Electronic Properties of NaCdF3: A First-Principles Prediction

Chun-Gang Duan
University of Nebraska-Lincoln, wxbdcg@gmail.com

Wai-Ning Mei
University of Nebraska at Omaha, physmei@unomaha.edu

Jianjun Liu
University of Nebraska at Omaha, jliu@unomaha.edu

Wei-Guo Yin
University of Nebraska at Omaha

John R. Hardy
University of Nebraska-Lincoln

See next page for additional authors

Follow this and additional works at: https://digitalcommons.unomaha.edu/physicsfacpub

Part of the Chemistry Commons, and the Physics Commons

Recommended Citation
Duan, Chun-Gang; Mei, Wai-Ning; Liu, Jianjun; Yin, Wei-Guo; Hardy, John R.; Smith, Robert W.; Mehl, M. J.; and Boyer, L. L., "Electronic Properties of NaCdF3: A First-Principles Prediction" (2004). Physics Faculty Publications. 13.
https://digitalcommons.unomaha.edu/physicsfacpub/13

This Article is brought to you for free and open access by the Department of Physics at DigitalCommons@UNO. It has been accepted for inclusion in Physics Faculty Publications by an authorized administrator of DigitalCommons@UNO. For more information, please contact unodigitalcommons@unomaha.edu.
Authors
Chun-Gang Duan, Wai-Ning Mei, Jianjun Liu, Wei-Guo Yin, John R. Hardy, Robert W. Smith, M. J. Mehl, and L. L. Boyer
Electronic Properties of NaCdF₃: A First-Principles Prediction

Chun-gang Duan
University of Nebraska at Omaha

W. N. Mei
University of Nebraska at Omaha

Jianjun Liu
University of Nebraska at Omaha

Wei-Guo Yin
University of Nebraska at Omaha

John R. Hardy
University of Nebraska-Lincoln

See next page for additional authors

Recommended Citation
http://digitalcommons.unomaha.edu/physfacpub/28
Electronic properties of NaCdF₃: A first-principles prediction

Chun-gang Duan,¹,＊ W. N. Mei,¹ Jianjun Liu,¹,² Wei-Guo Yin,¹ J. R. Hardy,¹,² R. W. Smith,³ M. J. Mehl,⁴ and L. L. Boyer⁴

¹Department of Physics, University of Nebraska at Omaha, Omaha, Nebraska 68182-0266, USA
²Department of Physics and Center for Electro-Optics, University of Nebraska at Lincoln, Lincoln, Nebraska 68588, USA
³Department of Chemistry, University of Nebraska-Omaha, Nebraska 68182-0119, USA
⁴Center for Computational Materials Science, Naval Research Laboratory, Washington, D.C. 20375-5345, USA

(Rceived 27 October 2003; published 8 January 2004)

Based on first-principles total energy calculations, we predict that NaCdF₃ could be formed in a ferroelectric crystal structure. Using a symmetry guided search with structure optimization, we found two ferroelectric structures, nearly degenerate in energy, competing for the ground state: a rhombohedral structure with space group R₃c and an orthorhombic structure with space group Pna₂₁. The energies of both structures are ≈60 meV lower than the sum of those of the constituents, NaF and CdF₂, implying chemical stability.

DOI: 10.1103/PhysRevB.69.033102

Perovskite and perovskitelike crystal structures are prevalent in many areas of scientific and technological importance. This is especially true in the area of ferroelectrics where oxide perovskites dominate applications in electronics and optics. While halide-based perovskites form an interesting class of materials, with many structural instabilities, until now, only one, NaCaF₃ has been predicted to have a ferroelectric ground state.¹ Results of subsequent calculations² and the lack of success in forming this compound experimentally, indicate that the components NaF and CaF₂ have sufficiently lower energy to prohibit compound formation by standard methods. Fabrication of new halide-based ferroelectrics is of general scientific interest because they are rare and may be desirable for certain applications in technology. The nonperovskite fluoride, BaMgF₄, has been considered for nonvolatile memories because of its low fatigue rate.³ Several alkaline cadmium fluoride compounds MCdF₃ (M = K, Rb, Cs, Tl) have been synthesized experimentally,⁴⁻⁷ however none of them exhibit ferroelectricity. Let us consider the possibility that NaCdF₃ would be ferroelectric in the context of the tolerance factor of perovskite compounds ABO₃, τ = (Rₐ + Rₓ)/√2(Rₐ + Rₓ), where Rₐ, Rₓ, and Rₓ are the effective ionic radii of A, B, and X, respectively, and τ = 1 is regarded the most stable perovskite structure from purely geometrical point of view. Adopting the Shannon radii,⁸ we find the τ value of NaCdF₃ (0.84) is much smaller than those of MCdF₃ (M = K, Rb, Cs, Tl) and very close to that of NaCaF₃ (0.83). This implies that it is relatively easier to distort NaCdF₃ from the ideal cubic structure, which has higher symmetry and no polarization, to a structure with much less symmetry. The trend of τ values for these compounds correlates with their structural phase transitions and lack thereof. Specifically, KCdF₃ (τ = 0.92) has three phase transitions⁷ (Pm3m → P4/mmbm → Pbnm → Pbn₂), as the value gets higher, it is found that there exist small distortions at low temperature in RbCdF₃ (τ = 0.98) and TlCdF₃ (τ = 0.94), but no distortion was observed in CsCdF₃ (τ = 1.00).⁷ A similar trend is seen for the MCaF₃ (M = K, Rb, Cs) compounds.¹⁰⁻¹³

Previous studies¹⁴⁻¹⁶ have shown that the structural and vibrational properties of MCaF₃ are rather well predicted by the electron-gas model of Gordon and Kim (GK).¹⁷ However, when anions overlap with cations having filled d shells, as in NaCdF₃, the GK model significantly overestimates the repulsive force—in this case, between Cd and F. Thus, for Cd-F interactions we scale the repulsive part of the GK potential, i.e., that arising from the Thomas-Fermi approximation for electronic kinetic energy, by an amount (0.86) chosen to give the experimental lattice constant of CdF₂. The instability trees obtained using the GK models for NaCdF₃ and NaCaF₃ are summarized as follows. First of all, the results for both compounds are qualitatively the same. In each case, the two lowest-energy structures originate from the most unstable mode of the cubic structure, which has R₃c
symmetry. One branch leads to a stable crystal with space group $R3c$ and involves the Γ_2^- ferroelectric instability of the $R3c$ structure. Another branch leads to a stable crystal with $Pna2_1$ symmetry and involves a Γ_4^+ ferroelectric instability of the $Pnma$ structure, preceded by an X_4^- instability of the $Imma$ structure. The GK models find the $R3c$ structure 12 and 15 meV lower in energy than the $Pna2_1$ structure for NaCdF$_3$ and NaCaF$_3$, respectively, and the energy of the constituent compounds are 295 and 204 meV per formula unit below the $R3c$ energies, respectively. A third branch originating from the second most unstable mode (M_2^+ symmetry) was considered and found to lie \sim125 meV above the $R3c$ structures.

Ab initio band structure and total energy calculations were carried out for NaCdF$_3$ and NaCaF$_3$ in three space groups, $R3c$, $Pbn2_1$, and $Im3$ using the FLAPW method18 and the GGA.19 The factor $R_{K_{\text{max}}}$ is set to be 9. The upper limit of the angular momentum $l_{\text{max}}=10$ is adopted in the spherical-harmonic expansion of the Kohn-Sham functions inside the atom spheres. Twenty k points in the irreducible part of the Brillouin zone are used in the self-consistent calculation. The convergence obtained is up to 0.1 meV of the total energy. The same methods were applied to calculate total energies for NaF, CaF$_2$, and CdF$_2$. Based on our tests on $R_{K_{\text{max}}}$, we are able to set an uncertainty of \pm10 meV on our calculated energies.

The relaxed structures and total energies are listed in Tables I and II. The $Im3$ structure, originating from the second most unstable mode (M_2^+ symmetry) of the cubic perovskite structure, has substantially higher energy than the

TABLE I. Predicted structure parameters for compounds considered in this paper. GK model values are identified, where appropriate, by parentheses. Lattice parameter lengths are in Bohr and angles are in degrees.

<table>
<thead>
<tr>
<th>Compound</th>
<th>Space Group</th>
<th>Lattice parameters</th>
<th>Wyckoff notation</th>
<th>x</th>
<th>y</th>
<th>z</th>
<th>atom</th>
</tr>
</thead>
<tbody>
<tr>
<td>NaF</td>
<td>$Fm3m$</td>
<td>$a=8.88(8.75)$</td>
<td></td>
<td>0.289(0.285)</td>
<td>0.289(0.285)</td>
<td>0.289(0.285)</td>
<td>Na</td>
</tr>
<tr>
<td>CaF$_2$</td>
<td>$Fm3m$</td>
<td>$a=10.41(10.17)$</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Ca</td>
</tr>
<tr>
<td>NaCaF$_3$</td>
<td>$R3c$</td>
<td>$r=11.74(11.38)$</td>
<td>a</td>
<td>0.964</td>
<td>0.495</td>
<td>0.770</td>
<td>Na</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$\beta=56.17(56.88)$</td>
<td>b</td>
<td>0.520</td>
<td>0.500</td>
<td>0.003</td>
<td>Ca</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.148</td>
<td>0.334</td>
<td>0.551</td>
<td>F</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.724</td>
<td>0.199</td>
<td>0.921</td>
<td>F</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.071</td>
<td>0.878</td>
<td>0.747</td>
<td>F</td>
</tr>
<tr>
<td>NaCdF$_3$</td>
<td>$R3c$</td>
<td>$r=11.60(11.42)$</td>
<td>a</td>
<td>0.966</td>
<td>0.496</td>
<td>0.772</td>
<td>Na</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$\beta=56.81(56.81)$</td>
<td>b</td>
<td>0.524</td>
<td>0.500</td>
<td>0.003</td>
<td>Ca</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.139</td>
<td>0.338</td>
<td>0.549</td>
<td>F</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.730</td>
<td>0.201</td>
<td>0.916</td>
<td>F</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.076</td>
<td>0.875</td>
<td>0.746</td>
<td>F</td>
</tr>
</tbody>
</table>

TABLE II. Calculated energies for the instability tree structures of NaBF$_3$ relative to the energy of the constituent compounds: specifically, E(NaBF$_3$)-E(NaF)-E(BF$_2$), where B = Ca or Cd, in units of meV. GK model results are shown in parentheses.

<table>
<thead>
<tr>
<th>Compound</th>
<th>Group</th>
<th>Mode</th>
<th>Energy</th>
<th>Group</th>
<th>Mode</th>
<th>Energy</th>
<th>Group</th>
<th>Mode</th>
<th>Energy</th>
</tr>
</thead>
<tbody>
<tr>
<td>NaCaF$_3$</td>
<td>$Pm3m$</td>
<td>$R5^-$</td>
<td>889(930)</td>
<td>$Pm3m$</td>
<td>$R5^-$</td>
<td>889(930)</td>
<td>$Pm3m$</td>
<td>$M2^+$</td>
<td>889(930)</td>
</tr>
<tr>
<td></td>
<td>$R3c$</td>
<td>Γ_2^-</td>
<td>205(282)</td>
<td>$Imma$</td>
<td>X_4^-</td>
<td>—(304)</td>
<td>$Im3$</td>
<td>Γ_4^-</td>
<td>—(354)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>146(204)</td>
<td>$Pnma$</td>
<td>Γ_4^-</td>
<td>157(227)</td>
<td>$Imm2$</td>
<td>—(332)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>$Pna2_1$</td>
<td>131(219)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NaCdF$_3$</td>
<td>$Pm3m$</td>
<td>$R5^-$</td>
<td>792(1087)</td>
<td>$Pm3m$</td>
<td>$R5^-$</td>
<td>792(1087)</td>
<td>$Pm3m$</td>
<td>$M2^+$</td>
<td>792(1087)</td>
</tr>
<tr>
<td></td>
<td>$R5c$</td>
<td>Γ_2^-</td>
<td>75(384)</td>
<td>$Imma$</td>
<td>X_4^-</td>
<td>—(408)</td>
<td>$Im3$</td>
<td>Γ_4^-</td>
<td>130(463)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-59(295)</td>
<td>$Pnma$</td>
<td>Γ_4^-</td>
<td>-16(321)</td>
<td>$Imm2$</td>
<td>113(437)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

other two structures, so we do not consider it to be a candidate for the ground state. The FLAPW calculations using GK structure parameters give lower total energies, relative to the combined total energy of the constituent compounds, than the corresponding GK values. Relaxation of the lattice parameters rendered significantly lower energies. On the other hand, the GK model Wyckoff parameters were found to be already very near the minimum energy values. For both compounds the relaxed Wyckoff parameters agree with those of the GK model to within ~0.01. Compare values in Table I for NaCaF$_3$ in the $R\bar{3}c$ structure. We did not attempt more precise refinements for the remaining compounds/structures. For NaCdF$_3$, the total energy of the rhombohedral phase is lower than that of the orthorhombic phase by only 7 meV per formula unit. Considering the accuracy of our method, either structure could be the ground state.

In Fig. 1 we show the calculated energy band structures for the two phases of NaCdF$_3$. The theoretical energy gaps of the rhombohedral and orthorhombic phases are 3.6 and 3.4 eV at the Γ point, respectively. Partial density of states analysis reveals quite similar pictures of both band structures: the upper part of the valence states consists mainly of the F $2p$ electron states. The Cd $4d$ electron states lie around -5 eV of the valence bands. The bottom of conduction bands is dominated by Cd $5s$ states and F $2p$ electron states. The Na $3s$ electron states appear apparently only from 8 eV above the Fermi level. It shows that the interaction between Cd$^{2+}$ and F$^{-}$ ions is much larger than that between Na$^{+}$ and F$^{-}$ ions. The valence-band dispersion is small compared to the case of LiNbO$_3$.\cite{20}

The rhombohedral phases of NaCaF$_3$ and NaCdF$_3$ have the same symmetry as the LiNbO$_3$ structure. Thus we apply the same method to compute the electronic structure and lattice parameters of LiNbO$_3$, as well as NaF, CaF$_2$, CdF$_2$, for comparison with available experimental results (Table III). We see the calculated lattice constants agree well with observations. Discrepancies are within 2\%. Of the three perovskite-type compounds, LiNbO$_3$ has the smallest lattice constants, whereas NaCaF$_3$ has the largest. The close agreement between the theoretical and experimental lattice constants of LiNbO$_3$ supports our prediction of the theoretical structure of NaCdF$_3$.

We found that the total energies of both structures of NaCdF$_3$ are about 60 meV per formula unit lower than the sum of that of the constituents. This renders the fabrication of NaCdF$_3$ more promising than that of NaCaF$_3$. The calculated energy gaps of NaF and CdF$_2$ are much lower than experimental values, consistent with the common trend in density-functional methods of underestimating the energy gap. By adjusting accordingly for this expected error, we estimate the experimental energy gap for NaCdF$_3$ would be around 8.5 eV.

We have applied the self-consistent atomic deformation (SCAD) method\cite{27} to determine monopole and dipole moments of ions in the predicted ferroelectric structures of NaCaF$_3$ and NaCdF$_3$. The SCAD eigenvalues compare favorably with the band structure. The predicted monopole moments are the full ionic charges, and these do not change when the structures are distorted from paraelectric to ferro-

FIG. 1. Calculated band structures of NaCdF$_3$: (a) rhombohedral phase, (b) orthorhombic phase.
TABLE III. Calculated GGA-DFT lattice constants, \(a/c\) ratios and energy gaps \(E_g\) of NaF, CaF\(_2\), CdF\(_2\), NaCdF\(_3\), NaCaF\(_3\), and LiNbO\(_3\). Available experimental values are shown in parentheses.

<table>
<thead>
<tr>
<th></th>
<th>NaF</th>
<th>CaF(_2)</th>
<th>CdF(_2)</th>
<th>NaCdF(_3)</th>
<th>NaCaF(_3)</th>
<th>LiNbO(_3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a (\text{Å}))</td>
<td>4.70(4.63 (^a))</td>
<td>5.51(5.46 (^a))</td>
<td>5.49(5.39 (^a))</td>
<td>5.84</td>
<td>5.85</td>
<td>5.18(5.15 (^b))</td>
</tr>
<tr>
<td>(c (\text{Å}))</td>
<td></td>
<td>15.39</td>
<td>15.64</td>
<td>14.09(13.86 (^b))</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(a/c)</td>
<td>0.379</td>
<td>0.374</td>
<td>0.368</td>
<td>0.368(0.371 (^c))</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(E_g (\text{eV}))</td>
<td>6.1(11.7 (^b))</td>
<td>7.4(12.4 (^d))</td>
<td>3.5(8.4 (^e))</td>
<td>3.6</td>
<td>6.6</td>
<td>3.2(3.78 (^f))</td>
</tr>
</tbody>
</table>

\(^a\)Reference 21.
\(^b\)Reference 23.
\(^c\)Reference 22.
\(^d\)Reference 24.
\(^e\)Reference 25.
\(^f\)Reference 26.

zation LiNbO\(_3\) using the experimental structure. Again, the monopole charges are the full ionic values. We find a ferroelectric polarization of 0.77 C/m\(^2\), in good agreement with the room temperature value (0.71). However, in this case the dipolar contributions are about 20% of the total and serve to enhance the monopole contribution.

In conclusion, our ab initio calculations predict that NaCdF\(_3\) could be formed in a ferroelectric structure having an energy substantially lower than its constituents. We estimate an experimental energy gap of about 8–9 eV at the Γ point. This indicates that this compound might be a good candidate for a frequency conversion material working in the ultraviolet region.

This work was supported by the Nebraska Research Initiative, the Nebraska-EPSCoR-NSF Grant No. EPS-9720643 and Department of the Army Grants Nos. DAAG 55-98-1-0273 and DAAG 55-99-1-0106. Work at the Naval Research Laboratory was supported by the Office of Naval Research.

9 Email address: dcg@cosmos.unomaha.edu
12 A. Bulou et al., Ferroelectrics 25, 375 (1980).