Document Type
Article
Publication Date
6-23-2014
Abstract
Twenty-four individuals with transtibial amputation were recruited to a randomized, crossover design study to examine stride-to-stride fluctuations of lower limb joint flexion/extension time series using the largest Lyapunov exponent (λ). Each individual wore a “more appropriate” and a “less appropriate” prosthesis design based on the subject's previous functional classification for a three week adaptation period. Results showed decreased λ for the sound ankle compared to the prosthetic ankle (F1,23 = 13.897, p = 0.001) and a decreased λ for the “more appropriate” prosthesis (F1,23 = 4.849, p = 0.038). There was also a significant effect for the time point in the adaptation period (F2,46 = 3.164, p = 0.050). Through the adaptation period, a freezing and subsequent freeing of dynamic degrees of freedom was seen as the λ at the ankle decreased at the midpoint of the adaptation period compared to the initial prosthesis fitting (p = 0.032), but then increased at the end compared to the midpoint (p = 0.042). No differences were seen between the initial fitting and the end of the adaptation for λ (p = 0.577). It is concluded that the λ may be a feasible clinical tool for measuring prosthesis functionality and adaptation to a new prosthesis is a process through which the motor control develops mastery of redundant degrees of freedom present in the system.
Journal Title
PLoS One
Volume
9
Issue
6
First Page
e100125
Recommended Citation
Wurdeman, Shane R.; Myers, Sara A.; Jacobsen, Adam L.; and Stergiou, Nikolaos, "Adaptation and Prosthesis Effects on Stride-to-Stride Fluctuations in Amputee Gait" (2014). Journal Articles. 118.
https://digitalcommons.unomaha.edu/biomechanicsarticles/118
Comments
© Wurdeman, Myers, Jacobsen and Stergiou. This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.