Document Type
Monograph
Publication Date
2016
Publication Title
Perusal of the Finite Element Method
Volume
Chapter 2
First Page
31
Last Page
68
Abstract
We present an analysis of the discontinuous Galerkin (DG) finite element method for nonlinear ordinary differential equations (ODEs). We prove that the DG solution is $(p + 1) $th order convergent in the $L^2$-norm, when the space of piecewise polynomials of degree $p$ is used. A $ (2p+1) $th order superconvergence rate of the DG approximation at the downwind point of each element is obtained under quasi-uniform meshes. Moreover, we prove that the DG solution is superconvergent with order $p+2$ to a particular projection of the exact solution. The superconvergence results are used to show that the leading term of the DG error is proportional to the $ (p + 1) $-degree right Radau polynomial. These results allow us to develop a residual-based a posteriori error estimator which is computationally simple, efficient and asymptotically exact. The proposed a posteriori error estimator is proved to converge to the actual error in the $L^2$-norm with order $p+2$. Computational results indicate that the theoretical orders of convergence are optimal. Finally, a local adaptive mesh refinement procedure that makes use of our local a posteriori error estimate is also presented. Several numerical examples are provided to illustrate the global superconvergence results and the convergence of the proposed estimator under mesh refinement.
Recommended Citation
M. Baccouch, The discontinuous Galerkin Finite element method for ordinary differential equations, in Radostina Petrova (Ed.), Perusal of the Finite Element Method, InTech, DOI: 10.5772/64967, ISBN 978-953-51-4889-0, 2016.
Files over 3MB may be slow to open. For best results, right-click and select "save as..."
Comments
© 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.