Author ORCID Identifier
Document Type
Article
Publication Date
11-29-2012
Publication Title
PLoS ONE
Volume
7
Issue
11
Abstract
Female mate choice behavior is a critical component of sexual selection, yet identifying the neural basis of this behavior is largely unresolved. Previous studies have implicated sensory processing and hypothalamic brain regions during female mate choice and there is a conserved network of brain regions (Social Behavior Network, SBN) that underlies sexual behaviors. However, we are only beginning to understand the role this network has in pre-copulatory female mate choice. Using in situ hybridization, we identify brain regions associated with mate preference in female Xiphophorus nigrensis, a swordtail species with a female choice mating system. We measure gene expression in 10 brain regions (linked to sexual behavior, reward, sensory integration or other processes) and find significant correlations between female preference behavior and gene expression in two telencephalic areas associated with reward, learning and multi-sensory processing (medial and lateral zones of the dorsal telencephalon) as well as an SBN region traditionally associated with sexual response (preoptic area). Network analysis shows that these brain regions may also be important in mate preference and that correlated patterns of neuroserpin expression between regions co-vary with differential compositions of the mate choice environment. Our results expand the emerging network for female preference from one that focused on sensory processing and midbrain sexual response centers to a more complex coordination involving forebrain areas that integrate primary sensory processing and reward.
Recommended Citation
Wong RY, Ramsey ME, Cummings ME (2012) Localizing Brain Regions Associated with Female Mate Preference Behavior in a Swordtail. PLoS ONE 7(11): e50355. doi:10.1371/journal.pone.0050355
Comments
© 2012 Wong et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.