Author ORCID Identifier
Document Type
Article
Publication Date
2019
Publication Title
Applied Numerical Mathematics
Abstract
In this paper, we investigate the convergence and superconvergence properties of a local discontinuous Galerkin (LDG) method for nonlinear second-order two-point boundary-value problems (BVPs) of the form u″=f(x,u,u′), x∈[a,b] subject to some suitable boundary conditions at the endpoints x=a and x=b. We prove optimal L2 error estimates for the solution and for the auxiliary variable that approximates the first-order derivative. The order of convergence is proved to be p+1, when piecewise polynomials of degree at most p are used. We further prove that the derivatives of the LDG solutions are superconvergent with order p+1toward the derivatives of Gauss-Radau projections of the exact solutions. Moreover, we prove that the LDG solutions are superconvergent with order p+2 toward Gauss-Radau projections of the exact solutions. Finally, we prove, for any polynomial degree p, the (2p+1)th superconvergence rate of the LDG approximations at the upwind or downwind points and for the domain average under quasi-uniform meshes. Our numerical experiments demonstrate optimal rates of convergence and superconvergence. Our proofs are valid for arbitrary regular meshes using piecewise polynomials of degree p≥1 and for the classical sets of boundary conditions. Several computational examples are provided to validate the theoretical results.
Recommended Citation
Baccouch, Mahboub, "Analysis of optimal superconvergence of a local discontinuous Galerkin method for nonlinear second-order two-point boundary-value problems" (2019). Mathematics Faculty Publications. 60.
https://digitalcommons.unomaha.edu/mathfacpub/60
Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.
Funded by the University of Nebraska at Omaha Open Access Fund
Comments
https://doi.org/10.1016/j.apnum.2019.05.003