Document Type

Conference Proceeding

Publication Date

2012

Abstract

Chordal graphs are triangulated graphs where any cycle larger than three is bisected by a chord. Many combinatorial optimization problems such as computing the size of the maximum clique and the chromatic number are NP-hard on general graphs but have polynomial time solutions on chordal graphs. In this paper, we present a novel multithreaded algorithm to extract a maximal chordal sub graph from a general graph. We develop an iterative approach where each thread can asynchronously update a subset of edges that are dynamically assigned to it per iteration and implement our algorithm on two different multithreaded architectures - Cray XMT, a massively multithreaded platform, and AMD Magny-Cours, a shared memory multicore platform. In addition to the proof of correctness, we present the performance of our algorithm using a test set of synthetical graphs with up to half-a-billion edges and real world networks from gene correlation studies and demonstrate that our algorithm achieves high scalability for all inputs on both types of architectures.

Comments

2012 41st International Conference on Parallel Processing

© 2012 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

Share

COinS