Author ORCID Identifier
Document Type
Article
Publication Date
9-26-2019
Publication Title
Policy & Internet
Abstract
The advent of the Internet inadvertently augmented the functioning and success of violent extremist organizations. Terrorist organizations like the Islamic State in Iraq and Syria (ISIS) use the Internet to project their message to a global audience. The majority of research and practice on web‐based terrorist propaganda uses human coders to classify content, raising serious concerns such as burnout, mental stress, and reliability of the coded data. More recently, technology platforms and researchers have started to examine the online content using automated classification procedures. However, there are questions about the robustness of automated procedures, given insufficient research comparing and contextualizing the difference between human and machine coding. This article compares output of three text analytics packages with that of human coders on a sample of one hundred nonindexed web pages associated with ISIS. We find that prevalent topics (e.g., holy war) are accurately detected by the three packages whereas nuanced concepts (Lone Wolf attacks) are generally missed. Our findings suggest that naïve approaches of standard applications do not approximate human understanding, and therefore consumption, of radicalizing content. Before radicalizing content can be automatically detected, we need a closer approximation to human understanding.
Recommended Citation
Hall, Margeret; Logan, Michael; Ligon, Gina S.; and Derrick, Douglas C., "Do Machines Replicate Humans? Toward a Unified Understanding of Radicalizing Content on the Open Social Web" (2019). Interdisciplinary Informatics Faculty Publications. 48.
https://digitalcommons.unomaha.edu/interdiscipinformaticsfacpub/48
Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.
Funded by the University of Nebraska at Omaha Open Access Fund
Comments
© 2019 The Authors. Policy & Internet Published by Wiley Periodicals, Inc.
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.