The lemma guarantees there exists a
homo topy Hi:IX[ci,ci+1]+Ui with H;(t,c;)=p;(t), Hj (t,c547)=
Pij+1(t). For [ce,c1], f(c,)=g(cy)=a so we define p, (t)=a for
all t. Similarly for [cn,cn+i], f(cp+1)=g(c+1)=2a so we
define pn+1(t)=a for all t. Using the same lemma homotopies
H, and Hn are produced as above. Thus on each [ci,ci+1] we
have H;:f|[cj,c541]=gl[ci,ci47] and H; and Hj,] agree on
Ix{cj47}. Define H=H; on Ix[c;,ci4+1] for each i. H is well
defined and continuous. Thus H:f=g rel I. Therefore SCp(f),
so P(f) must be open, QED.

We have a second sufficient condition.

RESULT 9: Let X be a path connected'topological space
and aeX. If X has a basis of simply connected sets, then the
path components of Q(X,a) are open.

PROOF: Let feQ(X,a). Each xef(I) has a simply connected
neighborhood U,. We proceed as in the proof of result 8 to
define the closed sets in I, [cisCi+1]s and the open sets in

X, Ui' We have f(cj)eU;NU an open set. Thus there exists

i+l?
a simply connected open set Vi+1

The open set S in 2(X,a) is defined to be the intersection over

such that f(cj)eV;4+1CU50U; ;.

i=0,...,n of ([Ci’ci+1]’Ui) and over i=1,...,n of ({ci},Vi).
By construction S is open and feS. Again we proceed as in the

proof of result 8 to show SCP(f). Thus P(f) is open, QED.
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These two results provide sufficient conditions that
the fundamental group topology be discrete. Either may be

used to show that the topology on Q(S',1)/R is discrete.

- A
Eﬁ?é\gyi ol% .
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D. Necessary Conditions that Q(X,a)/R be Discrete

An examination of the examples of spaces with non-
discrete fundamental group topologies indicates that such
spaces possess a point or points that have no simply
connected open neighborhoods. This intuitive idea is made
more concrete by the follpwing definition.

DEFINITION: If X is a topological space and aeBCX,
then B is said to have "property A" with respect to a if
any continuous f:(S!,1)>(B,a) can be extended to f" :E2-X.

(E%? is the closed unit disc.)

This leads to the following result.

RESLUT 10: Let X be a path connected topological space
and let the path components of Q(X,a) be open. Then each xeX
has a neighborhood that has property A with respect to x.

PROOF: Assuﬁe not. Assume xeX has no neighborhood that
has property A. Since X is path connected there is a path from
a to x, call it o'. Let o=0'+(0'"!). We have o(t)=o(1l-t), or
specifically o(0)=0(1l)=a, and o(1l/2)=x. By hypothesis P(o)
is open in Q(X,a), so there exists an open set S such that
0eSCP (o). S may be taken to be a finite intersection of n sets
of the form (C;,U;), where we may assume (by result 3) that
each C; is a closed interval in I. Then U=N{U;j|i=1,...,n and
xell;} is open. U cannot have property A with respect to X.
That is, there exists a map 1:(S!',1)»(U,x) which does not

extend to E2. We define h:I+S! by h(t)=exp(2nit). Then
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T'h:(I,i)+(U,x). Let Ji{iIXeUi}. Choose c<a<1/2<b<d so that:
i. [e,aIn(n{c,|igI})=¢
ii. [c,d]co™ ! (MU ]ied}) =071 (U).
We define a map, p, by p=g on I-(c,d), p maps on [c,a] as o
maps on [c,1/2], p maps on [a,b] as T+h maps on I,and p maps

on [b,d] as o maps on [1l/2,d]. More precisely:

o(t) ' 0<t<c
0(c+(t—c)(c-l]2)/(c—a)) c<t<a

p(t) = J_T~h((t-a)/(b-a)) a<t<b
o(1l/2 + (t-b)(d-1/2)/(d-b))  bst<l
o(t)

Define another map p':(I,i)+(X,a) by p'(t)=x if te[a,b] and
p'(t)=p(t) if tel-[a,b]. p and p' are both in S since they
both map [c,d] inside U and agree with ¢ on I-[c,d]. But
they are not homotopic. To see this assume p=,' rel i. Note
that R__, and Rlx (where 1, is the constant map to Xx) are
elements of w(X,x). But RD=RU"1'T'h‘O' and Rp'=Rc"1°1X-o'
are elements of w(X,a). w(X,a) and 7(X,x) are isomorphic

and that isomorphism maps Rp to R_,, and Rp, to Rlx’ [2, pp-
7,8]. Thus t-h=l, rel I. Assume H:t-h=l,. Let J:IxI-E?

be defined by J(s,t)=(1-s)exp(2nit). J is an identification,
H is continuous and constant on fibers, so H.J !':E2-+U is
continuous. And H-J"!'|S!=t. Thus H-J"! is an extension of

Tt from §! to L[2. But by hyputhesis such an extension doesn't

exist. Thus p and p' cannot be homotopic and S is not a subset

of P(o). This contradiction proves our result.
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E. Further Properties of Q(X,a)/R

To this point we have shown that there are some spaces
X for which @(X,a)/R is an interesting space and we have given
sufficient conditions and a necessary condition that this space
be interesting; that is, not discrete. We can borrow familiar
results from topology and algébraic topology to show some
properties of Q(X,a)/R.

RESULT 11: Let h:(X,a)>(Y¥,b) be a continuous function.
Define h:0(X,a)>2(Y,b) by h(f)=h+f. Then h is continuous.

PROOF; It is sufficient to show that the inverse image
under ﬁ of a subbasic set in Q(Y,b) is open in Q(X,a), [1,
chap. III, thm 8.3(3)]. A subbasic set in Q(Y,b) has the form
(A,V) where ACI is compact and V&Y is open. Thus

h™(A,V)={geQ(X,a) |h(g) (ACV}
={geQ(X,a) |h-g(A)V}.
But h-g(A)CV and g(A)h ™! (V) are equivalent, so we have
h™ ' (A,V)={geQ(X,a) |g(A)ch™ ' (V)}
=(A,h 1 (V).

Since A is compact, and h 1s continuous, h—I(V) is open, so
ﬂ'l(A,V) is open in Q(X,a). Thus h is continuous, QED.

RESULT 12: Let h be as in result 11. Let R and S be
equivalence relations on Q(X,a) and Q(Y,b) respectively
defined as homotopic equivalence rel I. Then ﬂ, defined as

in result 11, is a relation preserving map.
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PROOF: Let f,geQ(X,a) with fRg. Then there exists
F:IxI+X such that F(0,x)=g(x), F(l,x)=f(x), and F is con-
tinuous. Consider ﬁ(f), ﬂ(g). We have ﬂ(f)=h-f, ﬂ(g)=hfg.
Let H=h+<F. Then H:IxI»Y is continuous and H(0,x)=h-g(x)=
ﬂ(g)(x), H(1,x)=h f(x)=ﬁ(f)(x). Thus ﬂ(f)Sﬁ(g). Therefore
h is a relation preserving map, QED.

RESULT 13: h:Q(X,a)/R+2(Y,b)/S, defined as the map
induced by passing h:Q(X,a)»Q(Y,b) to the quotient, is
continuous.

PROOF: This proof follows easily from the previous
results and [1, p. 126, thm. 4.3].

We have on our set 2(X,a)/R now, both a group structure
and a topological structure. It is natural to ask if (X,a)/R
is a topological group. It remains only to show that inverse
taking and multiplication are continuous functions. However
an attempt to show that multiplication is continuous runs into
problems. We hope that such a proof might be found and that
£(X,a)/R is indeed a topological group, but no proof has been

found.
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F. Conclusion

We have exhibited a natural way to impose a topology
on the fundamental group. We have shown by example and by
results that spaces exist for which this topology in non-
trivial. We have shown some elementary properties of this
topology.

Further investigations might determiﬁe a single
necessary and sufficient condition on X for Q(X,a)/R to be
non-trivial. Also it might be proved that o(X,a)/R is a
topological group, perhaps by imposing restrictions on X.
We hope that this construction might be linked to existing
results in algebraic topology; perhaps to 51mp11fy the com-

putation of complicated fundamental groups.
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