Files
Download Full Text (2.5 MB)
Description
Contents 1. Basic Structures: Sets, Function, Sequences, Sums 4 1.1. Sets Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.2. Sets Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.3. Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.4. Sequences and Summations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2. Elements of Mathematica Logic and Proofs 15 2.1. Syntax and Semantics of Propositional Formulas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.2. Tautologies, Equivalence, Satisfiability and Entailment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.3. Inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 2.4. Elements of Predicate Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 2.5. Predicate Logic, Formally . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 2.6. Elements of Mathematical Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 3. Growth of Functions 38 3.1. Calculus Notion of Function Growth Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 3.2. Big-O Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 4. Elements on Algorithms and the Complexity 42 4.1. Algorithms and their Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 4.2. Time Complexity of Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 5. Induction and Recursive Definitions 45 5.1. Proofs by Induction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 5.2. Strong and Structural Induction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 6. Recursive Definitions 51 7. Counting 54 7.1. The Product Rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 7.2. The Sum Rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 7.3. The Pigeonhole Principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 7.4. Premutation and Combinations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 8. Relations 58 8.1. Relations and their Kinds: Reflexive, Symmetric, Transitive . . . . . . . . . . . . . . . . . . . . . . . . . 58 8.2. Equivalence Relations and Partitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 9. Graphs 61 9.1. Undirected Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 9.2. Directed Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 10. Elements on Proving Partial Correctness of Programs 63
Publication Date
2024
Publisher
University of Nebraska at Omaha
City
Omaha, Nebraska
Recommended Citation
Lierler, Yuliya, "Discrete Mathematics in a Nutshell or Theoretical Foundations of Computer Science" (2024). Computer Science Faculty Books and Monographs. 5.
https://digitalcommons.unomaha.edu/compscifacbooks/5
Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.

Comments
The creation of this book was made possible with the assistance of Affordable Content Grants provided by the University of Nebraska Omaha in 2024.