Document Type


Publication Date


Publication Title







Opinion dynamics focuses on the opinion evolution in a social community. Recently, some models of continuous opinion dynamics under bounded confidence were proposed by Deffuant and Krause, et al. In the literature, agents were generally assumed to have a homogeneous confidence level. This paper proposes an extended model for a group of agents with heterogeneous confidence levels. First, a social differentiation theory is introduced and a social group is divided into opinion subgroups with distinct confidence levels. Second, a multi-level heterogeneous opinion formation model is formulated under the framework of bounded confidence. Finally, computer simulations are conducted to study the collective opinion evolution, focusing on three key factors: the fractions of heterogeneous agents, the initial opinions, and the group size. The simulation results demonstrate that the number of final opinions depends on the fraction of closeminded agents when the group size and the initial opinions are fixed; the final opinions converge more easily when the initial opinions are closer; and the number of final opinions can be approximately modeled by a linear increasing function of the group size and the increasing rate is the fraction of close-minded agents.


© 2012 Kou et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.