Date of Award
11-2018
Document Type
Thesis
Degree Name
Master of Science (MS)
Department
Computer Science
First Advisor
Dr. Brian Ricks
Second Advisor
Dr. Margeret Hall
Third Advisor
Dr. Yuliya Lierler
Abstract
Analysis of Facebook posts provides helpful information for users on social media. Current papers about user engagement on social media explore methods for predicting user engagement. These analyses of Facebook posts have included text and image analysis. Yet, the studies have not incorporate both text and image data. This research explores the usefulness of incorporating image and text data to predict user engagement. The study incorporates five types of machine learning models: text-based Neural Networks (NN), image-based Convolutional Neural Networks (CNN), Word2Vec, decision trees, and a combination of text-based NN and image-based CNN. The models are unique in their use of the data. The research collects 350k Facebook posts. The models learn and test on advertisement posts in order to predict user engagement. User engagements includes share count, comment count, and comment sentiment. The study found that combining image and text data produced the best models. The research further demonstrates that combined models outperform random models.
Recommended Citation
Crowe, Chad, "Predicting User Interaction on Social Media using Machine Learning" (2018). Student Work. 2920.
https://digitalcommons.unomaha.edu/studentwork/2920
Files over 3MB may be slow to open. For best results, right-click and select "save as..."
Comments
A Thesis Presented to the College of Information Science and Technology and the Faculty of the Graduate College University of Nebraska at Omaha In Partial Fulfillment of the Requirements for the Degree Master of Science in Computer Science. Copyright 2018 Chad Crowe.