Author ORCID Identifier

Tsai - https://orcid.org/0000-0001-9188-0362

Document Type

Article

Publication Date

1-30-2019

Publication Title

Expert Systems with Applications

Volume

124

First Page

182

Last Page

195

Abstract

This paper outlines RSR, a relational social recommendation approach applied to a social graph comprised of relational entity profiles. RSR uses information extraction and learning methods to obtain relational facts about persons of interest from the Web, and generates an associative entity-relation social network from their extracted personal profiles. As a case study, we consider the task of peer recommendation at scientific conferences. Given a social graph of scholars, RSR employs graph similarity measures to rank conference participants by their relatedness to a user. Unlike other recommender systems that perform social rankings, RSR provides the user with detailed supporting explanations in the form of relational connecting paths. In a set of user studies, we collected feedbacks from participants onsite of scientific conferences, pertaining to RSR quality of recommendations and explanations. The feedbacks indicate that users appreciate and benefit from RSR explainability features. The feedbacks further indicate on recommendation serendipity using RSR, having it recommend persons of interest who are not apriori known to the user, oftentimes exposing surprising inter-personal associations. Finally, we outline and assess potential gains in recommendation relevance and serendipity using path-based relational learning within RSR.

Comments

This is an Accepted Manuscript of an article published by Elsevier in [Expert Systems with Applications] on [January 30, 2019], available online: https://doi.org/10.1016/j.eswa.2019.01.061

Creative Commons License

Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License.

Share

COinS