Document Type

Article

Publication Date

3-2007

Publication Title

Biosystems

Volume

88

Issue

1-2

First Page

16

Last Page

34

Abstract

An asynchronous Boolean network with N nodes whose states at each time point are determined by certain parent nodes is considered. We make use of the models developed by Matache and Heidel [Matache, M.T., Heidel, J., 2005. Asynchronous random Boolean network model based on elementary cellular automata rule 126. Phys. Rev. E 71, 026232] for a constant number of parents, and Matache [Matache, M.T., 2006. Asynchronous random Boolean network model with variable number of parents based on elementary cellular automata rule 126. IJMPB 20 (8), 897–923] for a varying number of parents. In both these papers the authors consider an asynchronous updating of all nodes, with asynchrony generated by various random distributions. We supplement those results by using various stochastic processes as generators for the number of nodes to be updated at each time point. In this paper we use the following stochastic processes: Poisson process, random walk, birth and death process, Brownian motion, and fractional Brownian motion. We study the dynamics of the model through sensitivity of the orbits to initial values, bifurcation diagrams, and fixed-point analysis. The dynamics of the system show that the number of nodes to be updated at each time point is of great importance, especially for the random walk, the birth and death, and the Brownian motion processes. Small or moderate values for the number of updated nodes generate order, while large values may generate chaos depending on the underlying parameters. The Poisson process generates order. With fractional Brownian motion, as the values of the Hurst parameter increase, the system exhibits order for a wider range of combinations of the underlying parameters.

Comments

This article was originally published here: http://www.sciencedirect.com/science/article/pii/S0303264706000839.

© 2007. This manuscript version is made available under the CC-BY-NC-ND 4.0 licensehttp://creativecommons.org/licenses/by-nc-nd/4.0/.

Files over 3MB may be slow to open. For best results, right-click and select "save as..."

Included in

Mathematics Commons

Share

COinS