Author ORCID Identifier
Deuerling - https://orcid.org/0000-0001-8825-0546
Document Type
Article
Publication Date
11-20-2017
Publication Title
Journal of Hydrology
Volume
556
First Page
220
Last Page
232
Abstract
The exchange of proglacial river water with active layer pore water could alter water chemical compositions in glacial outwash plains and oceanic solute fluxes. To evaluate effects of this exchange, we sampled Watson River and adjacent pore water during the 2013 melt season at two sandurs in western Greenland; one in Sandflugtdalen and the other near the confluence with Søndre Strømfjord. We measured temperature, specific conductivity, and head gradients between the river and bank over a week-long period at Sandflugtdalen, as well as sediment hydraulic conductivity and chemical compositions of waters from both sites. Specific conductivity of pore water is four to ten times greater than river water as solutes are concentrated from weathering reactions, cryoconcentration, and evaporation. Pore water compositions are predominantly altered by carbonate dissolution and sulfide mineral oxidation. High concentrations of HCO3 and SO4 result from solute recycling and dissolution of secondary Ca-Mg carbonate/sulfate salts initially formed by near-surface evaporation in the summer and at depth by freeze-in of the active layer and cryoconcentration in the winter. High hydraulic conductivity (10−5 to 10−4 m/s) and diurnal fluctuations of river stage during our study caused exchange of river and pore water immediately adjacent to the river channel, with a net loss of river water to the bank. Pore water >6 m from the river continuously flowed away from the river. Approximately 1–8% of the river discharge through the Sandflugtdalen was lost to the river bank during our 6.75 day study based on calculations using Darcy’s Law. Although not sampled, some of this water should discharge to the river during low river stage early and late in the melt season. Elevated pore water solute concentrations in sandurs and water exchange at diurnal and seasonal frequency should impact fluxes of solutes to the ocean, although understanding the magnitude of this effect will require long-term evaluation throughout the melt season.
Recommended Citation
Deuerling KM, Martin JB, Martin EE, Scribner CA (2018) Hydrologic exchange and chemical weathering\ in a proglacial watershed near Kangerlussuaq, west Greenland. Journal of Hydrology: 556, 220-232. doi: 10.1016/j.jhydrol.2017.11.002
Creative Commons License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License.
Comments
This is an Accepted Manuscript of an article published by Elsevier in Journal of Hydrology on November 20, 2017, available online:
https://doi.org/10.1016/j.jhydrol.2017.11.002