Document Type
Article
Publication Date
2001
Publication Title
Linear Algebra and its Applications
Volume
331
Issue
1-3
First Page
61
Last Page
74
Abstract
Composition operators on the Hilbert Hardy space of the unit disk are considered. The shape of their numerical range is determined in the case when the symbol of the composition operator is a monomial or an inner function fixing 0. Several results on the numerical range of composition operators of arbitrary symbol are obtained. It is proved that 1 is an extreme boundary point if and only if 0 is a fixed point of the symbol. If 0 is not a fixed point of the symbol 1 is shown to be interior to the numerical range. Some composition operators whose symbol fixes 0 and has infinity norm less than 1 have closed numerical ranges in the shape of a cone-like figure, i.e. a closed convex region with a corner at 1, 0 in its interior, and no other corners. Compact composition operators induced by a univalent symbol whose fixed point is not 0 have numerical ranges without corners, except possibly a corner at 0.
Recommended Citation
Valentin Matache, Numerical ranges of composition operators, Linear Algebra and its Applications, Volume 331, Issues 1–3, 2001, Pages 61-74, ISSN 0024-3795, https://doi.org/10.1016/S0024-3795(01)00262-2.
Comments
Copyright © 2001 Elsevier Science Inc. All rights reserved.
This version of the article was released under a Creative Commons Attribution Non-Commercial No Derivatives License 3.0 (https://creativecommons.org/licenses/by-nc-nd/3.0/).