Date of Award
3-1-1973
Document Type
Thesis
Degree Name
Master of Arts (MA)
Department
Mathematics
First Advisor
Dr. John P. Maloney
Abstract
In his paper, Ewing has established sufficient conditions for a non-regular problem in the calculus of variations. In chapter 2, we shall discuss his method. In chapter 3, we will provide an example in which the main result of [1] will apply. In this chapter, we shall state for your convenience some definitions, theorems and conditions from [2]. We will suppose that there is a region of R of xyz 1/Space in which the integrand function f(x,y,z) has continuous partial derivatives up to and including those of the fourth order. The general problem of the calculus of variations is finding in a class of arcs E:y(x), x1 less than or equal to x less than or equal to x2 joining two fixed points 1 and 2 in xy space, one which minimizes an integral of the form.
Recommended Citation
Waldman, Sam, "Investigation of sufficient conditions for a non-regular problem in the calculus of variations." (1973). Student Work. 3559.
https://digitalcommons.unomaha.edu/studentwork/3559
Comments
A Thesis Presented to the Department of Mathematics and the Faculty of the Graduate College University of Nebraska at Omaha In Partial Fulfillment of the Requirements for the Degree Master of Arts Copyright 1973 Sam Waldman